1
|
Duller S, Vrbancic S, Szydłowski Ł, Mahnert A, Blohs M, Predl M, Kumpitsch C, Zrim V, Högenauer C, Kosciolek T, Schmitz RA, Eberhard A, Dragovan M, Schmidberger L, Zurabischvili T, Weinberger V, Moser AM, Kolb D, Pernitsch D, Mohammadzadeh R, Kühnast T, Rattei T, Moissl-Eichinger C. Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome. Nat Commun 2024; 15:7593. [PMID: 39217206 PMCID: PMC11366006 DOI: 10.1038/s41467-024-52037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Archaea are vital components of the human microbiome, yet their study within the gastrointestinal tract (GIT) is limited by the scarcity of cultured representatives. Our study presents a method for the targeted enrichment and isolation of methanogenic archaea from human fecal samples. The procedure combines methane breath testing, in silico metabolic modeling, media optimization, FACS, dilution series, and genomic sequencing through Nanopore technology. Additional analyzes include the co-cultured bacteriome, comparative genomics of archaeal genomes, functional comparisons, and structure-based protein function prediction of unknown differential traits. Successful establishment of stable archaeal cultures from 14 out of 16 fecal samples yielded nine previously uncultivated strains, eight of which are absent from a recent archaeome genome catalog. Comparative genomic and functional assessments of Methanobrevibacter smithii and Candidatus Methanobrevibacter intestini strains from individual donors revealed features potentially associated with gastrointestinal diseases. Our work broadens available archaeal representatives for GIT studies, and offers insights into Candidatus Methanobrevibacter intestini genomes' adaptability in critical microbiome contexts.
Collapse
Affiliation(s)
- Stefanie Duller
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Simone Vrbancic
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Łukasz Szydłowski
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Sano Centre for Computational Medicine, Krakow, Poland
| | - Alexander Mahnert
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Marcus Blohs
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Michael Predl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Christina Kumpitsch
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Verena Zrim
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Sano Centre for Computational Medicine, Krakow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Anna Eberhard
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Melanie Dragovan
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Laura Schmidberger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Tamara Zurabischvili
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Viktoria Weinberger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Adrian Mathias Moser
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Dominique Pernitsch
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Rokhsareh Mohammadzadeh
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Torben Kühnast
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Christine Moissl-Eichinger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
2
|
Arturo Tozzi, Minella R. Dynamics and metabolic effects of intestinal gases in healthy humans. Biochimie 2024; 221:81-90. [PMID: 38325747 DOI: 10.1016/j.biochi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Many living beings use exogenous and/or endogenous gases to attain evolutionary benefits. We make a comprehensive assessment of one of the major gaseous reservoirs in the human body, i.e., the bowel, providing extensive data that may serve as reference for future studies. We assess the intestinal gases in healthy humans, including their volume, composition, source and local distribution in proximal as well as distal gut. We analyse each one of the most abundant intestinal gases including nitrogen, oxygen, nitric oxide, carbon dioxide, methane, hydrogen, hydrogen sulfide, sulfur dioxide and cyanide. For every gas, we describe diffusive patterns, active trans-barrier transport dynamics, chemical properties, intra-/extra-intestinal metabolic effects mediated by intracellular, extracellular, paracrine and distant actions. Further, we highlight the local and systemic roles of gasotransmitters, i.e., signalling gaseous molecules that can freely diffuse through the intestinal cellular membranes. Yet, we provide testable hypotheses concerning the still unknown effects of some intestinal gases on the myenteric and submucosal neurons.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| | | |
Collapse
|
3
|
Ugocsai M, Bársony A, Varga RA, Gajda Á, Vida N, Lajkó N, Rónaszéki B, Tóth G, Boros M, Érces D, Varga G. Conjugation with Tris Decreases the Risk of Ketoprofen-Induced Mucosal Damage and Reduces Inflammation-Associated Methane Production in a Rat Model of Colitis. Pharmaceutics 2023; 15:2329. [PMID: 37765297 PMCID: PMC10535093 DOI: 10.3390/pharmaceutics15092329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
We have designed a new compound from the non-steroidal anti-inflammatory drug (NSAID) ketoprofen (Ket) and 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) precursors, with the aim to reduce the gastrointestinal (GI) side effects of NSAID therapies. We investigated mucosal reactions in a standard rat model of colitis together with methane generation as a possible indicator of pro-inflammatory activation under this condition (approval number: V./148/2013). Whole-body methane production (photoacoustic spectroscopy) and serosal microcirculation (intravital videomicroscopy) were measured, and mucosal damage was assessed (conventional histology; in vivo laser-scanning endomicroscopy). Inflammatory markers were measured from tissue and blood samples. Colitis induced an inflammatory response, morphological colonic damage and increased methane output. Ket treatment lowered inflammatory activation and colonic mucosal injury, but macroscopic gastric bleeding and increased methane output were present. Ket-Tris reduced inflammatory activation, methane emission and colonic mucosal damage, without inducing gastric injury. Conjugation with Tris reduces the GI side effects of Ket and still decreases the inflammatory response in experimental colitis. Methane output correlates with the mucosal inflammatory response and non-invasively demonstrates the effects of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Melinda Ugocsai
- Department of Orthopaedics, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| | - Anett Bársony
- Department of Surgery, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| | - Réka Anna Varga
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary (D.É.)
| | - Ámos Gajda
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary (D.É.)
| | - Noémi Vida
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary (D.É.)
| | - Norbert Lajkó
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary (D.É.)
| | - Benedek Rónaszéki
- Second Department of Internal Medicine and Cardiology Center, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| | - Gábor Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary (D.É.)
| | - Dániel Érces
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary (D.É.)
| | - Gabriella Varga
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary (D.É.)
| |
Collapse
|
4
|
Keppler F, Boros M, Polag D. Radical-Driven Methane Formation in Humans Evidenced by Exogenous Isotope-Labeled DMSO and Methionine. Antioxidants (Basel) 2023; 12:1381. [PMID: 37507920 PMCID: PMC10376501 DOI: 10.3390/antiox12071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Methane (CH4), which is produced endogenously in animals and plants, was recently suggested to play a role in cellular physiology, potentially influencing the signaling pathways and regulatory mechanisms involved in nitrosative and oxidative stress responses. In addition, it was proposed that the supplementation of CH4 to organisms may be beneficial for the treatment of several diseases, including ischemia, reperfusion injury, and inflammation. However, it is still unclear whether and how CH4 is produced in mammalian cells without the help of microorganisms, and how CH4 might be involved in physiological processes in humans. In this study, we produced the first evidence of the principle that CH4 is formed non-microbially in the human body by applying isotopically labeled methylated sulfur compounds, such as dimethyl sulfoxide (DMSO) and methionine, as carbon precursors to confirm cellular CH4 formation. A volunteer applied isotopically labeled (2H and 13C) DMSO on the skin, orally, and to blood samples. The monitoring of stable isotope values of CH4 convincingly showed the conversion of the methyl groups, as isotopically labeled CH4 was formed during all experiments. Based on these results, we considered several hypotheses about endogenously formed CH4 in humans, including physiological aspects and stress responses involving reactive oxygen species (ROS). While further and broader validation studies are needed, the results may unambiguously serve as a proof of concept for the endogenous formation of CH4 in humans via a radical-driven process. Furthermore, these results might encourage follow-up studies to decipher the potential physiological role of CH4 and its bioactivity in humans in more detail. Of particular importance is the potential to monitor CH4 as an oxidative stress biomarker if the observed large variability of CH4 in breath air is an indicator of physiological stress responses and immune reactions. Finally, the potential role of DMSO as a radical scavenger to counteract oxidative stress caused by ROS might be considered in the health sciences. DMSO has already been investigated for many years, but its potential positive role in medical use remains highly uncertain.
Collapse
Affiliation(s)
- Frank Keppler
- Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, D-69120 Heidelberg, Germany
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Daniela Polag
- Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Methane Admixture Protects Liver Mitochondria and Improves Graft Function after Static Cold Storage and Reperfusion. Antioxidants (Basel) 2023; 12:antiox12020271. [PMID: 36829829 PMCID: PMC9951982 DOI: 10.3390/antiox12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are targets of cold ischemia-reperfusion (IR), the major cause of cell damage during static cold preservation of liver allografts. The bioactivity of methane (CH4) has recently been recognized in various hypoxic and IR conditions as having influence on many aspects of mitochondrial biology. We therefore hypothesized that cold storage of liver grafts in CH4-enriched preservation solution can provide an increased defence against organ dysfunction in a preclinical rat model of liver transplantation. Livers were preserved for 24 h in cold histidine-tryptophan-ketoglutarate (HTK) or CH4-enriched HTK solution (HTK-CH4) (n = 24 each); then, viability parameters were monitored for 60 min during normothermic isolated reperfusion and perfusate and liver tissue were collected. The oxidative phosphorylation capacity and extramitochondrial Ca2+ movement were measured by high resolution respirometry. Oxygen and glucose consumption increased significantly while hepatocellular damage was decreased in the HTK-CH4 grafts compared to the HTK group. Mitochondrial oxidative phosphorylation capacity was more preserved (128.8 ± 31.5 pmol/s/mL vs 201.3 ± 54.8 pmol/s/mL) and a significantly higher Ca2+ flux was detected in HTK-CH4 storage (2.9 ± 0.1 mV/s) compared to HTK (2.3 ± 0.09 mV/s). These results demonstrate the direct effect of CH4 on hepatic mitochondrial function and extramitochondrial Ca2+ fluxes, which may have contributed to improved graft functions and a preserved histomorphology after cold IR.
Collapse
|
6
|
Zhang J, Liu W, Bi M, Xu J, Yang H, Zhang Y. Noble Gases Therapy in Cardiocerebrovascular Diseases: The Novel Stars? Front Cardiovasc Med 2022; 9:802783. [PMID: 35369316 PMCID: PMC8966230 DOI: 10.3389/fcvm.2022.802783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiocerebrovascular diseases (CCVDs) are the leading cause of death worldwide; therefore, to deeply explore the pathogenesis of CCVDs and to find the cheap and efficient strategies to prevent and treat CCVDs, these are of great clinical and social significance. The discovery of nitric oxide (NO), as one of the endothelium-derived relaxing factors and its successful utilization in clinical practice for CCVDs, provides new ideas for us to develop drugs for CCVDs: “gas medicine” or “medical gases.” The endogenous gas molecules such as carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and hydrogen (H2) have essential biological effects on modulating cardiocerebrovascular homeostasis and CCVDs. Moreover, it has been shown that noble gas atoms such as helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) display strong cytoprotective effects and therefore, act as the exogenous pharmacologic preventive and therapeutic agents for CCVDs. Mechanistically, besides the competitive inhibition of N-methyl-D-aspartate (NMDA) receptor in nervous system by xenon, the key and common mechanisms of noble gases are involved in modulation of cell death and inflammatory or immune signals. Moreover, gases interaction and reduction in oxidative stress are emerging as the novel biological mechanisms of noble gases. Therefore, to investigate the precise actions of noble gases on redox signals, gases interaction, different cell death forms, and the emerging field of gasoimmunology, which focus on the effects of gas atoms/molecules on innate immune signaling or immune cells under both the homeostatic and perturbed conditions, these will help us to uncover the mystery of noble gases in modulating CCVDs.
Collapse
Affiliation(s)
- Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingmin Bi
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Pucci G, Forte GI, Cavalieri V. Evaluation of Epigenetic and Radiomodifying Effects during Radiotherapy Treatments in Zebrafish. Int J Mol Sci 2021; 22:ijms22169053. [PMID: 34445758 PMCID: PMC8396651 DOI: 10.3390/ijms22169053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Radiotherapy is still a long way from personalizing cancer treatment plans, and its effectiveness depends on the radiosensitivity of tumor cells. Indeed, therapies that are efficient and successful for some patients may be relatively ineffective for others. Based on this, radiobiological research is focusing on the ability of some reagents to make cancer cells more responsive to ionizing radiation, as well as to protect the surrounding healthy tissues from possible side effects. In this scenario, zebrafish emerged as an effective model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans. The adoption of this experimental organism is fully justified and supported by the high similarity between fish and humans in both their genome sequences and the effects provoked in them by ionizing radiation. This review aims to provide the literature state of the art of zebrafish in vivo model for radiobiological studies, particularly focusing on the epigenetic and radiomodifying effects produced during fish embryos’ and larvae’s exposure to radiotherapy treatments.
Collapse
Affiliation(s)
- Gaia Pucci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, 90128 Palermo, Italy;
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù, Italy
- Correspondence: (G.I.F.); (V.C.)
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, 90128 Palermo, Italy;
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, 90128 Palermo, Italy
- Correspondence: (G.I.F.); (V.C.)
| |
Collapse
|
8
|
Jia G, Yang Q, Yang H, Jiang Y, Liu W, Wu T, Mao H, Su T, Tan Z, Wang X, Li J. Non-microbial methane emissions from tropical rainforest soils under different conditions. PLoS One 2021; 16:e0255725. [PMID: 34352023 PMCID: PMC8341527 DOI: 10.1371/journal.pone.0255725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Non-microbial methane (NM-CH4), emissions from soil might play a significant role in carbon cycling and global climate change. However, the production mechanisms and emission potential of soil NM-CH4 from tropical rainforest remain highly uncertain. In order to explore the laws and characteristics of NM-CH4 emission from tropical rainforest soils. Incubation experiments at different environmental conditions (temperatures, soil water contents, hydrogen peroxide) and for soils with different soil organic carbon (SOC) contents were conducted to investigate the NM-CH4 emission characteristics and its influence factors of soils (0-10cm) that collected from a tropical rainforest in Hainan, China. Incubation results illustrated that soil NM-CH4 release showed a linear increase with the incubation time in the first 24 hours at 70 °C, whereas the logarithmic curve increase was found in 192 h incubation. Soil NM-CH4 emission rates under aerobic condition were significantly higher than that of under anaerobic condition at first 24 h incubation. The increasing of temperature, suitable soil water contents (0-100%), and hydrogen peroxide significantly promoted soil NM-CH4 emission rates at the first 24 h incubation. However, excessive soil water contents (200%) inhibited soil NM-CH4 emissions. According to the curve simulated from the NM-CH4 emission rates and incubation time at 70 °C of aerobic condition, soil would no longer release NM-CH4 after 229 h incubation. The NM-CH4 emissions were positively corelated with SOC contents, and the average soil NM-CH4 emission potential was about 6.91 ug per gram organic carbon in the tropical mountain rainforest. This study revealed that soils in the tropical rainforest could produce NM-CH4 under certain environment conditions and it supported production mechanisms of thermal degradation and reactive oxygen species oxidation. Those results could provide a basic data for understanding the soil NM-CH4 production mechanisms and its potential in the tropical rainforest.
Collapse
Affiliation(s)
- Gaohui Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Qiu Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Huai Yang
- International Center for Bamboo and Rattan, Beijing, China
| | - Yamin Jiang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Wenjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, Hainan, China
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Tingting Wu
- School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Han Mao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Tianyan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Zhenghong Tan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Xu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Juelei Li
- School of Science and Ocean science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
9
|
Ye ZH, Ning K, Ander BP, Sun XJ. Therapeutic effect of methane and its mechanism in disease treatment. J Zhejiang Univ Sci B 2021; 21:593-602. [PMID: 32748575 DOI: 10.1631/jzus.b1900629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Methane is the simplest hydrocarbon, consisting of one carbon atom and four hydrogen atoms. It is abundant in marsh gas, livestock rumination, and combustible ice. Little is known about the use of methane in human disease treatment. Current research indicates that methane is useful for treating several diseases including ischemia and reperfusion injury, and inflammatory diseases. The mechanisms underlying the protective effects of methane appear primarily to involve anti-oxidation, anti-inflammation, and anti-apoptosis. In this review, we describe the beneficial effects of methane on different diseases, summarize possible mechanisms by which methane may act in these conditions, and discuss the purpose of methane production in hypoxic conditions. Then we propose several promising directions for the future research.
Collapse
Affiliation(s)
- Zhou-Heng Ye
- Department of Aviation and Diving Medicine, the Sixth Medical Center, General Hospital of People's Liberation Army, Beijing 100048, China
| | - Ke Ning
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Xue-Jun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen Gas: A Novel Type of Antioxidant in Modulating Sexual Organs Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844346. [PMID: 33510842 PMCID: PMC7826209 DOI: 10.1155/2021/8844346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Zhang Y, Xu J, Yang H. Hydrogen: An Endogenous Regulator of Liver Homeostasis. Front Pharmacol 2020; 11:877. [PMID: 32595504 PMCID: PMC7301907 DOI: 10.3389/fphar.2020.00877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Basic and clinical studies have shown that hydrogen (H2), the lightest gas in the air, has significant biological effects of anti-oxidation, anti-inflammation, and anti-apoptosis. The mammalian cells have no abilities to produce H2 due to lack of the expression of hydrogenase. The endogenous H2 in human body is mainly produced by anaerobic bacteria, such as Firmicutes and Bacteroides, in gut and other organs through the reversible oxidation reaction of 2 H+ + 2 e- ⇌ H2. Supplement of exogenous H2 can improve many kinds of liver injuries, modulate glucose and lipids metabolism in animal models or in human beings. Moreover, hepatic glycogen has strong ability to accumulate H2, thus, among the organs examined, liver has the highest concentration of H2 after supplement of exogenous H2 by various strategies in vivo. The inadequate production of endogenous H2 play essential roles in brain, heart, and liver disorders, while enhanced endogenous H2 production may improve hepatitis, hepatic ischemia and reperfusion injury, liver regeneration, and hepatic steatosis. Therefore, the endogenous H2 may play essential roles in maintaining liver homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Li L, Wei S, Shen W. The role of methane in plant physiology: a review. PLANT CELL REPORTS 2020; 39:171-179. [PMID: 31646372 DOI: 10.1007/s00299-019-02478-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 05/05/2023]
Abstract
Methane (CH4), one of the most important greenhouse gases, has conventionally been considered as a physiologic inert gas. However, this perspective has been challenged by the observation that CH4 has diverse biological functions in animals, such as anti-inflammatory, antioxidant, and anti-apoptosis. Meanwhile, it has now been identified as a possible candidate of gaseous signaling molecule in plants, although its biosynthetic and metabolic pathways as well as the mechanism(s) of CH4 signaling have not fully understood yet. This paper aims to review the available evidence for the biological roles of CH4 in regulating plant physiology. Although currently available reports do not fully support the notion of CH4 as a gasotransmitter, they do show that CH4 might be produced by an aerobic, non-microbial pathway from plants, and plays important roles in enhancing plant tolerance against abiotic stresses, such as salinity, drought, heavy metal exposure, and promoting root development, as well as delaying senescence and browning. Further results showed that CH4 could interact with reactive oxygen species (ROS), other gaseous signaling molecules [e.g., nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S)], and glutathione (GSH). These reports thus support the idea that plant-produced CH4 might be a component of a survival strategy of plants. Finally, the possibility of CH4 application in agriculture is preliminarily discussed.
Collapse
Affiliation(s)
- Longna Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wei
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Poles MZ, Juhász L, Boros M. Methane and Inflammation - A Review (Fight Fire with Fire). Intensive Care Med Exp 2019; 7:68. [PMID: 31807906 PMCID: PMC6895343 DOI: 10.1186/s40635-019-0278-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Mammalian methanogenesis is regarded as an indicator of carbohydrate fermentation by anaerobic gastrointestinal flora. Once generated by microbes or released by a non-bacterial process, methane is generally considered to be biologically inactive. However, recent studies have provided evidence for methane bioactivity in various in vivo settings. The administration of methane either in gas form or solutions has been shown to have anti-inflammatory and neuroprotective effects in an array of experimental conditions, such as ischemia/reperfusion, endotoxemia and sepsis. It has also been demonstrated that exogenous methane influences the key regulatory mechanisms and cellular signalling pathways involved in oxidative and nitrosative stress responses. This review offers an insight into the latest findings on the multi-faceted organ protective activity of exogenous methane treatments with special emphasis on its versatile effects demonstrated in sepsis models.
Collapse
Affiliation(s)
- Marietta Zita Poles
- Institute of Surgical Research, University of Szeged, Pulz u. 1., Szeged, H-6724, Hungary
| | - László Juhász
- Institute of Surgical Research, University of Szeged, Pulz u. 1., Szeged, H-6724, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Pulz u. 1., Szeged, H-6724, Hungary.
| |
Collapse
|
14
|
Su J, Yang X, He J, Zhang Y, Duan X, Wang R, Shen W. Methyl-coenzyme M reductase-dependent endogenous methane enhances plant tolerance against abiotic stress and alters ABA sensitivity in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2019; 101:439-454. [PMID: 31471780 DOI: 10.1007/s11103-019-00914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/27/2019] [Indexed: 05/05/2023]
Abstract
Our study firstly elaborated the underlying mechanism of endogenous CH4-induced abiotic tolerance, along with an alteration of ABA sensitivity by mimicking the endogenous CH4 production in MtMCR transgenic Arabidopsis. Endogenous methane (CH4) production and/or emission have been ubiquitously observed in stressed plants. However, their physiological roles remain unclear. Here, the methyl-coenzyme M reductase gene from Methanobacterium thermoautotrophicum (MtMCR), encoding the enzyme of methanogenesis, was expressed in Arabidopsis thaliana, to mimic the production of endogenous CH4. In response to salinity and osmotic stress, MtMCR expression was up-regulated in transgenic plants, resulting in significant increase of endogenous CH4 levels. Similar results were observed in abscisic acid (ABA) treatment. The functions of endogenous CH4 were characterized by the changes in plant phenotypes related to stress and ABA sensitivity during the germination and post-germination periods. When challenged with osmotic stress, a reduction in water loss and stomatal closure, were observed. Redox homeostasis was reestablished during osmotic and salinity stress, and ion imbalance was also restored in salinity conditions. The expression of several stress/ABA-responsive genes was up-regulated, and ABA sensitivity, in particularly, was significantly altered in the MtMCR transgenic plants. Together, our genetic study for the first time elaborated the possible mechanism of endogenous CH4-enhanced salinity and osmotic tolerance, along with an alteration of ABA sensitivity. These findings thus provided novel cues for understanding the possible roles of endogenous CH4 in plants.
Collapse
Affiliation(s)
- Jiuchang Su
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinghao Yang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junjie He
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Duan
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Boros M, Keppler F. Methane Production and Bioactivity-A Link to Oxido-Reductive Stress. Front Physiol 2019; 10:1244. [PMID: 31611816 PMCID: PMC6776796 DOI: 10.3389/fphys.2019.01244] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Biological methane formation is associated with anoxic environments and the activity of anaerobic prokaryotes (Archaea). However, recent studies have confirmed methane release from eukaryotes, including plants, fungi, and animals, even in the absence of microbes and in the presence of oxygen. Furthermore, it was found that aerobic methane emission in plants is stimulated by a variety of environmental stress factors, leading to reactive oxygen species (ROS) generation. Further research presented evidence that molecules with sulfur and nitrogen bonded methyl groups such as methionine or choline are carbon precursors of aerobic methane formation. Once generated, methane is widely considered to be physiologically inert in eukaryotes, but several studies have found association between mammalian methanogenesis and gastrointestinal (GI) motility changes. In addition, a number of recent reports demonstrated anti-inflammatory potential for exogenous methane-based approaches in model anoxia-reoxygenation experiments. It has also been convincingly demonstrated that methane can influence the downstream effectors of transiently increased ROS levels, including mitochondria-related pro-apoptotic pathways during ischemia-reperfusion (IR) conditions. Besides, exogenous methane can modify the outcome of gasotransmitter-mediated events in plants, and it appears that similar mechanism might be active in mammals as well. This review summarizes the relevant literature on methane-producing processes in eukaryotes, and the available results that underscore its bioactivity. The current evidences suggest that methane liberation and biological effectiveness are both linked to cellular redox regulation. The data collectively imply that exogenous methane influences the regulatory mechanisms and signaling pathways involved in oxidative and nitrosative stress responses, which suggests a modulator role for methane in hypoxia-linked pathologies.
Collapse
Affiliation(s)
- Mihály Boros
- Institute of Surgical Research, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Frank Keppler
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Mei Y, Zhao Y, Jin X, Wang R, Xu N, Hu J, Huang L, Guan R, Shen W. L-Cysteine desulfhydrase-dependent hydrogen sulfide is required for methane-induced lateral root formation. PLANT MOLECULAR BIOLOGY 2019; 99:283-298. [PMID: 30623274 DOI: 10.1007/s11103-018-00817-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
Methane-triggered lateral root formation is not only a universal event, but also dependent on L-cysteine desulfhydrase-dependent hydrogen sulfide signaling. Whether or how methane (CH4) triggers lateral root (LR) formation has not been elucidated. In this report, CH4 induction of lateral rooting and the role of hydrogen sulfide (H2S) were dissected in tomato and Arabidopsis by using physiological, anatomical, molecular, and genetic approaches. First, we discovered that CH4 induction of lateral rooting is a universal event. Exogenously applied CH4 not only triggered tomato lateral rooting, but also increased activities of L-cysteine desulfhydrase (DES; a major synthetic enzyme of H2S) and induced endogenous H2S production, and contrasting responses were observed in the presence of hypotaurine (HT; a scavenger of H2S) or DL-propargylglycine (PAG; an inhibitor of DES) alone. CH4-triggered lateral rooting were sensitive to the inhibition of endogenous H2S with HT or PAG. The changes in the transcripts of representative cell cycle regulatory genes, miRNA and its target genes were matched with above phenotypes. In the presence of CH4, Arabidopsis mutant Atdes1 exhibited defects in lateral rooting, compared with the wild-type. Molecular evidence showed that the transcriptional profiles of representative target genes modulated by CH4 in wild-type plants were impaired in Atdes1 mutant. Overall, our data demonstrate the main branch of the DES-dependent H2S signaling cascade in CH4-triggered LR formation.
Collapse
Affiliation(s)
- Yudong Mei
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingying Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinxin Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Na Xu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Hu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liqin Huang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Comba P, Faltermeier D, Gieger S, Keppler F, Schöler HF, Schroll M. Iron catalyzed demethylation of acetic acid*. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1490414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Dieter Faltermeier
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Sascha Gieger
- Institute of Earth Sciences and Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany
| | - Frank Keppler
- Institute of Earth Sciences and Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany
| | - Heinz Friedrich Schöler
- Institute of Earth Sciences and Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany
| | - Moritz Schroll
- Institute of Earth Sciences and Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Gu Q, Chen Z, Cui W, Zhang Y, Hu H, Yu X, Wang Q, Shen W. Methane alleviates alfalfa cadmium toxicity via decreasing cadmium accumulation and reestablishing glutathione homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:861-871. [PMID: 28968939 DOI: 10.1016/j.ecoenv.2017.09.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Although methane (CH4) generation triggered by some environmental stimuli, displays the protective response against oxidative stress in plants, whether and how CH4 regulates plant tolerance against cadmium stress is largely unknown. Here, we discovered that cadmium (Cd) stimulated the production of CH4 in alfalfa root tissues. The pretreatment with exogenous CH4 could alleviate seedling growth inhibition. Less amounts of Cd accumulation was also observed. Consistently, in comparison with Cd stress alone, miR159 transcript was down-regulated by CH4, and expression levels of its target gene ABC transporter was increased. By contrast, miR167 transcript was up-regulated, showing a relatively negative correlation with its target gene Nramp6. Meanwhile, Cd-triggered redox imbalance was improved by CH4, evidenced by the reduced lipid peroxidation and hydrogen peroxide accumulation, as well as the induction of representative antioxidant genes. Further results showed that Cd-triggered decrease of the ratio of reduced/oxidized (homo)glutathione was rescued by CH4. Additionally, CH4-triggered alleviation of seedling growth was sensitive to a selective inhibitor of glutathione biosynthesis. Overall, above results revealed that CH4-alleviated Cd accumulation at least partially, required the modulation of heavy metal transporters via miR159 and miR167. Finally, the role of glutathione homeostasis elicited by CH4 was preliminarily suggested.
Collapse
Affiliation(s)
- Quan Gu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiti Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huali Hu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiuli Yu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingya Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Mészáros AT, Szilágyi ÁL, Juhász L, Tuboly E, Érces D, Varga G, Hartmann P. Mitochondria As Sources and Targets of Methane. Front Med (Lausanne) 2017; 4:195. [PMID: 29181377 PMCID: PMC5693848 DOI: 10.3389/fmed.2017.00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current knowledge on the role of mitochondria in the context of hypoxic cell biology, while providing evidence of how these mechanisms are modulated by methane (CH4). Recent studies have unambiguously confirmed CH4 bioactivity in various in vitro and in vivo experimental models and established the possibility that CH4 can affect many aspects of mitochondrial physiology. To date, no specific binding of CH4 to any enzymes or receptors have been reported, and it is probable that many of its effects are related to physico-chemical properties of the non-polar molecule. (i) Mitochondria themselves can be sources of endogenous CH4 generation under oxido-reductive stress conditions; chemical inhibition of the mitochondrial electron transport chain with site-specific inhibitors leads to increased formation of CH4 in eukaryote cells, in plants, and in animals. (ii) Conventionally believed as physiologically inert, studies cited in this review demonstrate that exogenous CH4 modulates key events of inflammation. The anti-apoptotic effects of exogenously administered CH4 are also recognized, and these properties also suggest that CH4-mediated intracellular signaling is closely associated with mitochondria. (iii) Mitochondrial substrate oxidation is coupled with the reduction of molecular oxygen, thus providing energy for cellular metabolism. Interestingly, recent in vivo studies have shown improved basal respiration and modulated mitochondrial oxidative phosphorylation by exogenous CH4. Overall, these data suggest that CH4 liberation and effectiveness in eukaryotes are both linked to hypoxic events and redox regulation and support the notion that CH4 has therapeutic roles in mammalian pathophysiologies.
Collapse
Affiliation(s)
| | | | - László Juhász
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Eszter Tuboly
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Excessive alcohol consumption induces methane production in humans and rats. Sci Rep 2017; 7:7329. [PMID: 28779149 PMCID: PMC5544731 DOI: 10.1038/s41598-017-07637-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/30/2017] [Indexed: 12/04/2022] Open
Abstract
Various studies have established the possibility of non-bacterial methane (CH4) generation in oxido-reductive stress conditions in plants and animals. Increased ethanol input is leading to oxido-reductive imbalance in eukaryotes, thus our aim was to provide evidence for the possibility of ethanol-induced methanogenesis in non-CH4 producer humans, and to corroborate the in vivo relevance of this pathway in rodents. Healthy volunteers consumed 1.15 g/kg/day alcohol for 4 days and the amount of exhaled CH4 was recorded by high sensitivity photoacoustic spectroscopy. Additionally, Sprague-Dawley rats were allocated into control, 1.15 g/kg/day and 2.7 g/kg/day ethanol-consuming groups to detect the whole-body CH4 emissions and mitochondrial functions in liver and hippocampus samples with high-resolution respirometry. Mitochondria-targeted L-alpha-glycerylphosphorylcholine (GPC) can increase tolerance to liver injury, thus the effects of GPC supplementations were tested in further ethanol-fed groups. Alcohol consumption was accompanied by significant CH4 emissions in both human and rat series of experiments. 2.7 g/kg/day ethanol feeding reduced the oxidative phosphorylation capacity of rat liver mitochondria, while GPC significantly decreased the alcohol-induced CH4 formation and hepatic mitochondrial dysfunction as well. These data demonstrate a potential for ethanol to influence human methanogenesis, and suggest a biomarker role for exhaled CH4 in association with mitochondrial dysfunction.
Collapse
|
21
|
Yao Y, Wang L, Jin P, Li N, Meng Y, Wang C, Xu M, Zhang Y, Bian J, Deng X. Methane alleviates carbon tetrachloride induced liver injury in mice: anti-inflammatory action demonstrated by increased PI3K/Akt/GSK-3β-mediated IL-10 expression. J Mol Histol 2017; 48:301-310. [DOI: 10.1007/s10735-017-9728-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
|
22
|
Methane protects against polyethylene glycol-induced osmotic stress in maize by improving sugar and ascorbic acid metabolism. Sci Rep 2017; 7:46185. [PMID: 28387312 PMCID: PMC5384014 DOI: 10.1038/srep46185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 01/04/2023] Open
Abstract
Although aerobic methane (CH4) release from plants leads to an intense scientific and public controversy in the recent years, the potential functions of endogenous CH4 production in plants are still largely unknown. Here, we reported that polyethylene glycol (PEG)-induced osmotic stress significantly increased CH4 production and soluble sugar contents in maize (Zea mays L.) root tissues. These enhancements were more pronounced in the drought stress-tolerant cultivar Zhengdan 958 (ZD958) than in the drought stress-sensitive cultivar Zhongjiangyu No.1 (ZJY1). Exogenously applied 0.65 mM CH4 not only increased endogenous CH4 production, but also decreased the contents of thiobarbituric acid reactive substances. PEG-induced water deficit symptoms, such as decreased biomass and relative water contents in both root and shoot tissues, were also alleviated. These beneficial responses paralleled the increases in the contents of soluble sugar and the reduced ascorbic acid (AsA), and the ratio of AsA/dehydroascorbate (DHA). Further comparison of transcript profiles of some key enzymes in sugar and AsA metabolism suggested that CH4 might participate in sugar signaling, which in turn increased AsA production and recycling. Together, these results suggested that CH4 might function as a gaseous molecule that enhances osmotic stress tolerance in maize by modulating sugar and AsA metabolism.
Collapse
|
23
|
Wang L, Yao Y, He R, Meng Y, Li N, Zhang D, Xu J, Chen O, Cui J, Bian J, Zhang Y, Chen G, Deng X. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation. Free Radic Biol Med 2017; 103:69-86. [PMID: 28007572 DOI: 10.1016/j.freeradbiomed.2016.12.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 11/28/2022]
Abstract
Methane is reported to have antioxidant, anti-inflammatory and anti-apoptotic properties. We investigated the potential neuroprotective effects of methane-rich saline (MS) on spinal cord ischemia-reperfusion injury and determined that its therapeutic benefits are associated with the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Rats received 9min of spinal cord ischemia induced by occlusion of the descending thoracic aorta plus systemic hypotension followed by a single MS treatment (10ml/kg, ip) and 72h reperfusion. MS treatment attenuated motor sensory deficits and produced high concentrations of methane in spinal cords during reperfusion, which increased Nrf2 expression and transcriptional activity in neurons, microglia and astrocytes in the ventral, intermediate and dorsal gray matter of lumbar segments. Heme oxygenase-1, superoxide dismutase, catalase and glutathione were upregulated; and glutathione disulfide, superoxide, hydrogen peroxide, malondialdehyde, 8-hydroxy-2-deoxyguanosine and 3-nitrotyrosine were downregulated in MS-treated spinal cords. MS treatment reduced neuronal apoptosis in gray matter zones, which was consistent with the suppression of cytochrome c release to the cytosol from the mitochondria and the activation of caspase-9 and -3. Throughout the gray matter, the activation of microglia and astrocytes was inhibited; the nuclear accumulation of phosphorylated nuclear factor-kappa B p65 was reduced; and tumor necrosis factor α, interleukin 1β, chemokine (C-X-C motif) ligand 1, intercellular adhesion molecule 1 and myeloperoxidase were decreased. MS treatment attenuated blood-spinal cord barrier dysfunction by preventing the expression and activity of matrix metallopeptidase-9 and disrupting tight junction proteins. Consecutive intrathecal injection of specific siRNAs targeting Nrf2 at 24-h intervals 3 days before ischemia reduced the beneficial effects of MS. Our data indicate that MS treatment prevents IR-induced spinal cord damage via antioxidant, anti-inflammatory and anti-apoptotic activities that involve the activation of Nrf2 signaling. Thus, methane may serve as a novel promising therapeutic agent for treating ischemic spinal cord injury.
Collapse
Affiliation(s)
- Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou 350025, Fujian Province, People's Republic of China
| | - Ying Yao
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Rong He
- Department of Anesthesiology, Xinyi People's Hospital, Xinyi 221400, Jiangsu Province, People's Republic of China
| | - Yan Meng
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Na Li
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Dan Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Ouyang Chen
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jin Cui
- Graduate Management Unit, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jinjun Bian
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yan Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Guozhong Chen
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou 350025, Fujian Province, People's Republic of China.
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
24
|
Gar’kusha DN, Fedorov YA. Effect of plants on processes of methane cycle in bottom deposits and soil rhizosphere. CONTEMP PROBL ECOL+ 2017. [DOI: 10.1134/s1995425516060032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Neuroprotective effects of methane-rich saline on experimental acute carbon monoxide toxicity. J Neurol Sci 2016; 369:361-367. [PMID: 27653924 DOI: 10.1016/j.jns.2016.08.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Methane has been reported to play a protective role in ischemia-reperfusion injury via anti-oxidation, anti-inflammatory and anti-apoptotic activities. This study was designed to determine the protective effects of methane-rich saline (MRS) on acute carbon monoxide (CO) poisoning. METHODS A total of 36 male Sprague-Dawley rats were randomly divided into 3 groups: sham group, CO group and MRS group. Acute CO poisoning was induced by exposing rats to 1000ppm CO in air for 40min and then to 3000ppm CO for an additional 20min until they lost consciousness. MRS at 10ml/kg was intraperitoneally administered at 0h, 8h and 16h after CO exposure. Rats were sacrificed 24h after CO exposure. Brains were collected for Nissl staining. The cortex and hippocampus were separated for the detections of malondialdehyde (MDA), 3-nitrotyrosine (3-NT), 8-hydroxydeoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin1-β (IL-1β), interleukin-6 (IL-6) and superoxide dismutase (SOD) activities. RESULTS The results showed that MRS treatment improved neuronal injury, reduced MDA, 3-NT and 8-OHdG, and increased SOD activity of the hippocampus and cortex compared with normal saline-treated rats. In addition, MRS reduced the expression of TNF-α and IL-1β in the brain but had no effect on IL-6 expression. CONCLUSION These findings suggest that MRS may protect the brain against acute CO poisoning-induced injury via its anti-oxidative and anti-inflammatory activities.
Collapse
|
26
|
Zhang X, Li N, Shao H, Meng Y, Wang L, Wu Q, Yao Y, Li J, Bian J, Zhang Y, Deng X. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression. Sci Rep 2016; 6:29359. [PMID: 27405597 PMCID: PMC4942692 DOI: 10.1038/srep29359] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland).,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, 221004, Jiangsu, China
| | - Na Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Han Shao
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland).,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, 221004, Jiangsu, China
| | - Yan Meng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Liping Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland).,Department of Anesthesiology, General Hospital of Fuzhou Army Region, Fuzhou, 350025, China
| | - Qian Wu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Ying Yao
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Jinbao Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Jinjun Bian
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Yan Zhang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| |
Collapse
|
27
|
Effects of Methane-Rich Saline on the Capability of One-Time Exhaustive Exercise in Male SD Rats. PLoS One 2016; 11:e0150925. [PMID: 26942576 PMCID: PMC4778848 DOI: 10.1371/journal.pone.0150925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/22/2016] [Indexed: 12/05/2022] Open
Abstract
Purpose To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats. Methods Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods. Results It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius. Conclusions CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury.
Collapse
|
28
|
“Angiotensin II memory” contributes to the development of hypertension and vascular injury via activation of NADPH oxidase. Life Sci 2016; 149:18-24. [DOI: 10.1016/j.lfs.2016.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
|
29
|
Keppler F, Schiller A, Ehehalt R, Greule M, Hartmann J, Polag D. Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. J Breath Res 2016; 10:016003. [PMID: 26824393 DOI: 10.1088/1752-7155/10/1/016003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mammalian formation of methane (methanogenesis) is widely considered to occur exclusively by anaerobic microbial activity in the gastrointestinal tract. Approximately one third of humans, depending on colonization of the gut by methanogenic archaea, are considered methane producers based on the classification terminology of high and low emitters. In this study laser absorption spectroscopy was used to precisely measure concentrations and stable carbon isotope signatures of exhaled methane in breath samples from 112 volunteers with an age range from 1 to 80 years. Here we provide analytical evidence that volunteers exhaled methane levels were significantly above background (inhaled) air. Furthermore, stable carbon isotope values of the exhaled methane unambiguously confirmed that this gas was produced by all of the human subjects studied. Based on the emission and stable carbon isotope patterns of various age groups we hypothesize that next to microbial sources in the gastrointestinal tracts there might be other, as yet unidentified, processes involved in methane formation supporting the idea that humans might also produce methane endogenously in cells. Finally we suggest that stable isotope measurements of volatile organic compounds such as methane might become a useful tool in future medical research diagnostic programs.
Collapse
Affiliation(s)
- Frank Keppler
- Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany. Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany. Heidelberg Center for the Environment (HCE), Ruprecht Karls University Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Strifler G, Tuboly E, Szél E, Kaszonyi E, Cao C, Kaszaki J, Mészáros A, Boros M, Hartmann P. Inhaled Methane Limits the Mitochondrial Electron Transport Chain Dysfunction during Experimental Liver Ischemia-Reperfusion Injury. PLoS One 2016; 11:e0146363. [PMID: 26741361 PMCID: PMC4720186 DOI: 10.1371/journal.pone.0146363] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Methanogenesis can indicate the fermentation activity of the gastrointestinal anaerobic flora. Methane also has a demonstrated anti-inflammatory potential. We hypothesized that enriched methane inhalation can influence the respiratory activity of the liver mitochondria after an ischemia-reperfusion (IR) challenge. METHODS The activity of oxidative phosphorylation system complexes was determined after in vitro methane treatment of intact liver mitochondria. Anesthetized Sprague-Dawley rats subjected to standardized 60-min warm hepatic ischemia inhaled normoxic air (n = 6) or normoxic air containing 2.2% methane, from 50 min of ischemia and throughout the 60-min reperfusion period (n = 6). Measurement data were compared with those on sham-operated animals (n = 6 each). Liver biopsy samples were subjected to high-resolution respirometry; whole-blood superoxide and hydrogen peroxide production was measured; hepatocyte apoptosis was detected with TUNEL staining and in vivo fluorescence laser scanning microscopy. RESULTS Significantly decreased complex II-linked basal respiration was found in the normoxic IR group at 55 min of ischemia and a lower respiratory capacity (~60%) and after 5 min of reperfusion. Methane inhalation preserved the maximal respiratory capacity at 55 min of ischemia and significantly improved the basal respiration during the first 30 min of reperfusion. The IR-induced cytochrome c activity, reactive oxygen species (ROS) production and hepatocyte apoptosis were also significantly reduced. CONCLUSIONS The normoxic IR injury was accompanied by significant functional damage of the inner mitochondrial membrane, increased cytochrome c activity, enhanced ROS production and apoptosis. An elevated methane intake confers significant protection against mitochondrial dysfunction and reduces the oxidative damage of the hepatocytes.
Collapse
Affiliation(s)
- Gerda Strifler
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Eszter Tuboly
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Edit Szél
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Enikő Kaszonyi
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Chun Cao
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - András Mészáros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
31
|
Chen O, Ye Z, Cao Z, Manaenko A, Ning K, Zhai X, Zhang R, Zhang T, Chen X, Liu W, Sun X. Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions. Free Radic Biol Med 2016; 90:1-11. [PMID: 26585905 DOI: 10.1016/j.freeradbiomed.2015.11.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 02/04/2023]
Abstract
Myocardial infarction (MI) remains the most frequent cardiovascular disease with high mortality. Recently, methane has been shown protective effects on small intestinal ischemia-reperfusion injury. We hypothesized that methane-rich saline (MS) could protect the myocardium again MI via its anti-oxidative, anti-apoptotic and anti-inflammatory effects. In experiment 1, tetrazolium chloride staining and detection of myocardial enzymes and oxidative and inflammatory parameters were performed at 12h after MI to determine the optimal dose at which intraperitoneal MS exerted the best protective effects on MI. In experiment 2, rats were treated with 10 ml/kg MS. Myocyte apoptosis was detected 72 h after MI, and cardiac function and myocardial remodeling were evaluated 4 weeks after MI. Results showed different dose of MS reduced infarct area, decreased myocardial enzymes, inhibited inflammation and oxidative stress following MI. The optimal dose of MS was 10 mg/kg. Moreover, treatment with 10mg/kg MS for 3 days significantly reduced myocyte apoptosis, improved cardiac function and inhibited myocardial remodeling (reduced anterior wall thickness, attenuated myocyte hypertrophy, and decreased myocardial collagen). MS protects the myocardium of MI rats via its anti-oxidative, anti-inflammatory, anti-apoptotic and anti-remodeling activities. Thus, MS provides a novel and promising strategy for the treatment of ischemic heart diseases.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China; Graduate Management Unit, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Zhouheng Ye
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Zhiyong Cao
- Department of General Internal Medicine, Branch of 411 Hospital of People's Liberation Army, Shanghai 200083, People's Republic of China
| | - Anatol Manaenko
- Department of Physiology and Pharmacology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ke Ning
- Graduate Management Unit, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xiao Zhai
- Graduate Management Unit, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Rongjia Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Ting Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xiao Chen
- Department of Orthopedics Trauma, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai 200433, People 's Republic of China
| | - Wenwu Liu
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China.
| | - Xuejun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
32
|
Guo X, Du Y, Li J, Liu S, Han D, Li Y, Lin L, Zhang F, Oyang J, Cao G. Aerobic Methane Emission from Plant: Comparative Study of Different Communities and Plant Species of Alpine Meadow. POLISH JOURNAL OF ECOLOGY 2015. [DOI: 10.3161/15052249pje2015.63.2.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Boros M, Tuboly E, Mészáros A, Amann A. The role of methane in mammalian physiology-is it a gasotransmitter? J Breath Res 2015; 9:014001. [PMID: 25624411 DOI: 10.1088/1752-7155/9/1/014001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian methanogenesis is widely considered to be an exclusive sign of anaerobic microbial activity in the gastrointestinal tract. This commonly held view was challenged, however, when in vitro and in vivo investigations demonstrated the possibility of nonmicrobial methane formation in aerobic organisms, in plants and animals. The aim of this review is to discuss the available literature data on the biological role of methane. When we evaluate the significance of methane generation in the mammalian physiology, the question may be examined: is it a gas mediator? Overall the data do not fully support the gasotransmitter concept, but they do support the notion that methane liberation may be linked to redox regulation and may be connected with hypoxic events leading to, or associated with a mitochondrial dysfunction. In this respect, the available information suggests that hypoxia-induced methane generation may be a necessary phenomenon of aerobic life, and perhaps a surviving evolutionary trait in the eukaryote cell.
Collapse
Affiliation(s)
- Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy B. u. 6, H-6720 Szeged, Hungary
| | | | | | | |
Collapse
|
34
|
Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nat Commun 2014; 5:4205. [PMID: 24957135 DOI: 10.1038/ncomms5205] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/23/2014] [Indexed: 11/08/2022] Open
Abstract
Methane in the environment is produced by both biotic and abiotic processes. Biomethanation involves the formation of methane by microbes that live in oxygen-free environments. Abiotic methane formation proceeds under conditions at elevated temperature and/or pressure. Here we present a chemical reaction that readily forms methane from organosulphur compounds under highly oxidative conditions at ambient atmospheric pressure and temperature. When using iron(II/III), hydrogen peroxide and ascorbic acid as reagents, S-methyl groups of organosulphur compounds are efficiently converted into methane. In a first step, methyl sulphides are oxidized to the corresponding sulphoxides. In the next step, demethylation of the sulphoxide via homolytic bond cleavage leads to methyl radical formation and finally to methane in high yields. Because sulphoxidation of methyl sulphides is ubiquitous in the environment, this novel chemical route might mimic methane formation in living aerobic organisms.
Collapse
|
35
|
Hartmann P, Fet N, Garab D, Szabó A, Kaszaki J, Srinivasan PK, Tolba RH, Boros M. L-alpha-glycerylphosphorylcholine reduces the microcirculatory dysfunction and nicotinamide adenine dinucleotide phosphate-oxidase type 4 induction after partial hepatic ischemia in rats. J Surg Res 2014; 189:32-40. [DOI: 10.1016/j.jss.2013.12.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/21/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
36
|
Wang R. Gasotransmitters: growing pains and joys. Trends Biochem Sci 2014; 39:227-32. [PMID: 24767680 DOI: 10.1016/j.tibs.2014.03.003] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 01/19/2023]
Abstract
Gasotransmitters are endogenously generated molecules of gas. Over the past decade we have come to realize that these gaseous signaling molecules are crucially important, being irreplaceable in wide biological applications. However, there are still many challenges for future gasotransmitter research to tackle. These include clarifying the interactions among gasotransmitters; understanding the significance of the cellular gasotransmitter signaling network; and adding new members to the modern family of gasotransmitters in addition to nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Ammonia fulfills all criteria for being a gasotransmitter, and methane is another conceivable candidate. Following the original article postulating the concept of multiple gasotransmitters over a decade ago, this sequel article aims to further inspire interest and exploration into gasotransmitter research.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
37
|
Tőkés T, Tuboly E, Varga G, Major L, Ghyczy M, Kaszaki J, Boros M. Protective effects of L-alpha-glycerylphosphorylcholine on ischaemia-reperfusion-induced inflammatory reactions. Eur J Nutr 2014; 54:109-18. [PMID: 24682350 DOI: 10.1007/s00394-014-0691-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/20/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Choline-containing dietary phospholipids, including phosphatidylcholine (PC), may function as anti-inflammatory substances, but the mechanism remains largely unknown. We investigated the effects of L-alpha-glycerylphosphorylcholine (GPC), a deacylated PC derivative, in a rodent model of small intestinal ischaemia-reperfusion (IR) injury. METHODS Anaesthetized Sprague-Dawley rats were divided into control, mesenteric IR (45 min mesenteric artery occlusion, followed by 180 min reperfusion), IR with GPC pretreatment (16.56 mg kg⁻¹ GPC i.v., 5 min prior to ischaemia) or IR with GPC post-treatment (16.56 mg kg⁻¹ GPC i.v., 5 min prior to reperfusion) groups. Macrohaemodynamics and microhaemodynamic parameters were measured; intestinal inflammatory markers (xanthine oxidoreductase activity, superoxide and nitrotyrosine levels) and liver ATP contents were determined. RESULTS The IR challenge reduced the intestinal intramural red blood cell velocity, increased the mesenteric vascular resistance, the tissue xanthine oxidoreductase activity, the superoxide production, and the nitrotyrosine levels, and the ATP content of the liver was decreased. Exogenous GPC attenuated the macro- and microcirculatory dysfunction and provided significant protection against the radical production resulting from the IR stress. The GPC pretreatment alleviated the hepatic ATP depletion, the reductions in the mean arterial pressure and superior mesenteric artery flow, and similarly to the post-treatments with GPC, also decreased the xanthine oxidoreductase activity, the intestinal superoxide production, the nitrotyrosine level, and normalized the microcirculatory dysfunction. CONCLUSIONS These data demonstrate the effectiveness of GPC therapies and provide indirect evidence that the anti-inflammatory effects of PC could be linked to a reaction involving the polar part of the molecule.
Collapse
Affiliation(s)
- Tünde Tőkés
- Institute of Surgical Research, University of Szeged, Pécsi u. 6., Szeged, 6720, Hungary
| | | | | | | | | | | | | |
Collapse
|
38
|
Tuboly E, Szabó A, Erős G, Mohácsi Á, Szabó G, Tengölics R, Rákhely G, Boros M. Determination of endogenous methane formation by photoacoustic spectroscopy. J Breath Res 2013; 7:046004. [PMID: 24185326 DOI: 10.1088/1752-7155/7/4/046004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Varga G, Erces D, Tuboly E, Kaszaki J, Ghyczy M, Boros M. [Characterization of the antiinflammatory properties of methane inhalation during ischaemia-reperfusion]. Magy Seb 2013; 65:205-11. [PMID: 22940389 DOI: 10.1556/maseb.65.2012.4.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Gastrointestinal methane generation has been demonstrated in various conditions, but it is not known whether it has any impact on the mammalian physiology or pathophysiology. Our aim was to characterize the effects of exogenous methane on the process of inflammatory events induced by reoxygenation in a canine model of ischemia-reperfusion. MATERIALS AND METHODS Sodium pentobarbital-anesthetized inbred beagle dogs (n = 18) were randomly assigned to sham-operated or ischemia-reperfusion (I/R) groups. I/R was induced by occluding the superior mesenteric artery for 1 h, and the subsequent reperfusion was monitored for 3 h. For 5 min before reperfusion, the animals were mechanically ventilated with normoxic artificial air with or without 2.5% methane. The macrohemodynamics and small intestinal pCO2 gap changes were recorded and tissue superoxide and nitrotyrosine levels and myeloperoxidase activity changes were determined in intestinal biopsy samples. Structural mucosal damage was measured via light microscopy and HE staining. RESULTS Methane inhalation positively influenced the macrohemodynamic changes, significantly reduced the intestinal pCO2 gap changes and the magnitude of the tissue damage after reperfusion. Further, the intestinal myeloperoxidase activity, the superoxide and nitrotyrosine levels were reduced. CONCLUSIONS These data demonstrate the anti-inflammatory profile of methane. The study provides evidence that exogenous methane modulates leukocyte activation and affects key events of I/R-induced oxidative and nitrosative stress.
Collapse
Affiliation(s)
- Gabriella Varga
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Sebészeti Műtéttani Intézet 6720 Szeged Pécsi u. 6
| | | | | | | | | | | |
Collapse
|
40
|
Tuboly E, Szabó A, Garab D, Bartha G, Janovszky Á, Erős G, Szabó A, Mohácsi Á, Szabó G, Kaszaki J, Ghyczy M, Boros M. Methane biogenesis during sodium azide-induced chemical hypoxia in rats. Am J Physiol Cell Physiol 2012; 304:C207-14. [PMID: 23174561 DOI: 10.1152/ajpcell.00300.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies demonstrated methane generation in aerobic cells. Our aims were to investigate the methanogenic features of sodium azide (NaN(3))-induced chemical hypoxia in the whole animal and to study the effects of l-α-glycerylphosphorylcholine (GPC) on endogenous methane production and inflammatory events as indicators of a NaN(3)-elicited mitochondrial dysfunction. Group 1 of Sprague-Dawley rats served as the sham-operated control; in group 2, the animals were treated with NaN(3) (14 mg·kg(-1)·day(-1) sc) for 8 days. In group 3, the chronic NaN(3) administration was supplemented with daily oral GPC treatment. Group 4 served as an oral antibiotic-treated control (rifaximin, 10 mg·kg(-1)·day(-1)) targeting the intestinal bacterial flora, while group 5 received this antibiotic in parallel with NaN(3) treatment. The whole body methane production of the rats was measured by means of a newly developed method based on photoacoustic spectroscopy, the microcirculation of the liver was observed by intravital videomicroscopy, and structural changes were assessed via in vivo fluorescent confocal laser-scanning microscopy. NaN(3) administration induced a significant inflammatory reaction and methane generation independently of the methanogenic flora. After 8 days, the hepatic microcirculation was disturbed and the ATP content was decreased, without major structural damage. Methane generation, the hepatic microcirculatory changes, and the increased tissue myeloperoxidase and xanthine oxidoreductase activities were reduced by GPC treatment. In conclusion, the results suggest that methane production in mammals is connected with hypoxic events associated with a mitochondrial dysfunction. GPC is protective against the inflammatory consequences of a hypoxic reaction that might involve cellular or mitochondrial methane generation.
Collapse
Affiliation(s)
- Eszter Tuboly
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu W, Wang D, Tao H, Sun X. Is methane a new therapeutic gas? Med Gas Res 2012; 2:25. [PMID: 23009320 PMCID: PMC3480884 DOI: 10.1186/2045-9912-2-25] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 02/02/2023] Open
Abstract
Background Methane is an attractive fuel. Biologically, methanogens in the colon can use carbon dioxide and hydrogen to produce methane as a by-product. It was previously considered that methane is not utilized by humans. However, in a recent study, results demonstrated that methane could exert anti-inflammatory effects in a dog small intestinal ischemia-reperfusion model. Point of view Actually, the bioactivity of methane has been investigated in gastrointestinal diseases, but the exact mechanism underlying the anti-inflammatory effects is required to be further elucidated. Methane can cross the membrane and is easy to collect due to its abundance in natural gas. Although methane is flammable, saline rich in methane can be prepared for clinical use. These seem to be good news in application of methane as a therapeutic gas. Conclusion Several problems should be resolved before its wide application in clinical practice.
Collapse
Affiliation(s)
- Wenwu Liu
- Department of Diving Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, P,R, China.
| | | | | | | |
Collapse
|
42
|
Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F. Evidence for methane production by saprotrophic fungi. Nat Commun 2012; 3:1046. [DOI: 10.1038/ncomms2049] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/02/2012] [Indexed: 11/09/2022] Open
|
43
|
Abstract
OBJECTIVE Gastrointestinal methane generation has been demonstrated in various stress conditions, but it is not known whether nonasphyxiating amounts have any impact on the mammalian pathophysiology. We set out to characterize the effects of exogenous methane administration on the process of inflammatory events arising after reoxygenation in a large animal model of ischemia-reperfusion. DESIGN A randomized, controlled in vivo animal study. SETTING A university research laboratory. SUBJECTS Inbred beagle dogs (12.7 6 2 kg). INTERVENTIONS Sodium pentobarbital-anesthetized animals were randomly assigned to sham-operated or ischemia-reperfusion groups, where superior mesenteric artery occlusion was maintained for 1 hr and the subsequent reperfusion was monitored for 3 hrs. For 5 mins before reperfusion, the animals were mechanically ventilated with normoxic artificial air with or without 2.5% methane. Biological responses to methane-oxygen respirations were defined in pilot rat studies and assay systems were used with xanthine oxidase and activated canine granulocytes to test the in vitro bioactivity potential of different gas concentrations. MEASUREMENTS AND MAIN RESULTS The macrohemodynamics and small intestinal pCO(2) gap changes were recorded and peripheral blood samples were taken for plasma nitrite/nitrate and myeloperoxidase analyses. Tissue superoxide and nitrotyrosine levels and myeloperoxidase activity changes were determined in intestinal biopsy samples; structural mucosal damage was measured by hematoxylin and eosin staining. Methane inhalation did not influence the macrohemodynamics but significantly reduced the magnitude of the tissue damage and the intestinal pCO(2) gap changes after reperfusion. Furthermore, the plasma and mucosal myeloperoxidase activity and the intestinal superoxide and nitrotyrosine levels were reduced, whereas the plasma nitrite/nitrate concentrations were increased. Additionally, methane effectively and specifically inhibited leukocyte activation in vitro. CONCLUSIONS These data demonstrate the anti-inflammatory profile of methane. The study provides evidence that exogenous methane modulates leukocyte activation and affects key events of ischemia-reperfusion-induced oxidative and nitrosative stress and is therefore of potential therapeutic interest in inflammatory pathologies.
Collapse
|
44
|
|
45
|
Wang ZP, Xie ZQ, Zhang BC, Hou LY, Zhou YH, Li LH, Han XG. Aerobic and anaerobic nonmicrobial methane emissions from plant material. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9531-9537. [PMID: 21961564 DOI: 10.1021/es2020132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Methane (CH(4)) may be generated via microbial and nonmicrobial mechanisms. Nonmicrobial CH(4) is also ubiquitous in nature, such as in biomass burning, the Earth's crust, plants, and animals. Relative to microbial CH(4), nonmicrobial CH(4) is less understood. Using fresh (living) and dried (dead) leaves and commercial structural compounds (dead) of plants, a series of laboratory experiments have been conducted to investigate CH(4) emissions under aerobic and anaerobic conditions. CH(4) emissions from fresh leaves incubated at ambient temperatures were nonmicrobial and enhanced by anaerobic conditions. CH(4) emissions from dried leaves incubated at rising temperature ruled out a microbial-mediated formation pathway and were plant-species-dependent with three categories of response to oxygen levels: enhanced by aerobic conditions, similar under aerobic and anaerobic conditions, and enhanced by anaerobic conditions. CH(4) emissions in plant structural compounds may help to fully understand nonmicrobial CH(4) formation in plant leaves. Experiments of reactive oxygen species (ROS) generator and scavengers indicate that ROS had a significant role in nonmicrobial CH(4) formation in plant material under aerobic and anaerobic conditions. However, the detailed mechanisms of the ROS were uncertain.
Collapse
Affiliation(s)
- Zhi-Ping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Protective Effects of a Phosphatidylcholine-Enriched Diet in Lipopolysaccharide-Induced Experimental Neuroinflammation in the Rat. Shock 2011; 36:458-65. [DOI: 10.1097/shk.0b013e31822f36b0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Qi M, Hang C, Zhu L, Shi J. Involvement of endothelial-derived relaxing factors in the regulation of cerebral blood flow. Neurol Sci 2011; 32:551-7. [PMID: 21584736 DOI: 10.1007/s10072-011-0622-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/05/2011] [Indexed: 11/30/2022]
Abstract
Despite numerous researches and advances in the present times, delayed cerebral vasospasm remains a severe complication leading to a high mortality and morbidity in patients with subarachnoid hemorrhage (SAH). Since the discovery of endothelium-derived relaxing factor (EDRF) in 1980, its role in delayed cerebral vasospasm after SAH has been widely investigated as well as in regulation of basic cerebral blood flow, pathophysiology of vasoconstriction and application on prevention and treatment of cerebral vasospasm. Among all the EDRFs, nitric oxide has caught the most attention, and the other substances which display similar properties with characteristics of EDRF such as carbon monoxide (CO), hydrogen sulfide (H(2)S), hydrogen peroxide (H(2)O(2)), potassium ion (K(+)) and methane (CH(4)) have also evoked great interest in the research field. This review provides an overview of recent advances in investigations on the involvement of EDRFs in the regulation of cerebral blood flow, especially in cerebral vasospasm after SAH. Possible therapeutic measures and potential clinical implications for cerebral vasospasm are also summarized.
Collapse
Affiliation(s)
- Meng Qi
- Department of Neurosurgery, Jinling Hospital, Nanjing University Medical School, Nanjing, 210002, Jiangsu, China.
| | | | | | | |
Collapse
|
48
|
Wishkerman A, Greiner S, Ghyczy M, Boros M, Rausch T, Lenhart K, Keppler F. Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. PLANT, CELL & ENVIRONMENT 2011; 34:457-64. [PMID: 21062320 DOI: 10.1111/j.1365-3040.2010.02255.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The claim of methane (CH₄) formation in plants has caused much controversy and debate within the scientific community over the past 4 years. Here, using both stable isotope and concentration measurements, we demonstrate that CH₄ formation occurs in plant cell cultures that were grown in the dark under sterile conditions. Under non-stress conditions the plant cell cultures produced trace amounts [0.3-0.6 ng g⁻¹ dry weight (DW) h⁻¹] of CH₄ but these could be increased by one to two orders of magnitude (up to 12 ng g⁻¹ DW h⁻¹) when sodium azide, a compound known to disrupt electron transport flow at the cytochrome c oxidase (complex IV) in plant mitochondria, was added to the cell cultures. The addition of other electron transport chain (ETC) inhibitors did not result in significant CH₄ formation indicating that a site-specific disturbance of the ETC at complex IV causes CH₄ formation in plant cells. Our study is an important first step in providing more information on non-microbial CH₄ formation from living plants particularly under abiotic stress conditions that might affect the electron transport flow at the cytochrome c oxidase in plant mitochondria.
Collapse
Affiliation(s)
- Asher Wishkerman
- Air Chemistry Department, Max-Planck Institute for Chemistry, D-55020 Mainz
| | | | | | | | | | | | | |
Collapse
|
49
|
Althoff F, Jugold A, Keppler F. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. CHEMOSPHERE 2010; 80:286-292. [PMID: 20444486 DOI: 10.1016/j.chemosphere.2010.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 05/29/2023]
Abstract
The possibility of methane formation in an oxidative environment has been intensely debated, especially since the discovery of methane generation by living plants. However, recent studies with animal tissue suggested that under specific conditions aerobic methane formation is also possible. Here, we investigated the generation of methane in an abiotic model system using bioavailable substances. We show formation of methane in a highly oxidative media, using ascorbic acid, ferrihydrite and hydrogen peroxide as reagents. Methane production was shown to be related to reagent ratio, reaction volume and pH. A 2:1 ratio of hydrogen peroxide to ascorbic acid, catalytic amounts of ferrihydrite and acidic conditions (pH 3) enhanced formation of methane. We further show that gaseous oxygen has a strong influence with higher levels found to inhibit methane formation. This study is a first step towards providing an insight for the reaction mechanism of methane formation that would be applicable to aerobic environments.
Collapse
Affiliation(s)
- Frederik Althoff
- Max-Planck-Institute of Chemistry, J.-J.-Becher-Weg 27, Mainz, Germany.
| | | | | |
Collapse
|
50
|
Oral phosphatidylcholine pretreatment decreases ischemia-reperfusion-induced methane generation and the inflammatory response in the small intestine. Shock 2009; 30:596-602. [PMID: 18461026 DOI: 10.1097/shk.0b013e31816f204a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have shown that phosphatidylcholine (PC) metabolites may have a function in counteracting the production of reactive oxygen species (ROS), and that this mechanism can lead to the generation of methane from choline. The aims were to establish whether the dietary administration of PC can protect the reperfused small bowel mucosa by its acting as an anti-inflammatory agent and to investigate this possibility in association with in vivo methane generation. Group 1 (n = 5) of anesthetized dogs served as sham-operated controls, whereas in groups 2 (n = 6) and 3 (n = 6), complete small intestinal ischemia was induced by occluding the superior mesenteric artery for 60 min. Groups 1 and 2 were fed with normal laboratory chow for 1 week before the experiments, whereas the animals in group 3 received a special diet containing 1% soybean PC. The intramucosal pH and the difference of the arterial and local PCO2 (PCO2 gap) were detected by indirect tonometry. Intestinal superoxide production and myeloperoxidase (MPO) activity (a marker of tissue leukocyte infiltration) were ascertained on ileal biopsy samples 180 min after reperfusion. The content of methane in the exhaled air was determined by gas chromatography. I/R was characterized by significant tissue acidosis with ROS generation and elevated MPO activity. These changes were accompanied by increased methane production in the exhaled air during reoxygenation. The PC-enriched diet prevented the decrease in intramucosal pH, diminished the intestinal superoxide generation and the MPO activity, and significantly decreased the exhaled methane concentration. The increased dietary uptake of PC exerts an anti-inflammatory influence in the gastrointestinal tract. Exhaled methane is linked to abnormal ROS generation; a decreased methane production is associated with significantly reduced inflammatory activation during I/R.
Collapse
|