1
|
Gessner EE, Shah MH, Ghent BN, Westbrook NE, van den Hurk P, Baldwin WS. The reproductive effects of the cancer chemotherapy agent, Carmofur, on Daphnia magna are mediated by its metabolite, 5-Fluorouracil. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:860-872. [PMID: 35579761 PMCID: PMC9233140 DOI: 10.1007/s10646-022-02551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Carmofur is an antineoplastic agent that inhibits ceramidase, a key enzyme in the sphingolipid pathway. Previous research suggests carmofur represses reproductive maturity in Daphnia magna. The purpose of this experiment was to confirm carmofur's effects on fecundity and reproductive maturity over two generations. A chronic toxicity test found reproductive maturity was delayed from 9 to 19 days by 0.80 μM carmofur with a 99.7% drop in reproduction, probably caused by delayed ovarian development. Second generation effects were even greater with 0% reproductive success at 0.40 μM. To our surprise, carmofur was not measured in the media by HPLC 24 h after exposure. Previous research indicated that carmofur is unstable in water and hydrolyzed into 5-fluorouracil (5-FU). Therefore, the chronic toxicity study was repeated with 5-FU and similar effects on reproductive maturity were observed at similar concentrations despite very different acute toxicities (48 h carmofur LC50 = 1.93 μM; 5-FU LC50 = 207 μM). 5-FU delayed reproductive maturity from 9 to 21 days with a 71.12% drop in reproduction at 0.80 μM and greater effects in the 2nd generation similar to carmofur. 5-FU was found stable in aquatic media and HPLC confirmed 5-FU was hydrolyzed from carmofur within 24 h. In conclusion, carmofur and 5-FU reduce fecundity because they delay reproductive maturity and ovarian development in Daphnia magna. We conclude that the reproductive effects observed after carmofur treatment are primarily mediated by its breakdown product, 5-FU. This further underscores the importance of measuring chemical concentrations and evaluating chemical metabolism and decomposition when determining toxicity, especially of chemotherapeutic agents.Clinical trials registration Not applicable.
Collapse
Affiliation(s)
- Emily E Gessner
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Manav H Shah
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Bricen N Ghent
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | | | | | | |
Collapse
|
2
|
Mostafa S, Nader N, Machaca K. Lipid Signaling During Gamete Maturation. Front Cell Dev Biol 2022; 10:814876. [PMID: 36204680 PMCID: PMC9531329 DOI: 10.3389/fcell.2022.814876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/30/2022] [Indexed: 01/24/2023] Open
Abstract
Cell lipids are differentially distributed in distinct organelles and within the leaflets of the bilayer. They can further form laterally defined sub-domains within membranes with important signaling functions. This molecular and spatial complexity offers optimal platforms for signaling with the associated challenge of dissecting these pathways especially that lipid metabolism tends to be highly interconnected. Lipid signaling has historically been implicated in gamete function, however the detailed signaling pathways involved remain obscure. In this review we focus on oocyte and sperm maturation in an effort to consolidate current knowledge of the role of lipid signaling and set the stage for future directions.
Collapse
Affiliation(s)
- Sherif Mostafa
- Medical Program, WCMQ, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Khaled Machaca,
| |
Collapse
|
3
|
Hernández-Coronado CG, Guzmán A, Castillo-Juárez H, Zamora-Gutiérrez D, Rosales-Torres AM. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. ANNALES D'ENDOCRINOLOGIE 2019; 80:263-272. [DOI: 10.1016/j.ando.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
|
4
|
Park KM, Wang JW, Yoo YM, Choi MJ, Hwang KC, Jeung EB, Jeong YW, Hwang WS. Sphingosine-1-phosphate (S1P) analog phytosphingosine-1-phosphate (P1P) improves the in vitro maturation efficiency of porcine oocytes via regulation of oxidative stress and apoptosis. Mol Reprod Dev 2019; 86:1705-1719. [PMID: 31490595 DOI: 10.1002/mrd.23264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Phytosphingosine-1-phosphate (P1P) is a signaling sphingolipid that regulates various physiological activities. However, little is known about the effect of P1P in the context of reproduction. Thus, we aimed to investigate the influence of P1P on oocyte maturation during porcine in vitro maturation (IVM). Here, we report the expression of S1PR1-3 among P1P receptors (S1PR1-4) in cumulus cells and oocytes. When P1P was administered at concentrations of 10, 50, 100, and 1,000 nM during IVM, the metaphase II rate was significantly increased in the 1,000 nM (1 μM) P1P treatment group. Maturation rate improvement by P1P supplementation was observed only in the presence of epidermal growth factor (EGF). Oocytes under the influence of P1P showed decreased intracellular reactive oxygen species levels but no significant differences in glutathione levels. In our molecular studies, P1P treatment upregulated gene expression involved in cumulus expansion (Has2 and EGF), antioxidant enzymes (SOD3 and Cat), and developmental competence (Oct4) while activating extracellular signal-regulated kinase1/2 and Akt signaling. P1P treatment also influenced oocyte survival by shifting the ratio of Bcl-2 to Bax while inactivating JNK signaling. We further demonstrated that oocytes matured with P1P displayed significantly higher developmental competence (cleavage and blastocyst [BL] formation rate) and greater BL quality (total cell number and the ratio of apoptotic cells) when activated via parthenogenetic activation (PA) and in vitro fertilization. Despite the low levels of endogenous P1P found in animals, exogenous P1P influenced animal reproduction, as shown by increased porcine oocyte maturation as well as preimplantation embryo development. This study and its findings are potentially relevant for both human and animal-assisted reproduction.
Collapse
Affiliation(s)
- Kyu-Mi Park
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Jae Woong Wang
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Yeong-Min Yoo
- Laboratory of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | - Kyu Chan Hwang
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yeon Woo Jeong
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| |
Collapse
|
5
|
Sengupta N, Reardon DC, Gerard PD, Baldwin WS. Exchange of polar lipids from adults to neonates in Daphnia magna: Perturbations in sphingomyelin allocation by dietary lipids and environmental toxicants. PLoS One 2017; 12:e0178131. [PMID: 28542405 PMCID: PMC5443554 DOI: 10.1371/journal.pone.0178131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Because xenosensing nuclear receptors are also lipid sensors that regulate lipid allocation, we hypothesized that toxicant-induced modulation of HR96 activity would alter lipid profiles and the balance between adult survival and neonate production following exposure in Daphnia magna. Adult daphnids were exposed to unsaturated fatty acid- and toxicant- activators or inhibitors of HR96 and later starved to test whether chemical exposure altered allocation toward survival or reproduction. The HR96 activators, linoleic acid and atrazine, decreased reproduction as expected with concomitant changes in the expression of HR96 regulated genes such as magro. The HR96 inhibitors, docosahexaenoic acid (DHA) and triclosan, increased reproduction or neonate starvation survival, respectively. However, pre-exposure to triclosan increased in neonate survival at the expense of reproductive maturation. Lipidomic analysis revealed that sphingomyelins (SM) are predominantly found in neonates and therefore we propose are important in development. DHA and triclosan increased neonatal SM, consistent with HR96’s regulation of Niemann-Pick genes. While DHA altered expression of magro, Niemann-Pick 1b, mannosidase, and other HR96-regulated genes as expected, triclosan primarily perturbed sphingomyelinase and mannosidase expression indicating different but potentially overlapping mechanisms for perturbing SM. Overall, SM appears to be a key lipid in Daphnia maturation and further support was provided by carmofur, which inhibits sphingomyelin/ceramide metabolism and in turn severely represses Daphnia maturation and initial brood production. In conclusion, toxicants can perturb lipid allocation and in turn impair development and reproduction.
Collapse
Affiliation(s)
- Namrata Sengupta
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States of America
| | - Delaney C. Reardon
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Patrick D. Gerard
- Mathematical Sciences, Clemson University, Clemson, SC, United States of America
| | - William S. Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States of America
- Biological Sciences, Clemson University, Clemson, SC, United States of America
- * E-mail:
| |
Collapse
|
6
|
Geng X, Guo L, Zeng W, Ma L, Ou X, Luo C, Quan S, Li H. Effects of sphingosine-1-phosphate on gene expression of two cell mouse embryos induced by C2-Ceramide. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2014. [DOI: 10.1016/j.mefs.2013.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Abstract
Sphingosine-1-phosphate (S1P) plays crucial roles in the regulation of cell growth, proliferation, differentiation, cell survival, migration, and angiogenesis. In the reproductive system, S1P protects mammalian germ cells from irradiation or chemotherapy-induced cell death in vivo and in vitro. Moreover, S1P could improve the survival rate of thawed ovary and transplanted ovary. Furthermore, S1P could improve the developmental potential of oocyte and preimplantation embryo. In conclusion, S1P plays important roles in reproduction.
Collapse
Affiliation(s)
- Lei Guo
- 1Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | |
Collapse
|
8
|
Sphingosine-1-phosphate inhibits ceramide-induced apoptosis during murine preimplantation embryonic development. Theriogenology 2013; 80:206-11. [DOI: 10.1016/j.theriogenology.2013.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/18/2022]
|