1
|
Bellini G, Di Rauso G, Fontanelli L, Benevento E, Becattini L, Frosini D, Ceravolo R, Del Prete E. Deep brain stimulation in progressive supranuclear palsy: a dead-end story? A narrative review. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02904-4. [PMID: 40123032 DOI: 10.1007/s00702-025-02904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Progressive supranuclear palsy (PSP) is a rare, debilitating neurodegenerative disorder that significantly impairs both motor and cognitive functions. Current pharmacological treatments offer only transient symptomatic relief, driving interest in the past in alternative therapeutic strategies such as deep brain stimulation. Deep brain stimulation (DBS), known for its success in treating motor symptoms of Parkinson's disease, has been explored as a possible symptomatic treatment for PSP, considering the pedunculopontine nucleus (PPN), involved in motor control and postural stability, as a promising target for deep brain stimulation in PSP. However, its complex anatomy and the clinical variability of PSP complicate the prediction and generalization of the effectiveness of DBS. The present review examines the existing studies in the literature about DBS in PSP patients. Some studies highlighted modest benefits in motor symptoms, while others reported variable outcomes and inherent risks of the procedure. Generally, patients with a parkinsonism predominant phenotype have shown some subjective or clinical improvements in gait and balance when subjected to low-frequency stimulation. While DBS of the PPN holds promise for ameliorating gait and balance of PSP, current evidence does not yet establish clear criteria for ideal candidates, nor does it provide overwhelmingly supportive results in favor of PPN-DBS in PSP patients. Without any further systematic study is not possible to define accurate candidate selection parameters and understand long-term outcomes and safety profiles.
Collapse
Affiliation(s)
- Gabriele Bellini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Neurology, the Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University Langone Health, New York, NY, 10017, USA
| | - Giulia Di Rauso
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenzo Fontanelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Health Science Interdisciplinary Centre, Sant'Anna School of Advanced Studies, PisaNeurology Unit, Department of Medical Specialties, AOUP, Pisa, Italy
| | - Elena Benevento
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucrezia Becattini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Neuroscience, AOUP, Via Roman. 67, 56126, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Neurology Unit, Department of Neuroscience, AOUP, Via Roman. 67, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Insola A, Mazzone P, Della Marca G, Capozzo A, Vitale F, Scarnati E. Pedunculopontine tegmental Nucleus-evoked prepulse inhibition of the blink reflex in Parkinson's disease. Clin Neurophysiol 2021; 132:2729-2738. [PMID: 34417108 DOI: 10.1016/j.clinph.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects on the blink reflex (BR) of single stimuli applied to the pedunculopontine tegmental nucleus (PPTg). METHODS The BR was evoked by stimulating the supraorbital nerve (SON) in fifteen patients suffering from idiopathic Parkinson's disease (PD) who had electrodes monolaterally or bilaterally implanted in the PPTg for deep brain stimulation (DBS). Single stimuli were delivered to the PPTg through externalized electrode connection wires 3-4 days following PPTg implantation. RESULTS PPTg stimuli increased the latency and reduced duration, amplitude and area of the R2 component of the BR in comparison to the response recorded in the absence of PPTg stimulation. These effects were independent of the side of SON stimulation and were stable for interstimulus interval (ISI) between PPTg prepulse and SON stimulus from 0 to 110 ms. The PPTg-induced prepulse inhibition of the BR was bilaterally present in the brainstem. The R1 component was unaffected. CONCLUSIONS The prepulse inhibition of the R2 component may be modulated by the PPTg. SIGNIFICANCE These findings suggest that abnormalities of BR occurring in PD may be ascribed to a reduction of basal ganglia-mediated inhibition of brainstem excitability.
Collapse
Affiliation(s)
- Angelo Insola
- Clinical Neurophysiopathology, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy.
| | - Paolo Mazzone
- Functional and Stereotactic Neurosurgery, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy
| | - Giacomo Della Marca
- Institute of Neurology, Catholic University, Largo A.Gemelli 8, 00168 Rome, Italy
| | - Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
3
|
Chang SJ, Cajigas I, Guest JD, Noga BR, Widerström-Noga E, Haq I, Fisher L, Luca CC, Jagid JR. MR Tractography-Based Targeting and Physiological Identification of the Cuneiform Nucleus for Directional DBS in a Parkinson's Disease Patient With Levodopa-Resistant Freezing of Gait. Front Hum Neurosci 2021; 15:676755. [PMID: 34168545 PMCID: PMC8217631 DOI: 10.3389/fnhum.2021.676755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a debilitating motor deficit in a subset of Parkinson's Disease (PD) patients that is poorly responsive to levodopa or deep brain stimulation (DBS) of established PD targets. The proposal of a DBS target in the midbrain, known as the pedunculopontine nucleus (PPN), to address FOG was based on its observed neuropathology in PD and its hypothesized involvement in locomotor control as a part of the mesencephalic locomotor region (MLR). Initial reports of PPN DBS were met with enthusiasm; however, subsequent studies reported mixed results. A closer review of the MLR basic science literature, suggests that the closely related cuneiform nucleus (CnF), dorsal to the PPN, may be a superior site to promote gait. Although suspected to have a conserved role in the control of gait in humans, deliberate stimulation of a homolog to the CnF in humans using directional DBS electrodes has not been attempted. METHODS As part of an open-label Phase 1 clinical study, one PD patient with predominantly axial symptoms and severe FOG refractory to levodopa therapy was implanted with directional DBS electrodes (Boston Science Vercise CartesiaTM) targeting the CnF bilaterally. Since the CnF is a poorly defined reticular nucleus, targeting was guided both by diffusion tensor imaging (DTI) tractography and anatomical landmarks. Intraoperative stimulation and microelectrode recordings were performed near the targets with leg EMG surface recordings in the subject. RESULTS Post-operative imaging revealed accurate targeting of both leads to the designated CnF. Intraoperative stimulation near the target at low thresholds in the awake patient evoked involuntary electromyography (EMG) oscillations in the legs with a peak power at the stimulation frequency, similar to observations with CnF DBS in animals. Oscillopsia was the primary side effect evoked at higher currents, especially when directed posterolaterally. Directional DBS could mitigate oscillopsia. CONCLUSION DTI-based targeting and intraoperative stimulation to evoke limb EMG activity may be useful methods to help target the CnF accurately and safely in patients. Long term follow-up and detailed gait testing of patients undergoing CnF stimulation will be necessary to confirm the effects on FOG. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT04218526.
Collapse
Affiliation(s)
- Stephano J. Chang
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - Iahn Cajigas
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D. Guest
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Widerström-Noga
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ihtsham Haq
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Letitia Fisher
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Corneliu C. Luca
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jonathan R. Jagid
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Klarendic M, Kaski D. Deep brain stimulation and eye movements. Eur J Neurosci 2020; 53:2344-2361. [DOI: 10.1111/ejn.14898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Maja Klarendic
- Neurological Department University Clinical Center Ljubljana Ljubljana Slovenia
| | - Diego Kaski
- Department of Clinical and Motor Neurosciences Centre for Vestibular and Behavioural Neurosciences University College London London UK
| |
Collapse
|
5
|
Nowacki A, Galati S, Ai-Schlaeppi J, Bassetti C, Kaelin A, Pollo C. Pedunculopontine nucleus: An integrative view with implications on Deep Brain Stimulation. Neurobiol Dis 2019; 128:75-85. [DOI: 10.1016/j.nbd.2018.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
|
6
|
Direct localisation of the human pedunculopontine nucleus using MRI: a coordinate and fibre-tracking study. Eur Radiol 2018. [PMID: 29532240 DOI: 10.1007/s00330-017-5299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To image the pedunculopontine tegmental nucleus (PPN), a deep brain stimulation (DBS) target for Parkinson disease, using MRI with validated results. METHODS This study used the MP2RAGE sequence with high resolution and enhanced grey-white matter contrast on a 7-T ultra-high-field MRI system to image the PPN as well as a diffusion spectrum imaging method on a 3-T MRI system to reconstruct the main fibre systems surrounding the PPN. The coordinates of the rostral and caudal PPN poles of both sides were measured in relation to the third and fourth ventricular landmarks on the 7-T image. RESULTS The boundary of the PPN was delineated, and showed morphology consistent with previous histological works. The main fibres around the PPN were reconstructed. The pole coordinate results combined with the fibre spatial relationships validate the imaging results. CONCLUSIONS A practical protocol is provided to directly localise the PPN using MRI; the position and morphology of the PPN can be obtained and validated by locating its poles relative to two ventricular landmarks and by inspecting its spatial relationship with the surrounding fibre systems. This technique can be potentially used in clinics to define the boundary of the PPN before DBS surgery for treatment of Parkinson disease in a more precise and reliable manner. KEY POINTS • Combined information helps localise the PPN as a DBS target for PD patients • Scan the PPN at 7 T and measure its coordinates against different ventricular landmarks • Reconstruct the main fibres around the PPN using diffusion spectrum imaging.
Collapse
|
7
|
Thevathasan W, Debu B, Aziz T, Bloem BR, Blahak C, Butson C, Czernecki V, Foltynie T, Fraix V, Grabli D, Joint C, Lozano AM, Okun MS, Ostrem J, Pavese N, Schrader C, Tai CH, Krauss JK, Moro E. Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: A clinical review. Mov Disord 2017; 33:10-20. [DOI: 10.1002/mds.27098] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Wesley Thevathasan
- Department of Medicine; Royal Melbourne Hospital, University of Melbourne, Australia and the Bionics Institute of Australia; Melbourne Australia
| | - Bettina Debu
- Movement Disorders Center; Division of Neurology, Centre Hospitalier Universitaire (CHU) Grenoble, Grenoble Alpes University; Grenoble France
| | - Tipu Aziz
- Department of Neurosurgery; John Radcliffe Hospital, University of Oxford; Oxford UK
| | - Bastiaan R. Bloem
- Department of Neurology; Donders Institute for Brain, Cognition and Behaviour, Radboud University; Nijmegen the Netherlands
| | - Christian Blahak
- Department of Neurology; Universitätsmedizin Mannheim, University of Heidelberg; Heidelberg Germany
| | - Christopher Butson
- Department of Bioengineering; Scientific Computing and Imaging Institute, University of Utah; Salt Lake City USA
| | - Virginie Czernecki
- Department of Neurology; Institut de Cerveau et de la Moelle épinière, Sorbonne Universités, University Pierre-and-Marie-Curie (UPMC) Université; Paris France
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience; University College London (UCL) Institute of Neurology; United Kingdom
| | - Valerie Fraix
- Movement Disorders Center; Division of Neurology, Centre Hospitalier Universitaire (CHU) Grenoble, Grenoble Alpes University; Grenoble France
| | - David Grabli
- Department of Neurology; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtière University Hospital; Paris France
| | - Carole Joint
- Department of Neurosurgery; John Radcliffe Hospital, University of Oxford; Oxford UK
| | - Andres M. Lozano
- Department of Neurosurgery; Toronto Western Hospital, University of Toronto; Toronto Canada
| | - Michael S. Okun
- Departments of Neurology and Neurosurgery; University of Florida Center for Movement Disorders; Gainesville Florida USA
| | - Jill Ostrem
- Department of Neurology; UCSF Movement Disorder and Neuromodulation Center, University of California; San Francisco USA
| | - Nicola Pavese
- Institute of Neuroscience; Newcastle University; Newcastle upon Tyne UK
- Department of Clinical Medicine; Centre for Functionally Integrative Neuroscience, University of Aarhus; Aarhus Denmark
- Department of Neurology; Hannover Medical School; Hannover Germany
| | | | - Chun-Hwei Tai
- Department of Neurology; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei Taiwan
| | - Joachim K. Krauss
- Department of Neurosurgery; Hannover Medical School; Hannover Germany
| | - Elena Moro
- Movement Disorders Center; Division of Neurology, Centre Hospitalier Universitaire (CHU) Grenoble, Grenoble Alpes University; Grenoble France
| | | |
Collapse
|
8
|
Ocular and visual disorders in Parkinson's disease: Common but frequently overlooked. Parkinsonism Relat Disord 2017; 40:1-10. [PMID: 28284903 DOI: 10.1016/j.parkreldis.2017.02.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 11/23/2022]
Abstract
Patients with Parkinson's disease (PD) often compensate for their motor deficits by guiding their movements visually. A wide range of ocular and visual disorders threatens the patients' ability to benefit optimally from visual feedback. These disorders are common in patients with PD, yet they have received little attention in both research and clinical practice, leading to unnecessary - but possibly treatable - disability. Based on a literature search covering 50 years, we review the range of ocular and visual disorders in patients with PD, and classify these according to anatomical structures of the visual pathway. We discuss six common disorders in more detail: dry eyes; diplopia; glaucoma and glaucoma-like visual problems; impaired contrast and colour vision; visuospatial and visuoperceptual impairments; and visual hallucinations. In addition, we review the effects of PD-related pharmacological and surgical treatments on visual function, and we offer practical recommendations for clinical management. Greater awareness and early recognition of ocular and visual problems in PD might enable timely instalment of tailored treatments, leading to improved patient safety, greater independence, and better quality of life.
Collapse
|
9
|
Movement disorders induced by deep brain stimulation. Parkinsonism Relat Disord 2016; 25:1-9. [DOI: 10.1016/j.parkreldis.2016.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/24/2022]
|
10
|
Hong Q, Fang G, Liu TT, Guan XH, Xiang HB, Liu Z. Posterior pedunculopontine tegmental nucleus may be involved in visual complaints with intractable epilepsy. Epilepsy Behav 2014; 34:55-7. [PMID: 24704565 DOI: 10.1016/j.yebeh.2014.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/08/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Qingxiong Hong
- Department of Anesthesiology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, PR China
| | - Guangguang Fang
- Department of Gynecology, The Second People's Hospital of Shenzhen, Guangdong Province, PR China
| | - Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xue-Hai Guan
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhiheng Liu
- Department of Anesthesiology, The Second People's Hospital of Shenzhen, Guandong Province, PR China.
| |
Collapse
|
11
|
Castrioto A, Moro E. New targets for deep brain stimulation treatment of Parkinson's disease. Expert Rev Neurother 2013; 13:1319-28. [PMID: 24215284 DOI: 10.1586/14737175.2013.859987] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi) has been shown to be an effective treatment for patients with Parkinson's disease. Strong clinical evidence supports the improvement of motor and non-motor complications and quality of life, with some data suggesting that GPi DBS might be less effective than STN DBS. However, neither STN nor GPi stimulation provides a satisfactory control of non-dopaminergic symptoms, such as gait and balance impairment and cognitive decline, which are frequent and disabling symptoms in advanced Parkinson's disease patients. Therefore, several efforts have been made to discover alternative and new targets to overcome these current DBS limitations. Among these new targets, the stimulation of the pedunculopontine nucleus has initially appeared encouraging. However, findings from different double-blind trials have mitigated the enthusiasm. A multi-target strategy aimed at improving symptoms with different pathogenetic mechanisms might be a promising approach in the next years.
Collapse
Affiliation(s)
- Anna Castrioto
- Movement Disorders Centre, Department of Psychiatry and Neurology, CHU de Grenoble - CS10217, 38043 Grenoble Cedex 09, France
| | | |
Collapse
|
12
|
Fournier-Gosselin MP, Lipsman N, Saint-Cyr JA, Hamani C, Lozano AM. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation. Mov Disord 2013; 28:1330-6. [PMID: 23926071 DOI: 10.1002/mds.25620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy.
Collapse
|
13
|
Zitella LM, Mohsenian K, Pahwa M, Gloeckner C, Johnson MD. Computational modeling of pedunculopontine nucleus deep brain stimulation. J Neural Eng 2013; 10:045005. [PMID: 23723145 DOI: 10.1088/1741-2560/10/4/045005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. APPROACH Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. MAIN RESULTS The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V); (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. SIGNIFICANCE We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.
Collapse
Affiliation(s)
- Laura M Zitella
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
14
|
Hazrati LN, Wong JC, Hamani C, Lozano AM, Poon YY, Dostrovsky JO, Hutchison WD, Zadikoff C, Moro E. Clinicopathological study in progressive supranuclear palsy with pedunculopontine stimulation. Mov Disord 2012; 27:1304-7. [DOI: 10.1002/mds.25123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/07/2012] [Accepted: 06/28/2012] [Indexed: 02/02/2023] Open
|