1
|
Tombulturk FK, Soydas T, Kanigur-Sultuybek G. Metformin as a Modulator of Autophagy and Hypoxia Responses in the Enhancement of Wound Healing in Diabetic Rats. Inflammation 2024:10.1007/s10753-024-02129-9. [PMID: 39186177 DOI: 10.1007/s10753-024-02129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying delayed wound repair in diabetes involve dysregulation of key cellular processes, including autophagy and hypoxia response pathways. Herein, we investigated the role of topical metformin, an established anti-diabetic drug with potential autophagy-inducing properties, in improving wound healing outcomes under hypoxic conditions. Full-thickness skin wounds were created in streptozotocin-induced diabetic rats, and tissue samples were collected at regular intervals for molecular and histological analysis. The expression levels of autophagy markers LC3B and Beclin-1 were evaluated via immunohistochemistry and qRT-PCR, while the amount of AMP-activated protein kinase (AMPK) and hypoxia-inducible factor-1α (HIF-1α) were determined via ELISA. Our results demonstrated that metformin administration resulted in the upregulation of LC3B and Beclin-1 in the wound bed, suggesting induction of autophagy in response to the treatment. Mechanistically, metformin treatment also led to the increased amount of AMPK, a critical regulator of cellular energy homeostasis, and a subsequent reduction in HIF-1α amount under hypoxic conditions. In conclusion, our findings demonstrate that metformin promotes wound healing in diabetes mellitus by enhancing autophagy through AMPK activation and modulating HIF-1α amount in a hypoxic microenvironment. This study offers a new therapeutic approach by shedding light on the potential benefits of metformin as adjunctive therapy in diabetic wound management.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Türkiye.
| | - Tugba Soydas
- Department of Medical Biology and Genetics, Medical Faculty, Istanbul Aydin University, Istanbul, Türkiye
| | - Gönül Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
2
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Nolêto IR, Iles B, Alencar MS, Lopes AL, Oliveira AP, Pacheco G, Sousa FB, Araújo AR, Alves EH, Vasconcelos DF, Leal LKA, Araújo AJ, Filho JDB, Medeiros JVR. Alendronate-induced gastric damage in normoglycemic and hyperglycemic rats is reversed by metformin. Eur J Pharmacol 2019; 856:172410. [DOI: 10.1016/j.ejphar.2019.172410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
|
4
|
de Araújo S, Oliveira AP, Sousa FBM, Souza LKM, Pacheco G, Filgueiras MC, Nicolau LAD, Brito GAC, Cerqueira GS, Silva RO, Souza MHLP, Medeiros JVR. AMPK activation promotes gastroprotection through mutual interaction with the gaseous mediators H 2S, NO, and CO. Nitric Oxide 2018; 78:60-71. [PMID: 29857061 DOI: 10.1016/j.niox.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Activation of 5' adenosine monophosphate-activated protein kinase (AMPK) stimulates production of the gaseous mediators nitric oxide (NO) and carbon monoxide (CO), which are involved in mucosal defense and gastroprotection. As AMPK itself has gastroprotective effects against several gastric ulcer etiologies, in the present study, we aimed to elucidate whether AMPK may also prevent ethanol-induced injury and play a key role in the associated gastroprotection mediated by hydrogen sulfide (H2S), NO, and CO. Mice were pretreated with AICAR (20 mg/kg, an AMPK activator) alone or with 50% ethanol. Other groups were pretreated with respective gaseous mediator inhibitors PAG, l-NAME, or ZnPP IX 30 min prior to AICAR, or with gaseous mediator donors NaHS, Lawesson's reagent and l-cysteine (H2S), SNP, l-Arginine (NO), Hemin, or CORM-2 (CO) 30 min prior to ethanol with or without compound C (10 mg/kg, a non-selective AMPK inhibitor). H2S, nitrate/nitrite (NO3-/NO2-), bilirubin levels, GSH and MDA concentration were evaluated in the gastric mucosa. The gastric mucosa was also collected for histopathological analysis and AMPK expression assessment by immunohistochemistry. Pretreatment with AICAR attenuated the ethanol-induced injury and increased H2S and bilirubin levels but not NO3-/NO2- levels in the gastric mucosa. In addition, inhibition of H2S, NO, or CO synthesis exacerbated the ethanol-induced gastric damage and inhibited the gastroprotection by AICAR. Pretreatment with compound C reversed the gastroprotective effect of NaHS, Lawesson's reagent, l-cysteine, SNP, l-Arginine, CORM-2, or Hemin. Compound C also reversed the effect of NaHS on H2S production, SNP on NO3-/NO2- levels, and Hemin on bilirubin levels. Immunohistochemistry revealed that AMPK is present at basal levels mainly in the gastric mucosa cells, and was increased by pretreatment with NaHS, SNP, and CORM-2. In conclusion, our findings indicate that AMPK activation exerts gastroprotection against ethanol-induced gastric damage and mutually interacts with H2S, NO, or CO to facilitate this process.
Collapse
Affiliation(s)
- Simone de Araújo
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Luan K M Souza
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Marcelo C Filgueiras
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Lucas A D Nicolau
- Departments of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gerly Anne C Brito
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, Fortaleza, Ceará, Brazil
| | - Gilberto S Cerqueira
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, Fortaleza, Ceará, Brazil
| | - Renan O Silva
- Departments of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcellus H L P Souza
- Departments of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jand Venes R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil.
| |
Collapse
|
5
|
Zhao P, Sui BD, Liu N, Lv YJ, Zheng CX, Lu YB, Huang WT, Zhou CH, Chen J, Pang DL, Fei DD, Xuan K, Hu CH, Jin Y. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 2017; 16:1083-1093. [PMID: 28677234 PMCID: PMC5595695 DOI: 10.1111/acel.12635] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate-activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age-related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti-aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR-based anti-aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects.
Collapse
Affiliation(s)
- Pan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Nu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Department of Periodontology; Stomatological Hospital; Zunyi Medical College; Zunyi Guizhou 563003 China
| | - Ya-Jie Lv
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Department of Dermatology; Tangdu Hospital; Fourth Military Medical University; Xi'an Shaanxi 710069 China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Yong-Bo Lu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Wen-Tao Huang
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Cui-Hong Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Dan-Lin Pang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Dong-Dong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| |
Collapse
|
6
|
Lee S, Jeong S, Kim W, Kim D, Yang Y, Yoon JH, Kim BJ, Min DS, Jung Y. Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5'-AMP-activated protein kinase. Biochem Biophys Res Commun 2017; 483:449-455. [PMID: 28011266 DOI: 10.1016/j.bbrc.2016.12.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers.
Collapse
Affiliation(s)
- Sunyoung Lee
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Dohoon Kim
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Yejin Yang
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Jeong-Hyun Yoon
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Byung Joo Kim
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea.
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea.
| |
Collapse
|
7
|
Gejjalagere Honnappa C, Mazhuvancherry Kesavan U. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target. Int J Immunopathol Pharmacol 2016; 29:562-571. [PMID: 27707958 DOI: 10.1177/0394632016673369] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology.
Collapse
|
8
|
Tseng CH. Metformin reduces gastric cancer risk in patients with type 2 diabetes mellitus. Aging (Albany NY) 2016; 8:1636-1649. [PMID: 27587088 PMCID: PMC5032687 DOI: 10.18632/aging.101019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/19/2016] [Indexed: 04/15/2023]
Abstract
This retrospective cohort study investigated whether metformin may reduce gastric cancer risk by using the reimbursement databases of the Taiwan's National Health Insurance. Patients with type 2 diabetes diagnosed during 1999-2005 and newly treated with metformin (n=287971, "ever users of metformin") or other antidiabetic drugs (n=16217, "never users of metformin") were followed until December 31, 2011. The effect of metformin (for ever versus never users, and for tertiles of cumulative duration of therapy) was estimated by Cox regression incorporated with the inverse probability of treatment weighting using propensity score. Results showed that the respective numbers of incident gastric cancer in ever and never users were 759 (0.26%) and 89 (0.55%), with respective incidences of 55.26 and 122.53 per 100,000 person-years. The overall hazard ratio (95% confidence intervals) of 0.448 (0.359-0.558) suggested a significantly lower risk among ever users. In tertile analyses, hazard ratios (95% confidence intervals) for the first (<21.47 months), second (21.47-45.97 months) and third (>45.97 months) tertile of cumulative duration was 0.973 (0.773-1.224), 0.422 (0.331-0.537) and 0.120 (0.090-0.161), respectively, while compared to never users. In conclusion, metformin significantly reduces gastric cancer risk, especially when the cumulative duration is more than approximately 2 years.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
9
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|