1
|
Hu Y, Li Y, Luo Y, Wang N, Zheng Y. Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1): A Potential Therapeutic Target in Ischemic Stroke. Transl Stroke Res 2024. [DOI: 10.1007/s12975-024-01307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 01/03/2025]
|
2
|
Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem 2024; 479:2245-2254. [PMID: 37789136 DOI: 10.1007/s11010-023-04859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Atherosclerosis is one of the major causes of cerebral infarction and many other ischemic cardio-cerebrovascular diseases. Although large randomized clinical trials have highlighted the impressive benefits of lipid-lowering therapies, the 50-70% of patients who have achieved their lipid-lowering goal remain at high cardiovascular disease risk. For this reason, there is a need to investigate other markers of atherosclerosis progression. LOX-1 is a scavenger receptor that accepts oxidized low-density lipoproteins as major ligand and internalizes it by endocytosis favoring its retention in subendothelial layer and triggering a wide variety of proatherogenic events. However, other factors such as cytokines, shear stress, and advanced glycation end-products can upregulate LOX-1. LOX-1 is encoded by the OLR1 gene, located in the p12.3-p13 region of chromosome 12. OLR1 gene has different isoforms induced by splicing, or single-nucleotide polymorphisms (SNPs). According to some authors, the expression of these isoforms induces a different effect on atherosclerosis and cardiovascular disease. In particular, LOXIN, an isoform lacking part of the functional domain, exerts an important role in atherosclerosis protection. In other cases, studies on SNPs showed an association with more severe forms, like in the case of 3'UTR polymorphisms. The knowledge of these variants can give rise to the development of new preventive therapies and can lead to the identification of subjects at greater risk of cardiovascular event. In this review, we reported the state of the art regarding SNPs with known effects on OLR1 splicing and how LOX-1 variants modulate the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Valter Lubrano
- Fondazione CNR/Regione Toscana G. Monasterio, Via Moruzzi 1, 56124, Pisa, Italy.
| | - Silvana Balzan
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Angela Papa
- Fondazione CNR/Regione Toscana G. Monasterio, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
3
|
Salehipour P, Rezagholizadeh F, Mahdiannasser M, Kazerani R, Modarressi MH. Association of OLR1 gene polymorphisms with the risk of coronary artery disease: A systematic review and meta-analysis. Heart Lung 2021; 50:334-343. [PMID: 33524863 DOI: 10.1016/j.hrtlng.2021.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxidized LDL receptor 1 (OLR1) encodes LOX-1, LOXIN, and OLR1D4 transcript variants. Up-regulation of LOX-1 and down-regulation of LOXIN have an essential role in causing coronary artery disease (CAD). Discovery of risk single nucleotide polymorphisms (SNPs) in OLR1 gene is clinically important as these polymorphisms could be candidate biomarkers of CAD. OBJECTIVES The purpose of this study is quantitative evidence synthesis on how OLR1 polymorphisms in the haplotype block impact the risk of CAD. METHODS First, a systematic keyword-based search in PubMed, Web of Science, and Scopus was conducted. After data extraction, pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for OLR1 polymorphisms and CAD. Twelve case-control studies, including 6,238 cases and 15,773 controls, were concluded in the meta-analysis. RESULTS Our findings demonstrate significant association of OLR1 polymorphisms in the haplotype block with CAD risk in all genetic models (allelic model: OR = 1.19, 95%CI = 1.06-1.34; additive model: OR = 1.54, 95%CI = 1.16-2.05; recessive model: OR = 1.26, 95%CI = 1.04-1.53; dominant model: OR = 1.28, 95%CI = 1.09-1.51). Subgroup analysis based on the type of polymorphism revealed that rs1050283 (3'UTR*188 C > T) and rs3736235 (IVS4-14 A > G) are more significantly associated with the risk of CAD compared to other polymorphisms in the haplotype block. CONCLUSIONS We found a significant association between OLR1 polymorphisms in the haplotype block, especially rs1050283 and rs3736235, with CAD. We also suggest that precise determination of disease association with polymorphisms in a haplotype requires investigation of all SNPs rather than a single SNP in that specific haplotype.
Collapse
Affiliation(s)
- Pouya Salehipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rezagholizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mahdiannasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihane Kazerani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
4
|
Dadachanji R, Patil A, Mukherjee S. Investigating oxidized LDL receptor 1 (OLR1) polymorphisms as putative genetic markers for polycystic ovary syndrome. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Jin P, Cong S. LOX-1 and atherosclerotic-related diseases. Clin Chim Acta 2019; 491:24-29. [PMID: 30639239 DOI: 10.1016/j.cca.2019.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/30/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a scavenger receptor of oxidized low-density lipoprotein (ox-LDL) found in various cells, plays a crucial role in the formation and progression of atherosclerotic plaques. Animal studies have suggested that LOX-1 mediates the balance between internalization and degeneration of endothelial cells, thereby contributing to various steps in the atherosclerotic process, from initiation to plaque rupture. Under pathological conditions, the extracellular domain of membrane bound LOX-1 can be largely proteolytically cleaved into a soluble form (sLOX-1), which is proportional and linked to the LOX-1 expression level. Circulating levels of sLOX-1 are regarded as a risk biomarker for plaque rupture and acute coronary syndrome (ACS). Recently, studies have shown that sLOX-1 is also elevated in patients with acute stroke and can be a predictive biomarker for acute stroke. With the discovery of the vital role of LOX-1 in atherosclerosis, there is growing focus on the influence of LOX-1 in atherosclerotic-related diseases, including coronary arterial disease(CAD), stroke, and other cardiovascular events. Genetic polymorphisms of LOX-1 have been investigated and have been found to modulate the risk of these diseases. Most polymorphisms have been found to be risk factors, except for the splicing isoform LOXIN. This review concludes with a discussion of the potential future applications of LOX-1 for atherosclerotic-related diseases.
Collapse
Affiliation(s)
- Pingfei Jin
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
6
|
Lubrano V, Balzan S. LOX-1, a new marker of risk and prognosis in coronary artery disease? Mol Cell Biochem 2013; 383:223-30. [PMID: 23934117 DOI: 10.1007/s11010-013-1770-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/02/2013] [Indexed: 01/18/2023]
Abstract
The development of atherosclerosis is caused by the accumulation of lipid, inflammatory cytokine production, and the large amount of inflammatory cells in the arterial wall. It is now established that the presence of oxidized low-density lipoproteins (ox-LDL) has an important role in the pathogenesis of the disease. There are many scavenger receptors for ox-LDL, among which LOX-1 seems to be important for the induction of endothelial dysfunction and the other subsequent events that lead to the formation of atheromatous plaque. Our findings indicate the presence of a regulatory role induced by the presence of ox-LDL on LOX-1 through the amplification of IL-6 synthesis. This mechanism contributes to the upregulation of the ORL-1 gene expression in presence of risk factors. Many authors have shown the possibility to use LOX-1 as a good marker for the diagnosis and prognosis of coronary artery disease because it is easy to measure and more sensitive than other markers commonly used in the routine of laboratory medicine.
Collapse
Affiliation(s)
- Valter Lubrano
- Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi n° 1, 56100, Pisa, Italy,
| | | |
Collapse
|
7
|
Predazzi IM, Rokas A, Deinard A, Schnetz-Boutaud N, Williams ND, Bush WS, Tacconelli A, Friedrich K, Fazio S, Novelli G, Haines JL, Sirugo G, Williams SM. Putting pleiotropy and selection into context defines a new paradigm for interpreting genetic data. CIRCULATION. CARDIOVASCULAR GENETICS 2013; 6:299-307. [PMID: 23616601 PMCID: PMC3889706 DOI: 10.1161/circgenetics.113.000126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Natural selection shapes many human genes, including some related to complex diseases. Understanding how selection affects genes, especially pleiotropic ones, may be important in evaluating disease associations and the role played by environmental variation. This may be of particular interest for genes with antagonistic roles that cause divergent patterns of selection. The lectin-like low-density lipoprotein 1 receptor, encoded by OLR1, is exemplary. It has antagonistic functions in the cardiovascular and immune systems because the same protein domain binds oxidized low-density lipoprotein and bacterial cell wall proteins, the former contributing to atherosclerosis and the latter presumably protecting from infection. We studied patterns of selection in this gene, in humans and nonhuman primates, to determine whether variable selection can lead to conflicting results in cardiovascular disease association studies. METHODS AND RESULTS We analyzed sequences from 11 nonhuman primate species, as well as single-nucleotide polymorphisms and sequence data from multiple human populations. Results indicate that the derived allele is favored across primate lineages (probably because of recent positive selection). However, both the derived and ancestral alleles were maintained in human populations, especially European ones (possibly because of balancing selection derived from dual roles of LOX-1). Balancing selection likely reflects response to diverse environmental pressures among humans. CONCLUSIONS These data indicate that differential selection patterns, within and between species, in OLR1 render association studies difficult to replicate even if the gene is etiologically connected to cardiovascular disease. Selection analyses can identify genes exhibiting gene-environment interactions critical for unraveling disease association.
Collapse
Affiliation(s)
- Irene M. Predazzi
- Division of Cardiovascular Medicine, Section of Cardiovascular Disease Prevention, Vanderbilt University Medical Center
- Center for Human Genetics Research, Vanderbilt University Medical Center
| | - Antonis Rokas
- Center for Human Genetics Research, Vanderbilt University Medical Center
- Dept of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Amos Deinard
- Dept of Anthropology, Visiting Scholar, University of Minnesota, MN
| | | | | | - William S. Bush
- Center for Human Genetics Research, Vanderbilt University Medical Center
| | | | | | - Sergio Fazio
- Division of Cardiovascular Medicine, Section of Cardiovascular Disease Prevention, Vanderbilt University Medical Center
| | - Giuseppe Novelli
- Centro di Ricerca, Ospedale San Pietro FBF
- National Agency for Evaluation of Universities and Research, ANVUR, Rome, Italy
| | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University Medical Center
| | | | - Scott M. Williams
- Center for Human Genetics Research, Vanderbilt University Medical Center
- Dept of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| |
Collapse
|
8
|
Peng P, Lian J, Huang RS, Xu L, Huang Y, Ba Y, Yang X, Huang X, Dong C, Zhang L, Ye M, Zhou J, Duan S. Meta-analyses of KIF6 Trp719Arg in coronary heart disease and statin therapeutic effect. PLoS One 2012; 7:e50126. [PMID: 23236363 PMCID: PMC3517591 DOI: 10.1371/journal.pone.0050126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/16/2012] [Indexed: 01/08/2023] Open
Abstract
Aims The goal of our study is to assess the contribution of KIF6 Trp719Arg to both the risk of CHD and the efficacy of statin therapy in CHD patients. Methods and Results Meta-analysis of 8 prospective studies among 77,400 Caucasians provides evidence that 719Arg increases the risk of CHD (P<0.001, HR = 1.27, 95% CI = 1.15–1.41). However, another meta-analysis of 7 case-control studies among 65,200 individuals fails to find a significant relationship between Trp719Arg and the risk of CHD (P = 0.642, OR = 1.02, 95% CI = 0.95–1.08). This suggests that the contribution of Trp719Arg to CHD varies in different ethnic groups. Additional meta-analysis also shows that statin therapy only benefit the vascular patients carry 719Arg allele (P<0.001, relative ratio (RR) = 0.60, 95% CI = 0.54–0.67). To examine the role of this genetic variant in CHD risk in Han Chinese, we have conducted a case-control study with 289 CHD cases, 193 non-CHD controls, and 329 unrelated healthy volunteers as healthy controls. On post hoc analysis, significant allele frequency difference of 719Arg is observed between female CHD cases and female total controls under the dominant model (P = 0.04, χ2 = 4.228, df = 1, odd ratio (OR) = 1.979, 95% confidence interval (CI) = 1.023–3.828). Similar trends are observed for post hoc analysis between female CHD cases and female healthy controls (dominant model: P = 0.04, χ2 = 4.231, df = 1, OR = 2.015, 95% CI = 1.024–3.964). Non-genetic CHD risk factors are not controlled in these analyses. Conclusions Our meta-analysis demonstrates the role of Trp719Arg of KIF6 gene in the risk of CHD in Caucasians. The meta-analysis also suggests the role of this variant in statin therapeutic response in vascular diseases. Our case-control study suggests that Trp719Arg of KIF6 gene is associated with CHD in female Han Chinese through a post hoc analysis.
Collapse
Affiliation(s)
- Ping Peng
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jiangfang Lian
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - R. Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Limin Xu
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yanna Ba
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xi Yang
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoyan Huang
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Changzhen Dong
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Lina Zhang
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Meng Ye
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jianqing Zhou
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (JZ); (SD)
| | - Shiwei Duan
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (JZ); (SD)
| |
Collapse
|
9
|
Predazzi IM, Norata GD, Vecchione L, Garlaschelli K, Amati F, Grigore L, Cutuli L, Pirillo A, Tramontana S, Romeo F, Novelli G, Catapano AL. Association between OLR1 K167N SNP and intima media thickness of the common carotid artery in the general population. PLoS One 2012; 7:e31086. [PMID: 22347434 PMCID: PMC3276570 DOI: 10.1371/journal.pone.0031086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/02/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The lectin-like oxidised LDL receptor-1 (OLR1) gene encodes a scavenger receptor implicated in the pathogenesis of atherosclerosis. Although functional roles have been suggested for two variants, epidemiological studies on OLR1 have been inconsistent. METHODS We tested the association between the non-synonymous substitution K167N (rs11053646) and intima media thickness of the common carotid artery (CCA-IMT) in 2,141 samples from the Progression of Lesions in the Intima of the Carotid (PLIC) study (a prospective population-based study). RESULTS Significantly increased IMT was observed in male carriers of the minor C (N) allele compared to GC and GG (KN and KK) genotype. Functional analysis on macrophages suggested a decreased association to Ox-LDL in NN carriers compared to KN and KK carriers which is also associated with a reduced OLR1 mRNA expression. Macrophages from NN carriers present also a specific inflammatory gene expression pattern compared to cells from KN and KK carriers. CONCLUSIONS These data suggest that the 167N variant of LOX-1 receptor affects the atherogenic process in the carotid artery prior to evidence of disease through an inflammatory process.
Collapse
Affiliation(s)
- Irene Marta Predazzi
- Department of Biopathology and Diagnostic Imaging, Section of Medical Genetics, School of Medicine, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Indermuehle A, Crake T, Meier P. Oxidized Low-Density Lipoprotein Cholesterol and Coronary Artery Disease. Cardiology 2011; 119:106-7. [DOI: 10.1159/000330939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2011] [Indexed: 11/19/2022]
|