1
|
Ozkan HS, Kayikcioglu M. Atherosclerosis associated with Chlamydia pneumoniae: Dissecting the etiology. EUROPEAN ATHEROSCLEROSIS JOURNAL 2024; 3:30-37. [DOI: 10.56095/eaj.v3i2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Chlamydia pneumoniae related infections and atherosclerosis are both common entities. Today, the literature presents an enormous amount of data regarding the role of C. pneumoniae in the development and sustainment of atherosclerosis and allowing us to comprehend the molecular mechanisms behind better. The implications of C. pneumoniae in atherogenesis include altered platelet function, hypercoagulability, macrophage dysfunction, vascular smooth muscle proliferation, and increased neutrophilic migration. Therefore, it would not be wrong to implicate that, C. pneumoniae plays important roles in almost every stage of atherogenesis. Furthermore, various serological markers suggestive of active or past C. pneumoniae infection are known to be associated with multiple clinical presentations, such as abdominal aortic aneurysms, subclinical atherosclerosis in the young individuals, aggravated atherosclerosis in heterozygous familial hypercholesterolemia. This review, as a result, aims to provide detailed insights into the pathophysiological mechanisms of atherogenesis associated with C. pneumoniae and its clinical implications.
Collapse
Affiliation(s)
| | - Meral Kayikcioglu
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
2
|
Huang N, Shaik-Dasthagirisaheb YB, LaValley MP, Gibson FC. Liver X receptors contribute to periodontal pathogen-elicited inflammation and oral bone loss. Mol Oral Microbiol 2015; 30:438-50. [PMID: 25946408 DOI: 10.1111/omi.12103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/29/2022]
Abstract
Periodontal diseases are chronic oral inflammatory diseases that are polymicrobial in nature. The presence of specific bacteria in subgingival plaque such as Porphyromonas gingivalis is associated with microbial dysbiosis and the modulation of host immune response. Bacterially elicited innate immune activation and inflammation are key elements implicated in the destruction of soft and hard tissues supporting the teeth. Liver X receptors (LXRs) are nuclear hormone receptors with important function in lipid homeostasis, inflammation, and host response to infection; however, their contribution to chronic inflammatory diseases such as periodontal disease is not understood. The aim of this study was to define the contribution of LXRs in the development of immune response to P. gingivalis and to assess the roles that LXRs play in infection-elicited oral bone loss. Employing macrophages, we observed that P. gingivalis challenge led to reduced LXRα and LXRβ gene expression compared with that observed with unchallenged wild-type cells. Myeloid differentiation primary response gene 88 (MyD88)-independent, Toll/interleukin-1 receptor-domain-containing adapter-inducing interferon-β (TRIF)-dependent signaling affected P. gingivalis-mediated reduction in LXRα expression, whereas neither pathway influenced the P. gingivalis effect on LXRβ expression. Employing LXR agonist and mice deficient in LXRs, we observed functional effects of LXRs in the development of a P. gingivalis-elicited cytokine response at the level of the macrophage, and participation of LXRs in P. gingivalis-elicited oral bone loss. These findings identify novel importance for LXRs in the pathogenesis of P. gingivalis infection-elicited inflammation and oral bone loss.
Collapse
Affiliation(s)
- N Huang
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Y B Shaik-Dasthagirisaheb
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - M P LaValley
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - F C Gibson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Rojas J, Salazar J, Martínez MS, Palmar J, Bautista J, Chávez-Castillo M, Gómez A, Bermúdez V. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis. SCIENTIFICA 2015; 2015:851252. [PMID: 26491604 PMCID: PMC4600540 DOI: 10.1155/2015/851252] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/09/2015] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease (CVD) is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD.
Collapse
Affiliation(s)
- Joselyn Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
- Endocrinology Department, Maracaibo University Hospital, Maracaibo 4004, Venezuela
- *Joselyn Rojas:
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Jim Palmar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Alexis Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| |
Collapse
|
4
|
Mahajan S, Saini A, Kalra R, Gupta P. Frienemies of infection: A chronic case of host nuclear receptors acting as cohorts or combatants of infection. Crit Rev Microbiol 2014; 42:526-34. [PMID: 25358058 DOI: 10.3109/1040841x.2014.970122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages and dendritic cells provide critical effector functions to efficiently resist and promptly eliminate infection. Pattern recognition receptors signaling operative in these cell types is imperative for their innate properties. However, it is now emerging that besides these conventional signaling pathways, nuclear receptors coupled gene regulation and transrepression pathways assemble immune regulatory networks. A couple of these networks associated with members of nuclear receptor superfamily decide heterogeneity in macrophages and dendritic cells population and thereby play decisive role in determining protective immunity against bacteria, viruses, fungi, protozoa and helminths. Pathogens also direct shift in the expression of nuclear receptors and their target genes and this is proclaimed to be a sui generis mechanism whereby microbes disconnect the genomic component from the peripheral immune response. Many endogenous and synthetic nuclear receptor ligands have been tested in various in vitro and in vivo infection models to study their effect on pathogen burden. Here, we discuss current advances in our understanding of the composite interactions between nuclear receptor and pathogens and their implications on the causatum infectious diseases.
Collapse
Affiliation(s)
- Sahil Mahajan
- a Department of Molecular Biology , CSIR Institute of Microbial Technology , Chandigarh , India
| | - Ankita Saini
- a Department of Molecular Biology , CSIR Institute of Microbial Technology , Chandigarh , India
| | - Rashi Kalra
- a Department of Molecular Biology , CSIR Institute of Microbial Technology , Chandigarh , India
| | - Pawan Gupta
- a Department of Molecular Biology , CSIR Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|