1
|
Moutapam-Ngamby-Adriaansen Y, Maillot F, Labarthe F, Lioger B. Blood cytopenias as manifestations of inherited metabolic diseases: a narrative review. Orphanet J Rare Dis 2024; 19:65. [PMID: 38355710 PMCID: PMC10865644 DOI: 10.1186/s13023-024-03074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Inherited Metabolic Diseases (IMD) encompass a diverse group of rare genetic conditions that, despite their individual rarity, collectively affect a substantial proportion, estimated at as much as 1 in 784 live births. Among their wide-ranging clinical manifestations, cytopenia stands out as a prominent feature. Consequently, IMD should be considered a potential diagnosis when evaluating patients presenting with cytopenia. However, it is essential to note that the existing scientific literature pertaining to the link between IMD and cytopenia is limited, primarily comprising case reports and case series. This paucity of data may contribute to the inadequate recognition of the association between IMD and cytopenia, potentially leading to underdiagnosis. In this review, we synthesize our findings from a literature analysis along with our clinical expertise to offer a comprehensive insight into the clinical presentation of IMD cases associated with cytopenia. Furthermore, we introduce a structured diagnostic approach underpinned by decision-making algorithms, with the aim of enhancing the early identification and management of IMD-related cytopenia.
Collapse
Affiliation(s)
- Yannick Moutapam-Ngamby-Adriaansen
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France.
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France.
| | - François Maillot
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1253, iBrain, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
| | - François Labarthe
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- Service de Pédiatrie, CHRU de Tours, Tours Cedex 1, France
| | - Bertrand Lioger
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France
| |
Collapse
|
2
|
Hubáček JA, Philipp T, Adámková V, Májek O, Dlouhá D, Dušek L. Possible effect of OAS1 and TMPRSS6 but not DPP4 and ZNF335 polymorphisms on COVID-19 severity in the Czech population. Cent Eur J Public Health 2023; 31:235-239. [PMID: 38309700 DOI: 10.21101/cejph.a7906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 02/05/2024]
Abstract
OBJECTIVES The acute respiratory syndrome, known as COVID-19, is characterised by high morbidity and increased mortality. Genetic factors may partially explain the differences in susceptibility to and severity of COVID-19. METHODS We have analysed common functional polymorphisms within the OAS1 (rs4767027), TMPRSS6 (rs855791), DPP4 (rs3788979), and ZNF335 (rs3848719) genes in SARS-CoV-2 positive subjects (n = 521, different disease severity) and in population controls (n = 2,559 subjects, COVID-19 status unknown). RESULTS Neither DPP4 nor ZNF335 were associated with disease susceptibility or severity in the Czech population in any of the models used for calculation. T allele carriers of the OAS1 polymorphism seem to be protective against symptomatic COVID-19 (p = 0.002 calculated for trend; asymptomatic, symptomatic, hospitalised). Similarly, within the TMPRSS6, minor TT homozygotes associated with lower plasma Fe concentrations were underrepresented in the overall patient group (p = 0.044; OR = 0.77, 95% CI: 0.59-0.99), and the difference was mainly driven by the severe COVID-19 subjects. In general, risky homozygotes of these two polymorphisms were less frequent than expected in the group of hospitalised COVID-19 survivors. CONCLUSIONS Common variants within OAS1 (rs4767027) and TMPRSS6 (rs855791) play some role in COVID-19 pathology in the Czech Caucasian population. Whether the depletion of minor allele carriers of these two variants is associated with increased COVID-19 mortality, needs to be analysed in an external confirmatory study.
Collapse
Affiliation(s)
- Jaroslav A Hubáček
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Endocrinology and Metabolism, Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tom Philipp
- Clinic of Rheumatology and Physiotherapy, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Věra Adámková
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondřej Májek
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dana Dlouhá
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ladislav Dušek
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Xia L, Shen Y, Liu S, Du J. Iron overload triggering ECM-mediated Hippo/YAP pathway in follicle development: a hypothetical model endowed with therapeutic implications. Front Endocrinol (Lausanne) 2023; 14:1174817. [PMID: 37223010 PMCID: PMC10200985 DOI: 10.3389/fendo.2023.1174817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Disruption of iron homeostasis plays a negative role in follicle development. The dynamic changes in follicle growth are dependent on Hippo/YAP signaling and mechanical forces. However, little is known about the liaison between iron overload and the Hippo/YAP signalling pathway in term of folliculogenesis. Here, based on the available evidence, we established a hypothesized model linking excessive iron, extracellular matrix (ECM), transforming growth factor-β (TGF-β) and Hippo/Yes-associated protein (YAP) signal regarding follicle development. Hypothetically, the TGF-β signal and iron overload may play a synergistic role in ECM production via YAP. We speculate that the dynamic homeostasis of follicular iron interacts with YAP, increasing the risk of ovarian reserve loss and may enhance the sensitivity of follicles to accumulated iron. Hence, therapeutic interventions targeting iron metabolism disorders, and Hippo/YAP signal may alter the consequences of the impaired developmental process based on our hypothesis, which provides potential targets and inspiration for further drug discovery and development applied to clinical treatment.
Collapse
Affiliation(s)
- Lingjin Xia
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Du
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Al-Jamea LH, Woodman A, M. Heiba N, Elshazly SA, Ben Khalaf N, Al-Yami FS, Bilal Waheed K, Al Mutair A, Alsedi A, Quiambao JV, Alzahrani FM, Albaqami WF, Al Qahtani FH, Mohammed Aljarah N, Fathallah DM, Halim Deifalla A. TMPRSS6 gene mutations in six Saudi families with iron refractory iron deficiency anemia. Gene 2023; 851:146977. [DOI: 10.1016/j.gene.2022.146977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
5
|
Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms. Biochem Soc Trans 2021; 49:747-759. [PMID: 33929529 DOI: 10.1042/bst20200672] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Iron is fundamental for several biological functions, but when in excess can lead to the development of toxic events. Some tissues and cells are more susceptible than others, but systemic iron levels can be controlled by treating patients with iron-chelating molecules and phlebotomy. An early diagnostic can be decisive to limit the progression of musculoskeletal complications like osteoarthritis and osteoporosis because of iron toxicity. In iron-related osteoarthritis, aggravation can be associated to a few events that can contribute to joints articular cartilage exposure to high iron concentrations, which can promote articular degeneration with very little chance of tissue regeneration. In contrast, bone metabolism is much more dynamic than cartilage, but progressive iron accumulation and ageing can be decisive factors for bone health. The iron overload associated with hereditary diseases like hemochromatosis, hemophilias, thalassemias and other hereditary anaemias increase the negative impact of iron toxicity in joints and bone, as well as in life quality, even when iron levels can be controlled. The molecular mechanisms by which iron can compromise cartilage and bone have been illusive and only in the last 20 years studies have started to shed some light into the molecular mechanisms associated with iron toxicity. Ferroptosis and the regulation of intracellular iron levels is instrumental in the balance between detoxification and induced cell death. In addition, these complications are accompanied with multiple susceptibility factors that can aggravate iron toxicity and should be identified. Therefore, understanding tissues microenvironment and cell communication is fundamental to contextualize iron toxicity.
Collapse
|
6
|
Jallow MW, Campino S, Prentice AM, Cerami C. Association of common TMPRSS6 and TF gene variants with hepcidin and iron status in healthy rural Gambians. Sci Rep 2021; 11:8075. [PMID: 33850216 PMCID: PMC8044158 DOI: 10.1038/s41598-021-87565-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/25/2021] [Indexed: 11/08/2022] Open
Abstract
Genome-wide association studies in Europeans and Asians have identified numerous variants in the transmembrane protease serine 6 (TMPRSS6) and transferrin (TF) genes that are associated with changes in iron status. We sought to investigate the effects of common TMPRSS6 and TF gene SNPs on iron status indicators in a cohort of healthy Africans from rural Gambia. We measured iron biomarkers and haematology traits on individuals participating in the Keneba Biobank with genotype data on TMPRSS6 (rs2235321, rs855791, rs4820268, rs2235324, rs2413450 and rs5756506) and TF (rs3811647 and rs1799852), n = 1316. After controlling for inflammation, age and sex, we analysed the effects of carrying either single or multiple iron-lowering alleles on iron status. TMPRSS6 rs2235321 significantly affected plasma hepcidin concentrations (AA genotypes having lower hepcidin levels; F ratio 3.7, P = 0.014) with greater impact in individuals with low haemoglobin or ferritin. No other TMPRSS6 variant affected hepcidin. None of the TMPRSS6 variants nor a TMPRSS6 allele risk score affected other iron biomarkers or haematological traits. TF rs3811647 AA carriers had 21% higher transferrin (F ratio 16.0, P < 0.0001), 24% higher unsaturated iron-binding capacity (F ratio 12.8, P < 0.0001) and 25% lower transferrin saturation (F ratio 4.3, P < 0.0001) compared to GG carriers. TF rs3811647 was strongly associated with transferrin, unsaturated iron-binding capacity (UIBC) and transferrin saturation (TSAT) with a single allele effect of 8-12%. There was no association between either TF SNP and any haematological traits or iron biomarkers. We identified meaningful associations between TMPRSS6 rs2235321 and hepcidin and replicated the previous findings on the effects of TF rs3811647 on transferrin and iron binding capacity. However, the effects are subtle and contribute little to population variance. Further genetic and functional studies, including polymorphisms frequent in Africa populations, are needed to identify markers for genetically stratified approaches to prevention or treatment of iron deficiency anaemia.
Collapse
Affiliation(s)
- Momodou W Jallow
- Nutrition Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Andrew M Prentice
- Nutrition Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Carla Cerami
- Nutrition Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia.
| |
Collapse
|
7
|
Jallow MW, Campino S, Saidykhan A, Prentice AM, Cerami C. Common Variants in the TMPRSS6 Gene Alter Hepcidin but not Plasma Iron in Response to Oral Iron in Healthy Gambian Adults: A Recall-by-Genotype Study. Curr Dev Nutr 2021; 5:nzab014. [PMID: 33817543 PMCID: PMC7994066 DOI: 10.1093/cdn/nzab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The role of genetic determinants in mediating iron status in Africans is not fully understood. Genome-wide association studies in non-African populations have revealed genetic variants in the transmembrane protease serine 6 gene (TMPRSS6) that are associated with the risk of anemia. OBJECTIVES To investigate the effects of risk alleles for low iron status, namely TMPRSS6 rs2235321, rs855791, and rs4820268, on responses to oral iron in healthy Gambian adults. METHODS Using a recall-by-genotype design, participants were selected from a pregenotype cohort of 3000 individuals in the Keneba Biobank (Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine). Participants were invited to participate in the study based on 9 genotype combinations obtained from 3 TMPRSS6 single nucleotide polymorphisms (SNPs): rs2235321, rs855791, and rs4820268. The participants fasted overnight and then ingested a single oral dose of ferrous sulfate (130 mg elemental iron). Blood samples were collected prior to iron ingestion and at 2 and 5 h after the oral iron dose. The effects of genotype on hepcidin and plasma iron parameters were assessed. RESULTS A total of 251 individuals were enrolled. Homozygous carriers of the major TMPRSS6 alleles at each of the SNPs had higher plasma hepcidin at baseline (rs2235321: GG compared with AA = 9.50 compared with 6.60 ng/ml, P = 0.035; rs855791: GG compared with AG = 9.50 compared with 4.96 ng/mL, P = 0.015; rs4820268: AA compared with GG = 9.50 compared with 3.27 ng/mL, P = 0.002) and at subsequent timepoints. In most subjects, hepcidin concentrations increased following iron ingestion (overall group mean = 4.98 ± 0.98 ng/mL at 5 h, P < 0.001), but double heterozygotes at rs2235321 and rs855791 showed no increase (0.36 ± 0.40 ng/mL at 5 h, P = 0.667). CONCLUSIONS This study revealed that common TMPRSS6 variants influence hepcidin concentrations, but not iron status indicators either at baseline or following a large oral dose of iron. These results suggest that genetic variations in the TMPRSS6 gene are unlikely to be important contributors to variations in iron status in Africans.This study was registered at clinicaltrials.gov (# NCT03341338).
Collapse
Affiliation(s)
- Momodou W Jallow
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Alasana Saidykhan
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Carla Cerami
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
8
|
Al-Jamea LH, Woodman A, Heiba NM, Elshazly SA, Khalaf NB, Fathallah DM, Al-Nashmi ME, Quiambao JV, Deifalla AH. Genetic analysis of TMPRSS6 gene in Saudi female patients with iron deficiency anemia. Hematol Oncol Stem Cell Ther 2020; 14:41-50. [PMID: 32446932 DOI: 10.1016/j.hemonc.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE/BACKGROUND Mutations in transmembrane protease serine 6 (TMPRSS6) gene induce high hepcidin level, which causes iron-refractory iron deficiency anemia (IRIDA) by preventing duodenal iron absorption. This study aims to identify the common genetic variations of the TMPRSS6 gene that affect iron levels among Saudi female patients with iron deficiency anemia (IDA). METHODS All study participants were Saudi females (12-49 years old): 32 patients with IDA, 32 patients with IRIDA, and 34 healthy individuals comprising the control group. Hematological investigations, iron profile, serum hepcidin level, and TMPRSS6 gene transcription were determined. The TMPRSS6 gene was amplified, sequenced, and analyzed among all study participants. RESULTS The mean hepcidin and TMPRSS6 RNA transcription levels in IDA and IRIDA groups were significantly lower than those in the control group. TMPRSS6 gene sequence analysis detected 41 variants: two in the 5' untranslated region (5'UTR), 17 in introns, and 22 in exons. Thirty-three variants were previously reported in the Single Nucleotide Polymorphism Database, and eight variants were novel; one novel variant was in 5'UTR (g.-2 T > G); five novel variants were detected in exons (p.W73X, p.D479N, p.E523K, p.L674L, and p.I799I). At the time of the sequence analysis of our samples, two variants-p.D479N and p.674L-were novel. However, these variants are present at a very low allele frequency in other populations (L674L, 0.00007761 and D479N, 0.000003980). CONCLUSION This is the first study to investigate the genetic variants of TMPRSS6 gene in Saudi female patients with IDA. The generated data will serve as a reference for future studies on IDA in the Arab population.
Collapse
Affiliation(s)
- Lamiaa H Al-Jamea
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia.
| | - Alexander Woodman
- Postgraduate Studies and Research, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | | | - Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Dahmani M Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Moudi E Al-Nashmi
- Department of Medical Laboratory Services, Ministry of Health, Kuwait
| | - Jenifer Vecina Quiambao
- Postgraduate Studies and Research, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Abdel Halim Deifalla
- Anatomy Department, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
9
|
Abstract
Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.
Collapse
|
10
|
Gitlin-Domagalska A, Dębowski D, Łęgowska A, Stirnberg M, Okońska J, Gütschow M, Rolka K. Design and chemical syntheses of potent matriptase-2 inhibitors based on trypsin inhibitor SFTI-1 isolated from sunflower seeds. Biopolymers 2017; 108. [DOI: 10.1002/bip.23031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Agata Gitlin-Domagalska
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| | - Anna Łęgowska
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| | - Marit Stirnberg
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4; Bonn 53121 Germany
| | - Joanna Okońska
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4; Bonn 53121 Germany
| | - Krzysztof Rolka
- Department of Molecular Biochemistry; Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63; Gdansk 80-308 Poland
| |
Collapse
|
11
|
Arsenault V, Mailloux C, Bonnefoy A, Lemyre E, Pastore Y. Iron-Refractory Iron Deficiency Anemia May Not Lead to Neurocognitive Dysfunction: A Case Report. Pediatrics 2016; 138:peds.2015-3608. [PMID: 27365303 DOI: 10.1542/peds.2015-3608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/18/2022] Open
Abstract
Iron deficiency is a common cause of anemia (IDA) in infancy and can be associated with neurocognitive impairments. Iron-refractory IDA (IRIDA) has recently been described as an inherited cause of IDA due to loss-of-function mutations in the TMPRSS6 gene. IRIDA is characterized by a lack of response to iron replacement. Here we report a new case of IRIDA with its biological parameters and its functional consequences, including neuropsychological impact. The latter was evaluated by the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition and subtests. We report a 5-year-old French Canadian boy who was incidentally diagnosed with a severe microcytic anemia at 2 years of age (hemoglobin 52 g/L, mean corpuscular volume 50 fL). Except mild pallor, he was asymptomatic of his anemia. Although he had a slight response to intravenous iron therapy, his hemoglobin remained <92 g/L, with persistent microcytosis, low serum iron, but normal ferritin levels. Blood hepcidin level was higher than those of his parents and control (patient 11.2 nM, father 9.06 nM, mother 4.07 nM). Compound heterozygosity for TMPRSS6 paternally inherited c.1324G>A and maternally inherited c.1807G>C mutations were eventually identified. The patient had normal development and growth. Neuropsychological evaluation revealed excellent performance, with high Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition scores (ie, 82nd percentile for both global intelligence and general ability index). In conclusion, TMPRSS6 c.1807G>C in conjunction with c.1324G>A results in IRIDA. In contrast to the usual form of IDA, IRIDA may not be associated with neuropsychological deficits.
Collapse
Affiliation(s)
- Valérie Arsenault
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Chantal Mailloux
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Arnaud Bonnefoy
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Emmanuelle Lemyre
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Yves Pastore
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Abstract
Iron is required for most forms of organisms, and it is the most essential element for the functions of many iron-containing proteins involved in oxygen transport, cellular respiration, DNA replication, and so on. Disorders of iron metabolism are associated with diverse diseases, including anemias (e.g., iron-deficiency anemia and anemia of chronic diseases) and iron overload diseases, such as hereditary hemochromatosis and β-thalassemia. Hepcidin (encoded by Hamp gene) is a peptide hormone synthesized by hepatocytes, and it plays an important role in regulating the systematic iron homeostasis. As the systemic iron regulator, hepcidin, not only controls dietary iron absorption and iron egress out of iron storage cells, but also induces iron redistribution in various organs. Deregulated hepcidin is often seen in a variety of iron-related diseases including anemias and iron overload disorders. In the case of iron overload disorders (e.g., hereditary hemochromatosis and β-thalassemia), hepatic hepcidin concentration is significantly reduced.Since hepcidin deregulation is responsible for iron disorder-associated diseases, the purpose of this review is to summarize the recent findings on therapeutics targeting hepcidin.Continuous efforts have been made to search for hepcidin mimics and chemical compounds that could be used to increase hepcidin level. Here, a literature search was conducted in PubMed, and research papers relevant to hepcidin regulation or hepcidin-centered therapeutic work were reviewed. On the basis of literature search, we recapitulated recent findings on therapeutic studies targeting hepcidin, including agonists and antagonists to modulate hepcidin expression or its downstream signaling. We also discussed the molecular mechanisms by which hepcidin level and iron metabolism are modulated.Elevating hepcidin concentration is an optimal strategy to ameliorate iron overload diseases, and also to relieve β-thalassemia phenotypes by improving ineffective erythropoiesis. Relative to the current conventional therapies, such as phlebotomy and blood transfusion, therapeutics targeting hepcidin would open a new avenue for treatment of iron-related diseases.
Collapse
Affiliation(s)
- Jing Liu
- From the State Key Laboratory of Environmental Chemistry and Ecotoxicology (JL, SL), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Medicine (BS), University of California, Los Angeles, CA; Department of Cardiovascular Disease (HY), Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; and Gansu University of Traditional Chinese Medicine (HY), Lanzhou, China
| | | | | | | |
Collapse
|
13
|
Gitlin A, Dębowski D, Karna N, Łęgowska A, Stirnberg M, Gütschow M, Rolka K. Inhibitors of Matriptase-2 Based on the Trypsin Inhibitor SFTI-1. Chembiochem 2015; 16:1601-7. [DOI: 10.1002/cbic.201500200] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/12/2022]
|
14
|
The iron-regulatory hormone hepcidin: A possible therapeutic target? Pharmacol Ther 2015; 146:35-52. [DOI: 10.1016/j.pharmthera.2014.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 01/19/2023]
|
15
|
Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: a systematic review with meta-analyses. GENES AND NUTRITION 2014; 10:442. [PMID: 25416640 DOI: 10.1007/s12263-014-0442-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Transmembrane protease, serine 6 (TMPRSS6), is likely to be involved in iron metabolism through its pleiotropic effect on hepcidin concentrations. Recently, genome-wide association studies have identified common variants in the TMPRSS6 gene to be linked to anaemia and low iron status. To get a more precise evaluation of identified TMPRSS6 single nucleotide polymorphism associations with iron status in cohorts of differing continental ancestry, we conducted a systematic review with meta-analyses. We searched the literature using HuGE Navigator, Pubmed and Scopus databases for primarily genome-wide association studies using TMPRSS6 as a free term. Fixed-effects meta-analysis was used to obtain summary estimates of associations. Eleven studies comprised Caucasian populations, four included an Asian population and one study included an African-American population. Differences in minor allele frequencies of 8 TMPRSS6 SNPs (rs855791, rs4820268, rs2111833, rs1421312, rs228921, rs228918, rs228919 and rs575620) across ethnic groups were observed, with the MAF of rs855791 significantly higher in Asian populations than in Caucasians (0.55 vs 0.42, P < 0.0001). In the meta-analysis, the A allele of rs855791 was associated with lower Hb and ferritin concentrations in all populations. This allele was also associated with increased serum transferrin receptor and transferrin concentrations. We observed similar associations for the G allele in rs4820268. Clear disparities in associations were found for the African-American population, although not statistically significant. Associations between TMPRSS6 SNPs and anaemia are consistent across Caucasian and Asian populations. This study highlights the need to conduct studies in African populations where iron deficiency is of utmost public health significance.
Collapse
|
16
|
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-β) superfamily of signaling molecules. In addition to protean roles in embryonic development, germ-line specification, and cellular differentiation, a central role in iron homeostasis has recently been demonstrated for certain BMPs. Specifically, BMP6 serves to relate hepatic iron stores to the hepatocellular expression of the iron-regulatory hormone hepcidin. This regulation occurs via cellular SMAD-signaling molecules and is strongly modulated by the BMP coreceptor hemojuvelin (HJV). Mutations in certain genes influencing signaling to hepcidin via the BMP/SMAD pathway are associated with human disorders of iron metabolism, such as hereditary hemochromatosis and iron-refractory iron-deficiency anemia. Evidence suggests that signals in addition to iron stores influence hepcidin expression via the BMP/SMAD pathway. This review summarizes the details of BMP/SMAD signaling, with a particular focus on its role in iron homeostasis and iron-related diseases.
Collapse
Affiliation(s)
- Nermi L Parrow
- Division of Molecular and Clinical Nutrition, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
17
|
Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD. Physiology of iron metabolism. Transfus Med Hemother 2014; 41:213-21. [PMID: 25053935 DOI: 10.1159/000362888] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022] Open
Abstract
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Collapse
Affiliation(s)
| | - Gérard Waeber
- Service de médecine interne, CHUV, Lausanne, Switzerland
| | | | | | | | - Bernard Favrat
- Department of Ambulatory Care and Community Medicine, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Service régional vaudois de transfusion sanguine, Epalinges, Switzerland
| |
Collapse
|
18
|
|
19
|
Gnana-Prakasam JP, Baldowski RB, Ananth S, Martin PM, Smith SB, Ganapathy V. Retinal expression of the serine protease matriptase-2 (Tmprss6) and its role in retinal iron homeostasis. Mol Vis 2014; 20:561-74. [PMID: 24791141 PMCID: PMC4000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 04/24/2014] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Matriptase-2 (also known as TMPRSS6) is a critical regulator of the iron-regulatory hormone hepcidin in the liver; matriptase-2 cleaves membrane-bound hemojuvelin and consequently alters bone morphogenetic protein (BMP) signaling. Hemojuvelin and hepcidin are expressed in the retina and play a critical role in retinal iron homeostasis. However, no information on the expression and function of matriptase-2 in the retina is available. The purpose of the present study was to examine the retinal expression of matriptase-2 and its role in retinal iron homeostasis. METHODS RT-PCR, quantitative PCR (qPCR), and immunofluorescence were used to analyze the expression of matriptase-2 and other iron-regulatory proteins in the mouse retina. Polarized localization of matriptase-2 in the RPE was evaluated using markers for the apical and basolateral membranes. Morphometric analysis of retinas from wild-type and matriptase-2 knockout (Tmprss6(msk/msk) ) mice was also performed. Retinal iron status in Tmprss6(msk/msk) mice was evaluated by comparing the expression levels of ferritin and transferrin receptor 1 between wild-type and knockout mice. BMP signaling was monitored by the phosphorylation status of Smads1/5/8 and expression levels of Id1 while interleukin-6 signaling was monitored by the phosphorylation status of STAT3. RESULTS Matriptase-2 is expressed in the mouse retina with expression detectable in all retinal cell types. Expression of matriptase-2 is restricted to the apical membrane in the RPE where hemojuvelin, the substrate for matriptase-2, is also present. There is no marked difference in retinal morphology between wild-type mice and Tmprss6(msk/msk) mice, except minor differences in specific retinal layers. The knockout mouse retina is iron-deficient, demonstrable by downregulation of the iron-storage protein ferritin and upregulation of transferrin receptor 1 involved in iron uptake. Hepcidin is upregulated in Tmprss6(msk/msk) mouse retinas, particularly in the neural retina. BMP signaling is downregulated while interleukin-6 signaling is upregulated in Tmprss6(msk/msk) mouse retinas, suggesting that the upregulaton of hepcidin in knockout mouse retinas occurs through interleukin-6 signaling and not through BMP signaling. CONCLUSIONS The iron-regulatory serine protease matriptase-2 is expressed in the retina, and absence of this enzyme leads to iron deficiency and increased expression of hemojuvelin and hepcidin in the retina. The upregulation of hepcidin expression in Tmprss6(msk/msk) mouse retinas does not occur via BMP signaling but likely via the proinflammatory cytokine interleukin-6. We conclude that matriptase-2 is a critical participant in retinal iron homeostasis.
Collapse
Affiliation(s)
- Jaya P. Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Renee B. Baldowski
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Sudha Ananth
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Pamela M. Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA
| |
Collapse
|
20
|
Active site mapping of trypsin, thrombin and matriptase-2 by sulfamoyl benzamidines. Bioorg Med Chem 2012; 20:6489-505. [DOI: 10.1016/j.bmc.2012.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/16/2012] [Indexed: 12/16/2022]
|
21
|
Gan W, Guan Y, Wu Q, An P, Zhu J, Lu L, Jing L, Yu Y, Ruan S, Xie D, Makrides M, Gibson RA, Anderson GJ, Li H, Lin X, Wang F. Association of TMPRSS6 polymorphisms with ferritin, hemoglobin, and type 2 diabetes risk in a Chinese Han population. Am J Clin Nutr 2012; 95:626-32. [PMID: 22301935 DOI: 10.3945/ajcn.111.025684] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Transmembrane protease serine 6 (TMPRSS6) regulates iron homeostasis by inhibiting the expression of hepcidin. Multiple common variants in TMPRSS6 were significantly associated with serum iron in recent genome-wide association studies, but their effects in the Chinese remain to be elucidated. OBJECTIVE The objective was to determine whether the TMPRSS6 single nucleotide polymorphisms (SNPs) rs855791(V736A) and rs4820268(D521D) were associated with blood hemoglobin and plasma ferritin concentrations and risk of type 2 diabetes in Chinese individuals. DESIGN The SNPs rs855791(V736A) and rs4820268(D521D) in the TMPRSS6 gene were genotyped and tested for their associations with plasma iron and type 2 diabetes risk in 1574 unrelated Chinese Hans from Beijing. RESULTS The 2 TMPRSS6 SNPs rs855791(V736A) and rs4820268(D521D) were both significantly associated with plasma ferritin (P ≤ 0.0058), hemoglobin (P ≤ 0.0013), iron overload risk (P ≤ 0.0068), and type 2 diabetes risk (P ≤ 0.0314). None of the associations with hemoglobin or plasma ferritin remained significant (P ≥ 0.1229) when the 2 variants were both included in one linear regression model. A haplotype carrying both iron-lowering alleles from the 2 TMPRSS SNPs showed significant associations with lower hemoglobin (P = 0.0014), lower plasma ferritin (P = 0.0027), and a reduced risk of iron overload (P = 0.0017) and of type 2 diabetes (P = 0.0277). CONCLUSIONS These findings suggest that TMPRSS6 variants were significantly associated with plasma ferritin, hemoglobin, risk of iron overload, and type 2 diabetes in Chinese Hans. The type 2 diabetes risk conferred by the TMPRSS6 SNPs is possibly mediated by plasma ferritin.
Collapse
Affiliation(s)
- Wei Gan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gkouvatsos K, Wagner J, Papanikolaou G, Sebastiani G, Pantopoulos K. Conditional disruption of mouse HFE2 gene: maintenance of systemic iron homeostasis requires hepatic but not skeletal muscle hemojuvelin. Hepatology 2011; 54:1800-7. [PMID: 21748766 DOI: 10.1002/hep.24547] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/29/2011] [Indexed: 01/25/2023]
Abstract
UNLABELLED Mutations of the HFE2 gene are linked to juvenile hemochromatosis, a severe hereditary iron overload disease caused by chronic hyperabsorption of dietary iron. HFE2 encodes hemojuvelin (Hjv), a membrane-associated bone morphogenetic protein (BMP) coreceptor that enhances expression of the liver-derived iron regulatory hormone hepcidin. Hjv is primarily expressed in skeletal muscles and at lower levels in the heart and the liver. Moreover, a soluble Hjv form circulates in plasma and is thought to act as a decoy receptor, attenuating BMP signaling to hepcidin. To better understand the regulatory function of Hjv, we generated mice with tissue-specific disruption of this protein in hepatocytes or in muscle cells. The hepatic ablation of Hjv resulted in iron overload, quantitatively comparable to that observed in ubiquitous Hjv-/- mice. Serum iron and ferritin levels, transferrin saturation, and liver iron content were significantly (P < 0.001) elevated in liver-specific Hjv-/- mice. Hepatic Hjv mRNA was undetectable, whereas hepcidin expression was markedly suppressed (12.6-fold; P < 0.001) and hepatic BMP6 mRNA up-regulated (2.4-fold; P < 0.01), as in ubiquitous Hjv-/- counterparts. By contrast, the muscle-specific disruption of Hjv was not associated with iron overload or altered hepcidin expression, suggesting that muscle Hjv mRNA is dispensable for iron metabolism. Our data do not support any significant iron-regulatory function of putative muscle-derived soluble Hjv in mice, at least under physiological conditions. CONCLUSION The hemochromatotic phenotype of liver-specific Hjv-/- mice suggests that hepatic Hjv is necessary and sufficient to regulate hepcidin expression and control systemic iron homeostasis.
Collapse
Affiliation(s)
- Konstantinos Gkouvatsos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
23
|
McLaren CE, Garner CP, Constantine CC, McLachlan S, Vulpe CD, Snively BM, Gordeuk VR, Nickerson DA, Cook JD, Leiendecker-Foster C, Beckman KB, Eckfeldt JH, Barcellos LF, Murray JA, Adams PC, Acton RT, Killeen AA, McLaren GD. Genome-wide association study identifies genetic loci associated with iron deficiency. PLoS One 2011; 6:e17390. [PMID: 21483845 PMCID: PMC3069025 DOI: 10.1371/journal.pone.0017390] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 02/02/2011] [Indexed: 12/27/2022] Open
Abstract
The existence of multiple inherited disorders of iron metabolism in man, rodents and other vertebrates suggests genetic contributions to iron deficiency. To identify new genomic locations associated with iron deficiency, a genome-wide association study (GWAS) was performed using DNA collected from white men aged≥25 y and women≥50 y in the Hemochromatosis and Iron Overload Screening (HEIRS) Study with serum ferritin (SF)≤12 µg/L (cases) and iron replete controls (SF>100 µg/L in men, SF>50 µg/L in women). Regression analysis was used to examine the association between case-control status (336 cases, 343 controls) and quantitative serum iron measures and 331,060 single nucleotide polymorphism (SNP) genotypes, with replication analyses performed in a sample of 71 cases and 161 controls from a population of white male and female veterans screened at a US Veterans Affairs (VA) medical center. Five SNPs identified in the GWAS met genome-wide statistical significance for association with at least one iron measure, rs2698530 on chr. 2p14; rs3811647 on chr. 3q22, a known SNP in the transferrin (TF) gene region; rs1800562 on chr. 6p22, the C282Y mutation in the HFE gene; rs7787204 on chr. 7p21; and rs987710 on chr. 22q11 (GWAS observed P<1.51×10(-7) for all). An association between total iron binding capacity and SNP rs3811647 in the TF gene (GWAS observed P=7.0×10(-9), corrected P=0.012) was replicated within the VA samples (observed P=0.012). Associations with the C282Y mutation in the HFE gene also were replicated. The joint analysis of the HEIRS and VA samples revealed strong associations between rs2698530 on chr. 2p14 and iron status outcomes. These results confirm a previously-described TF polymorphism and implicate one potential new locus as a target for gene identification.
Collapse
Affiliation(s)
- Christine E McLaren
- Department of Epidemiology, University of California Irvine, Irvine, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
IRIDA (iron-refractory iron-deficiency anaemia) is a rare autosomal-recessive disorder hallmarked by hypochromic microcytic anaemia, low transferrin saturation and high levels of the iron-regulated hormone hepcidin. The disease is caused by mutations in the transmembrane serine protease TMPRSS6 (transmembrane protease serine 6) that prevent inactivation of HJV (haemojuvelin), an activator of hepcidin transcription. In the present paper, we describe a patient with IRIDA who carries a novel mutation (Y141C) in the SEA domain of the TMPRSS6 gene. Functional characterization of the TMPRSS6(Y141C) mutant protein in cultured cells showed that it localizes to similar subcellular compartments as wild-type TMPRSS6 and binds HJV, but fails to auto-catalytically activate itself. As a consequence, hepcidin mRNA expression is increased, causing the clinical symptoms observed in this IRIDA patient. The present study provides important mechanistic insight into how TMPRSS6 is activated.
Collapse
|