1
|
Oliveira A, Seixas R, Pereira F, Azevedo M, Martinho R, Serrão P, Moreira-Rodrigues M. Insulin enhances contextual fear memory independently of its effect in increasing plasma adrenaline. Life Sci 2023:121881. [PMID: 37356751 DOI: 10.1016/j.lfs.2023.121881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIMS Adrenaline enhances contextual fear memory consolidation possibly by activating liver β2-adrenoceptors causing transient hyperglycaemia. Contrastingly, insulin-induced hypoglycaemia may culminate in blood adrenaline increment, hidering the separation of each hormone's action in contextual fear memory. Therefore, an Ad-deficient mouse model was used aiming to investigate if contextual fear memory consolidation following insulin administration requires or not subsequent increases in plasma adrenaline, which occurs in response to insulin-induced hypoglycemia. MAIN METHODS Fear conditioning was performed in wild-type (WT) and adrenaline-deficient (Pnmt-KO) male mice (129 × 1/SvJ) treated with insulin (2 U/kg, intraperitoneal (i.p.)) or vehicle (0.9 % NaCl (i.p.)). Blood glucose was quantified. Catecholamines were quantified using HPLC with electrochemical detection. Quantitative real-time polymerase chain reaction was used to assess mRNA expression of hippocampal Nr4a1, Nr4a2, Nr4a3, and Bdnf genes. KEY FINDINGS Insulin-treated WT mice showed increased freezing behaviour when compared to vehicle-treated WT mice. Also, plasma dopamine, noradrenaline, and adrenaline increased in this group. Insulin-treated Pnmt-KO animals showed increased freezing behaviour when compared with respective vehicle. However, no changes in plasma or tissue catecholamines were identified in insulin-treated Pnmt-KO mice when compared with respective vehicle. Furthermore, insulin-treated Pnmt-KO mice presented increased Bdnf mRNA expression when compared to vehicle-treated Pnmt-KO mice. SIGNIFICANCE Concluding, enhanced freezing behaviour after insulin treatment, even in adrenaline absence, may indicate a key role of insulin in contextual fear memory. Insulin may cause central molecular changes promoting contextual fear memory formation and/or retrieval. This work may indicate a further role of insulin in the process of contextual fear memory modulation.
Collapse
Affiliation(s)
- Ana Oliveira
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Rafaela Seixas
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Francisca Pereira
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Márcia Azevedo
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Raquel Martinho
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Paula Serrão
- Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Mónica Moreira-Rodrigues
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal.
| |
Collapse
|
2
|
Bądzyńska B, Sadowski J. Reinvestigation of the tonic natriuretic action of intrarenal dopamine: comparison of two variants of salt-dependent hypertension and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2021; 48:1280-1287. [PMID: 34056731 DOI: 10.1111/1440-1681.13529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023]
Abstract
The intrarenal dopamine system has been thoroughly investigated at all levels, especially its role in salt-dependent and other forms of hypertension. However, the evidence regarding dopamine's tonic influence on renal tubular transport of sodium remains equivocal. We reinvestigated its tonic influence on sodium excretion and systemic and renal haemodynamics. Early effects of dopamine D1 receptor blockade using 90-min Schering 23390 (SCH) infusion were examined in anaesthetized rats on 7 days' high salt diet (HS), early uninephrectomized rats on 14 days' HS diet, drinking 1% saline (HS/UNX), and in spontaneously hypertensive rats (SHR). In the HS group (baseline BP ~133 mm Hg) renal intracortical SCH promptly decreased sodium, water and total solute excretion (UNa V, V, Uosm V), with significant difference from the solvent-infused group. BP and renal artery blood flow (RBF, Transonic probe) did not change. In HS/UNX model (baseline BP ~150 mm Hg), characterized by hypertrophy of the remaining kidney, the excretion parameters only tended to decrease whereas SCH induced an ~20% fall in RBF. In SHR (BP ~180 mm Hg), UNa V and V tended to increase in solvent-infused rats; this increasing tendency was abolished by SCH infusion. During experiments the renal vascular resistance increased significantly in SCH- and solvent-infused SHR. Despite some contradictory findings regarding the genuine tonic control of renal excretion by intrarenal dopamine, our results clearly support such role in rats on HS diet and in SHR, the model resembling human essential hypertension. The observations strengthen the experimental basis and the rationale for targeting the intrarenal dopamine system in attempts to combat arterial hypertension.
Collapse
Affiliation(s)
- Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Martinho R, Oliveira A, Correia G, Marques M, Seixas R, Serrão P, Moreira-Rodrigues M. Epinephrine May Contribute to the Persistence of Traumatic Memories in a Post-traumatic Stress Disorder Animal Model. Front Mol Neurosci 2020; 13:588802. [PMID: 33192300 PMCID: PMC7649334 DOI: 10.3389/fnmol.2020.588802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The importance of catecholamines in post-traumatic stress disorder (PTSD) still needs to be explored. We aimed to evaluate epinephrine’s (EPI) causal role and molecular mechanism for the persistence of PTSD traumatic memories. Wild-type (WT) and EPI-deficient mice (phenylethanolamine-N-methyltransferase-knockout mice, Pnmt-KO) were induced with PTSD and behavioral tests were performed. Some Pnmt-KO mice were administered with EPI or vehicle. Catecholamines were quantified by HPLC-ED. Nr4a1, Nr4a2, and Nr4a3 mRNA expression were evaluated by real-time PCR in hippocampus samples. It was observed an increase in EPI and freezing behavior, and a decrease in open arm entries in the elevated plus-maze test and time spent in the light in the light–dark test in WT mice in the PTSD-induction group compared to control. After induction of PTSD, Pnmt-KO mice showed a decrease in freezing, as well as an increase in open arm entries and transitions between compartments compared to WT. After PTSD induction, Pnmt-KO mice administered with EPI showed an increase in freezing compared with the vehicle. On day 0 of PTSD induction, it was observed an increase in mRNA expression of Nr4a2 and Nr4a3 genes in the hippocampus of WT mice compared to control, contrary to Pnmt-KO mice. In conclusion, our data suggest that EPI may be involved in the persistence of traumatic memories in PTSD, possibly through enhancement of the expression of Nr4a2 and Nr4a3 genes in the hippocampus. Peripheral administration of EPI restored contextual traumatic memories in Pnmt-KO mice, which suggests a causal role for EPI. The persistence of contextual traumatic memories may contribute to anxiety-like behavior and resistance of traumatic memory extinction in this PTSD mice model.
Collapse
Affiliation(s)
- Raquel Martinho
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Ana Oliveira
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Gabriela Correia
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Márcia Marques
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Rafaela Seixas
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Paula Serrão
- Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Mónica Moreira-Rodrigues
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| |
Collapse
|
4
|
Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors. Psychopharmacology (Berl) 2016; 233:2099-2108. [PMID: 26935825 DOI: 10.1007/s00213-016-4254-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Phenylethanolamine-N-methyltransferase knockout (Pnmt-KO) mice are unable to synthesize epinephrine and display reduced contextual fear. However, the precise mechanism responsible for impaired contextual fear learning in these mice is unknown. OBJECTIVES Our aim was to study the mechanism of epinephrine-dependent contextual learning. METHODS Wild-type (WT) or Pnmt-KO (129x1/SvJ) mice were submitted to a fear conditioning test either in the absence or in the presence of epinephrine, isoprenaline (non-selective β-adrenoceptor agonist), fenoterol (selective β2-adrenoceptor agonist), epinephrine plus sotalol (non-selective β-adrenoceptor antagonist), and dobutamine (selective β1-adrenoceptor agonist). Catecholamines were separated by reverse-phase HPLC and quantified by electrochemical detection. Blood glucose was measured by coulometry. RESULTS Re-exposure to shock context induced higher freezing in WT and Pnmt-KO mice treated with epinephrine and fenoterol than in mice treated with vehicle. In addition, freezing response in Pnmt-KO mice was much lower than in WT mice. Freezing induced by epinephrine was blocked by sotalol in Pnmt-KO mice. Epinephrine and fenoterol treatment restored glycemic response in Pnmt-KO mice. Re-exposure to shock context did not induce a significant difference in freezing in Pnmt-KO mice treated with dobutamine and vehicle. CONCLUSIONS Aversive memories are best retained if moderately high plasma epinephrine concentrations occur at the same moment as the aversive stimulus. In addition, epinephrine increases context fear learning by acting on peripheral β2-adrenoceptors, which may induce high levels of blood glucose. Since glucose crosses the blood-brain barrier, it may enhance hippocampal-dependent contextual learning.
Collapse
|
5
|
Santos-Araújo C, Leite-Moreira A, Pestana M. Clinical value of natriuretic peptides in chronic kidney disease. Nefrologia 2015; 35:227-33. [PMID: 26299165 DOI: 10.1016/j.nefro.2015.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/09/2015] [Indexed: 11/26/2022] Open
Abstract
According to several lines of evidence, natriuretic peptides (NP) are the main components of a cardiac-renal axis that operate in clinical conditions of decreased cardiac hemodynamic tolerance to regulate sodium homeostasis, blood pressure and vascular function. Even though it is reasonable to assume that NP may exert a relevant role in the adaptive response to renal mass ablation, evidence gathered so far suggest that this contribution is probably complex and dependent on the type and degree of the functional mass loss. In the last years NP have been increasingly used to diagnose, monitor treatment and define the prognosis of several cardiovascular (CV) diseases. However, in many clinical settings, like chronic kidney disease (CKD), the predictive value of these biomarkers has been questioned. In fact, it is now well established that renal function significantly affects the plasmatic levels of NP and that renal failure is the clinical condition associated with the highest plasmatic levels of these peptides. The complexity of the relation between NP plasmatic levels and CV and renal functions has obvious consequences, as it may limit the predictive value of NP in CV assessment of CKD patients and be a demanding exercise for clinicians involved in the daily management of these patients. This review describes the role of NP in the regulatory response to renal function loss and addresses the main factors involved in the clinical valorization of the peptides in the context of significant renal failure.
Collapse
Affiliation(s)
- Carla Santos-Araújo
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Center and Nephrology and Infectious Diseases Research and Development Group, INEB (I3S) Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Pestana
- Nephrology and Infectious Diseases Research and Development Group, INEB (I3S) and Department of Renal, Urologic and Infectious Diseases, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Rodríguez-Gómez I, Wangensteen R, Pérez-Abud R, Quesada A, Del Moral RG, Osuna A, O'Valle F, de Dios Luna J, Vargas F. Long-term consequences of uninephrectomy in male and female rats. Hypertension 2012; 60:1458-63. [PMID: 23071124 DOI: 10.1161/hypertensionaha.112.198499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effects of uninephrectomy (UNX) in 6-week-old male and female rats on blood pressure (BP), renal sodium handling, salt sensitivity, oxidative stress, and renal injury over 18 months postsurgery, studying control sham-operated and UNX-operated rats at 6, 12, and 18 months postsurgery, evaluating their renal sodium handling, BP, urinary isoprostanes, N-acetyl-β-D-glucosaminidase, and proteinuria before and after a 2-week high-salt intake period. At 18 months, plasma variables were measured and kidney samples were taken for the analysis of renal morphology and tissue variables. BP was increased at 6 months in male UNX rats versus controls and at 12 and 18 months in both male and female UNX rats and was increased in male versus female UNX groups at 18 months. UNX did not affect water and sodium excretion under basal conditions and after the different test in male and female rats at different ages. However, the renal function curve was shifted to the right in both male and female UNX rats. High-salt intake increased BP in both UNX groups at 6, 12, and 18 months and in the female control group at 18 months, and it increased proteinuria, N-acetyl-β-D-glucosaminidase, and isoprostanes in both UNX groups throughout the study. Renal lesions at 18 months were more severe in male versus female UNX rats. In summary, long-term UNX increased the BP, creatinine, proteinuria, pathological signs of renal injury, and salt sensitivity. Earlier BP elevation was observed and morphological lesions were more severe in male than in female UNX rats.
Collapse
|
7
|
Amaral JS, Pinho MJ, Soares-da-Silva P. Regulation of amino acid transporters in the rat remnant kidney. Nephrol Dial Transplant 2009; 24:2058-67. [PMID: 19155532 DOI: 10.1093/ndt/gfn752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Partial renal ablation is associated with compensatory renal growth, significant azotaemia, a significant increase in fractional excretion of sodium and changes in solute transport. The present study evaluated the occurrence of adaptations in the remnant kidney, especially in renal amino acid transporters and sodium transporters and their putative role in sodium handling in the early stages (24 h and 1 week) after uninephrectomy. METHODS Wistar rats aged 8 weeks old were submitted to renal ablation of the right kidney--Unx rats (n = 10). 24 hours (n = 5) and 1 week (n = 5) after surgery, rats were anesthetized and the left kidney was removed. Urinary and plasmatic levels of catecholamines, sodium, urea and creatinine were measured. Gene expression of the amino acid and sodium transporters was determined by Real-time reverse transcription PCR. Protein expression was evaluated by Western blot using specific antibodies for the amino acid and sodium transporters. RESULTS Uninephrectomized (Unx) rats for 24 h showed a lower urinary excretion of L-DOPA, dopamine and DOPAC than the corresponding Sham rats, accompanied by an increase in the expression of the Na(+)-K(+)-ATPase protein (64% increase). Unx rats for 1 week presented a hypertrophied remnant kidney, higher urine outflow and a approximately 2-fold increase in the fractional excretion of sodium. The NHE3 mRNA expression was significantly decreased in Unx rats throughout the study (approximately 20% decrease). LAT1 transcript and protein were consistently overexpressed at both 24 h and 1 week after uninephrectomy. In contrast, 4F2hc and LAT2 transcript abundance was lower in 24-h Unx rats than in Sham rats (a 36% decrease in both cases). CONCLUSIONS These results provide evidence that the renal expression of the amino acid transporters LAT1, LAT2 and 4F2hc and the sodium transporters Na(+)-K(+)-ATPase and NHE3 is differently regulated following unilateral nephrectomy. In conclusion, this study allowed us to characterize the renal adaptations in the early stages after uninephrectomy, which showed a combined interaction of multiple mechanisms regulating sodium homeostasis including the renal dopaminergic system, and the abundance of amino acid transporters and sodium transporters.
Collapse
Affiliation(s)
- João S Amaral
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
8
|
Renal dopaminergic system activity in rat remnant kidney up to twenty-six weeks after surgery. Life Sci 2009; 84:409-14. [PMID: 19167406 DOI: 10.1016/j.lfs.2008.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/02/2008] [Accepted: 12/31/2008] [Indexed: 12/15/2022]
Abstract
AIMS In 3/4 nephrectomized (3/4nx) rats the renal dopaminergic system was suggested to be involved in the adaptive increase of sodium excretion two weeks after renal mass ablation. The aim of the present study was to evaluate the renal adaptations in sodium handling and renal dopaminergic system activity in 3/4nx rats up to twenty-six weeks after surgery. MAIN METHODS The rats were placed in metabolic cages for the collection of 24 h urine for evaluation of sodium, dopamine, dopamine precursor and metabolites. Blood pressure, aromatic L-amino acid decarboxylase (AADC) activity in proximal tubules and the effect of dopamine D(1) receptor selective antagonist (Sch-23390) on natriuresis was evaluated. KEY FINDINGS A time-dependent increase in both systolic and diastolic blood pressure was observed in 3/4nx rats, and this was accompanied by a decrease in urinary levels of dopamine and in renal AADC activity at twenty-six weeks after renal mass ablation. In contrast to what has been found two weeks after renal mass ablation, the natriuretic response to volume expansion was progressively reduced in 3/4nx rats at ten and twenty-six weeks after surgery and this was accompanied by insensitivity of natriuresis to Sch-23390. SIGNIFICANCE In conclusion the renal dopaminergic system activity is compromised in 3/4nx rats in a time-dependent manner after renal mass ablation. It is suggested that this may contribute to compromise sodium excretion and increase blood pressure, in chronic renal insufficiency.
Collapse
|