1
|
Fujiwara K, Yamamoto Y, Saita T, Matsufuji S. Metabolism and disposition of oseltamivir (OS) in rats, determined by immunohistochemistry with monospecific antibody for OS or its active metabolite oseltamivir carboxylate (OC): A possibility of transporters dividing the drugs' excretion into the bile and kidney. Pharmacol Res Perspect 2020; 8:e00597. [PMID: 32489006 PMCID: PMC7266928 DOI: 10.1002/prp2.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 01/19/2023] Open
Abstract
Among any drugs, no comparative pharmacological study on how prodrug and its active metabolite behave in animal bodies is available. Immunohistochemistry (IHCs) using newly prepared two monoclonal antibodies, AOS‐96 and AOC‐160, monospecific for oseltamivir (OS) and its metabolite oseltamivir carboxylate (OC) were developed, simultaneously detecting the uptake or excretion of OS and OC in the intestine, liver, and kidney of rats to which OS was orally administered. In the intestine, IHC for OS revealed OS highly distributed to the absorptive epithelia with heavily stained cytoplasmic small granules (CSGs). IHC for OC showed that OC also distributed highly in the epithelia, but without CSGs, suggesting that OS was partly converted to OC in the cells. In the liver, OS distributed in the hepatocytes and on their bile capillaries, as well as on the lumina from the bile capillaries to the interlobular bile ducts. OC distributed in the whole cell of the hepatocytes, but without CSGs nor on any lumina through the interlobular bile ducts. In the kidney, a few levels of OS distributed in the cytoplasm of almost all the renal tubule cells, but they contained numerous CSGs. In contrast, OC distributed highly in the proximal tubules, but very slightly in the lower renal tubules of the nephrons. Thus, it was concluded that the two drugs behave in completely different ways in rat bodies. This paper also discusses a possibility of the correlation of OS or OC levels in tissue cells with their known transporters.
Collapse
Affiliation(s)
- Kunio Fujiwara
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yutaro Yamamoto
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Tetsuya Saita
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Senya Matsufuji
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Ziemens A, Sonntag SR, Wulfmeyer VC, Edemir B, Bleich M, Himmerkus N. Claudin 19 Is Regulated by Extracellular Osmolality in Rat Kidney Inner Medullary Collecting Duct Cells. Int J Mol Sci 2019; 20:ijms20184401. [PMID: 31500238 PMCID: PMC6770061 DOI: 10.3390/ijms20184401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
The inner medullary collecting duct (IMCD) is subject to severe changes in ambient osmolality and must either allow water transport or be able to seal the lumen against a very high osmotic pressure. We postulate that the tight junction protein claudin-19 is expressed in IMCD and that it takes part in epithelial adaptation to changing osmolality at different functional states. Presence of claudin-19 in rat IMCD was investigated by Western blotting and immunofluorescence. Primary cell culture of rat IMCD cells on permeable filter supports was performed under different osmotic culture conditions and after stimulation by antidiuretic hormone (AVP). Electrogenic transepithelial transport properties were measured in Ussing chambers. IMCD cells cultivated at 300 mosm/kg showed high transepithelial resistance, a cation selective paracellular pathway and claudin-19 was mainly located in the tight junction. Treatment by AVP increased cation selectivity but did not alter transepithelial resistance or claudin-19 subcellular localization. In contrast, IMCD cells cultivated at 900 mosm/kg had low transepithelial resistance, anion selectivity, and claudin-19 was relocated from the tight junctions to intracellular vesicles. The data shows osmolality-dependent transformation of IMCD epithelium from tight and sodium-transporting to leaky, with claudin-19 expression in the tight junction associated to tightness and cation selectivity under low osmolality.
Collapse
Affiliation(s)
- Annalisa Ziemens
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| | - Svenja R Sonntag
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Vera C Wulfmeyer
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
- Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Bayram Edemir
- Department of Internal Medicine IV, Hematology and Oncology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Markus Bleich
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| |
Collapse
|
3
|
El-Bassossy HM, Hassanien MA, Bima A, Ghoneim FM, Elsamanoudy AZ. Renal Oxidative Stress and Inflammatory Response in Perinatal Cyclosporine-A Exposed Rat Progeny and its Relation to Gender. J Microsc Ultrastruct 2019; 7:44-49. [PMID: 31008055 PMCID: PMC6442325 DOI: 10.4103/jmau.jmau_52_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background and Aim of the Work: The current study postulated that cyclosporine A (CSA) could induce gender-specific renal damage. Hence, the current study aims to investigate the nephrotoxic effect of perinatal exposure of male and female rat progeny to CSA. Moreover, it aims to evaluate the oxidative stress and inflammation as a possible pathophysiologic mechanism. Materials and Methods: Female rats were randomly allocated to two groups of four and assigned to undergo either CSA (15 mg/kg/day; the 6th day after conception and continuing until the progeny were weaned) or vehicle treatment as control groups. At the age of 6 weeks, the progeny were divided into the following four groups: male progeny of control-group mothers (M-vehicle, 7); male progeny of CSA-treated mothers (M-CSA, 9); female progeny of control-group mothers (F-vehicle, 7); and female progeny of CSA-treated mothers (F-CSA, 6). Serum adiponectin, tumor necrosis factor-α (TNF-α) and creatinine, creatinine clearance, and urinary 8-isoprostane were measured. Histopathological examination by hematoxylin and eosin stain of Kidney was carried out. Results: Proteinuria and decreased creatinine clearance are significant in M-CSA than M-vehicle and F-CSA. 8-isoprostane is lower in F-CSA than F-vehicle. Increased TNF-α and decreased adiponectin levels in M-CSA than M-vehicle were observed. No significant differences were found in female rat groups. Conclusion: From the current study, it could be concluded that CSA could induce renal inflammation as well as oxidative stress that may explain the impaired renal function. The sex difference was a prominent finding in their vulnerability to CSA effects.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohammed A Hassanien
- Assessment Centre and Medical Education Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.,Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Abdulhadi Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma M Ghoneim
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman Zaky Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Schenk LK, Buchholz B, Henke SF, Michgehl U, Daniel C, Amann K, Kunzelmann K, Pavenstädt H. Nephron-specific knockout of TMEM16A leads to reduced number of glomeruli and albuminuria. Am J Physiol Renal Physiol 2018; 315:F1777-F1786. [PMID: 30156115 DOI: 10.1152/ajprenal.00638.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TMEM16A is a transmembrane protein from a conserved family of calcium-activated proteins that is highly expressed in the kidney. TMEM16A confers calcium-activated chloride channel activity, which is of importance for various cellular functions in secretory epithelia and involved in secretion-dependent renal cyst growth. However, its specific function in renal physiology has remained elusive so far. Therefore, we generated conditional nephron-specific TMEM16A-knockout mice and found that these animals suffered from albuminuria. Kidney histology demonstrated an intact corticomedullary differentiation and absence of cysts. Electron microscopy showed a normal slit diaphragm. However, the total number of glomeruli and total nephron count was decreased in TMEM16A-knockout animals. At the same time, glomerular diameter was increased, presumably as a result of the hyperfiltration in the remaining glomeruli. TUNEL and PCNA stainings showed increased cell death and increased proliferation. Proximal tubular cilia were intact in young animals, but the number of properly ciliated cells was decreased in older, albuminuric animals. Taken together, our data suggest that TMEM16A may be involved in ureteric bud branching and proper nephron endowment. Loss of TMEM16A resulted in reduced nephron number and, subsequently, albuminuria and tubular damage.
Collapse
Affiliation(s)
- Laura K Schenk
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Sebastian F Henke
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Ulf Michgehl
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Christoph Daniel
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Kerstin Amann
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg , Regensburg Germany
| | | |
Collapse
|
5
|
Scholpa NE, Schnellmann RG. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. J Pharmacol Exp Ther 2017; 363:303-313. [PMID: 28935700 PMCID: PMC5676296 DOI: 10.1124/jpet.117.244806] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
6
|
Schulze Blasum B, Schröter R, Neugebauer U, Hofschröer V, Pavenstädt H, Ciarimboli G, Schlatter E, Edemir B. The kidney-specific expression of genes can be modulated by the extracellular osmolality. FASEB J 2016; 30:3588-3597. [PMID: 27464968 DOI: 10.1096/fj.201600319r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
Abstract
With this study, we wanted to prove the hypothesis that the unique extracellular osmolality within the renal medulla modulates a specific gene expression pattern. The physiologic functions of the kidneys are mediated by the segment-specific expression of key proteins. So far, we have limited knowledge about the mechanisms that control this gene expression pattern. The hyperosmolality in the renal medullary interstitium is of major importance as a driving force for urine concentration. We made use of primarily cultured rat renal inner medullary collecting-duct cells and microarray analysis to identify genes affected by the environmental osmolality of the culture medium. We identified hundreds of genes that were either induced or repressed in expression by hyperosmolality in a time- and osmolality-dependent fashion. Further analysis demonstrated that many of them, physiologically, showed a kidney- and even collecting-duct-specific expression, including secreted proteins, kinases, and transcription factors. On the other hand, we identified factors, down-regulated in expression, that have a diuretic effect. In conclusion, the kidney is the only organ that has such a hyperosmotic environment, and study provides an excellent method for controlling tissue-specific gene expression.-Schulze Blasum, B., Schröter, R., Neugebauer, U., Hofschröer, V., Pavenstädt, H., Ciarimboli, G., Schlatter E., Edemir, B. The kidney-specific expression of genes can be modulated by the extracellular osmolality.
Collapse
Affiliation(s)
- Britta Schulze Blasum
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Rita Schröter
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Ute Neugebauer
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Verena Hofschröer
- Institute of Physiology II, University of Münster, Münster, Germany; and
| | - Hermann Pavenstädt
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Guiliano Ciarimboli
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Eberhard Schlatter
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Bayram Edemir
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany; Faculty of Medicine, Department of Hematology and Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Effects of cadmium chloride on mouse inner medullary collecting duct cells. Interdiscip Toxicol 2014; 6:157-8. [PMID: 24678254 PMCID: PMC3967443 DOI: 10.2478/intox-2013-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/10/2013] [Accepted: 08/17/2013] [Indexed: 11/26/2022] Open
Abstract
Cadmium is a known renal toxin. The cytotoxic effect of cadmium chloride (CdCl2) was evaluated on renal inner medullary collecting duct cells (mIMCD3). The 24 hr LC50 value for CdCl2 in mIMCD3 cells was 40 µM. The present study showed that mIMCD3 cells were sensitive to CdCl2 exposure.
Collapse
|
8
|
Liu BC, Song X, Lu XY, Fang CZ, Wei SP, Alli AA, Eaton DC, Shen BZ, Li XQ, Ma HP. Lovastatin attenuates effects of cyclosporine A on tight junctions and apoptosis in cultured cortical collecting duct principal cells. Am J Physiol Renal Physiol 2013; 305:F304-13. [PMID: 23720343 DOI: 10.1152/ajprenal.00074.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We used mouse cortical collecting duct principal cells (mpkCCDc14 cell line) as a model to determine whether statins reduce the harmful effects of cyclosporine A (CsA) on the distal nephron. The data showed that treatment of cells with CsA increased transepithelial resistance and that the effect of CsA was abolished by lovastatin. Scanning ion conductance microscopy showed that CsA significantly increased the height of cellular protrusions near tight junctions. In contrast, lovastatin eliminated the protrusions and even caused a modest depression between cells. Western blot analysis and confocal microscopy showed that lovastatin also abolished CsA-induced elevation of both zonula occludens-1 and cholesterol in tight junctions. In contrast, a high concentration of CsA induced apoptosis, which was also attenuated by lovastatin, elevated intracellular ROS via activation of NADPH oxidase, and increased the expression of p47phox. Sustained treatment of cells with lovastatin also induced significant apoptosis, which was attenuated by CsA, but did not elevate intracellular ROS. These results indicate that both CsA and lovastatin are harmful to principal cells of the distal tubule, but via ROS-dependent and ROS-independent apoptotic pathways, respectively, and that they counteract probably via mobilization of cellular cholesterol levels.
Collapse
Affiliation(s)
- Bing-Chen Liu
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Different effects of CsA and FK506 on aquaporin-2 abundance in rat primary cultured collecting duct cells. Pflugers Arch 2011; 462:611-22. [PMID: 21773745 DOI: 10.1007/s00424-011-0994-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Calcineurin (Cn) inhibitors (CnI) such as cyclosporine A (CsA) and FK506 are nephrotoxic immunosuppressant drugs, which decrease tubular function. Here, we examined the direct effect of CnI on aquaporin-2 (AQP2) expression in rat primary cultured inner medullary collecting duct cells. CsA (0.5-5 μM) but not FK 506 (0.01-1 μM) decreased expression of AQP2 protein and messenger RNA (mRNA) in a concentration and time dependent manner, without affecting mRNA stability. This effect was observed despite similar inhibition of Cn activity by both CnI, thereby suggesting that the CsA-dependent decrease in AQP2 expression was Cn independent. Another inhibitor of cyclophilin A, the primary intracellular target of CsA, had no effect on AQP2 expression. In order to investigate the mechanism of decreased AQP2 transcription, we studied activation status of two suggested transcriptional regulators of AQP2, cAMP-responsive element binding protein (CREB), and tonicity enhancer binding protein (TonEBP). Localization of TonEBP, as well as TonEBP-mediated gene transcription, was not affected by CsA. Phosphorylation of CREB at an activating phosphorylation site (S133) was decreased by CsA, but not by FK506. However, both CnI did not affect cellular cAMP levels. We show that CsA decreases transcription of AQP2, a process that is in part independent of Cn or cyclophilin A and suggests dependence on decreased activity of CREB.
Collapse
|