1
|
Abdelrahman N, Drescher S, Ann Dailey L, Klang V. Investigation of keratolytic impact of synthetic bolalipids on skin penetration of a model hydrophilic permeant. Eur J Pharm Biopharm 2024; 203:114433. [PMID: 39098617 DOI: 10.1016/j.ejpb.2024.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Synthetic single-chain bolalipids (SSCBs) are novel excipients in drug delivery, with potential as stabilizers or solubilizers. However, their impact on skin barrier function has not been comprehensively studied. Therefore, two SSCBs (PC-C24-PC and PC-C32-PC) were studied in aqueous systems for their impact on penetration of a model permeant into porcine skin. Concentrations of 0.05 - 5 % w/w were tested; PC-C24-PC formulations were low-viscosity liquids while PC-C32-PC formed viscous dispersions to gels at room temperature. Formulations were compared for their ability to enhance sodium fluorescein penetration (SF, 0.1 % w/w) into skin via tape stripping. Using NIR-densitometry, the effect of SSCB formulations on corneocyte cohesion was evaluated. Data were compared with phospholipid mixture Lipoid S-75, sodium dodecyl sulfate (SDS), and polyethylene glycol 12-hydroxystearate (PEG-HS), and distilled water as negative control. Contrary to the hypothesis, both SSCBs failed to increase SF penetration into the stratum corneum, but rather showed a significant decrease in penetration depth compared to water. Both SSCBs exhibited a keratolytic effect at 5 % w/w, leading to substantial removal of proteins from the skin surface. Consequently, SSCBs may not enhance penetration of hydrophilic drugs into skin, but could be used as keratolytic agents.
Collapse
Affiliation(s)
- Namarig Abdelrahman
- University of Vienna, Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, 1090, Vienna, Austria
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Lea Ann Dailey
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Wang M, Li X, Du W, Sun M, Ling G, Zhang P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv Transl Res 2023; 13:1600-1620. [PMID: 36735217 PMCID: PMC9897165 DOI: 10.1007/s13346-023-01297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Superficial tumors are still challenging to overcome due to the high risk and toxicity of surgery and conventional chemotherapy. Microneedles (MNs) are widely used in the treatment of superficial skin tumors (SST) due to the high penetration rate of the stratum corneum (SC), excellent biocompatibility, simple preparation process, high patient compliance, and minimal invasion. Most importantly, MNs can provide not only efficient and rarely painful delivery carriers, but also combine multi-model strategies with photothermal therapy (PTT), immunotherapy, and gene therapy for synergistic efficacy. To promote an in-depth understanding of their superiorities, this paper systematically summarized the latest application progress of MNs in the treatment of SST by delivering various types of photosensitizers, immune signal molecules, genes, and chemotherapy drugs. Just as important, the advantages, limitations, and drug release mechanisms of MNs based on different materials are introduced in the paper. In addition, the application of MN technology to clinical practice is the ultimate goal of all the work. The obstacles and possible difficulties in expanding the production of MNs and achieving clinical transformation are briefly discussed in this paper. To be anticipated, our work will provide new insights into the precise and rarely painful treatment of SST in the future.
Collapse
Affiliation(s)
- Meng Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minge Sun
- Shenyang Narnia Biomedical Technology Company, Ltd, Shenyang, 110167, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
3
|
Vater C, Hlawaty V, Werdenits P, Cichoń MA, Klang V, Elbe-Bürger A, Wirth M, Valenta C. Effects of lecithin-based nanoemulsions on skin: Short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin. Int J Pharm 2020; 580:119209. [PMID: 32165223 DOI: 10.1016/j.ijpharm.2020.119209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Abstract
Surfactants are important ingredients in pharmaceutical and cosmetic formulations, as in creams, shampoos or shower gels. As conventional emulsifiers such as sodium dodecyl sulfate (SDS) have fallen into disrepute due to their skin irritation potential, the naturally occurring lecithins are being investigated as a potential alternative. Thus, lecithin-based nanoemulsions with and without the drug curcumin, known for its wound healing properties, were produced and characterised in terms of their particle size, polydispersity index (PDI) and zeta potential and compared to SDS-based formulations. In vitro toxicity of the produced blank nanoemulsions was assessed with primary human keratinocytes and fibroblasts using two different cell viability assays (BrdU and EZ4U). Further, we investigated the penetration profiles of the deployed surfactants and oil components using combined ATR-FTIR/tape stripping experiments and confirmed the ability of the lecithin-based nanoemulsions to deliver curcumin into the stratum corneum in tape stripping-UV/Vis experiments. All manufactured nanoemulsions showed droplet sizes under 250 nm with satisfying PDI and zeta potential values. Viability assays with human skin cells clearly indicated that lecithin-based nanoemulsions were superior to SDS-based formulations. ATR-FTIR tests showed that lecithin and oil components remained in the superficial layers of the stratum corneum, suggesting a low risk for skin irritation. Ex vivo tape stripping experiments revealed that the kind of oil used in the nanoemulsion seemed to influence the depth of curcumin penetration into the stratum corneum.
Collapse
Affiliation(s)
- Claudia Vater
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Hlawaty
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Patricia Werdenits
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Małgorzata Anna Cichoń
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Wirth
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Claudia Valenta
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
4
|
Binder L, Mazál J, Petz R, Klang V, Valenta C. The role of viscosity on skin penetration from cellulose ether-based hydrogels. Skin Res Technol 2019; 25:725-734. [PMID: 31062432 PMCID: PMC6850716 DOI: 10.1111/srt.12709] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/18/2019] [Accepted: 04/14/2019] [Indexed: 12/31/2022]
Abstract
Background The rheological properties of dermal drug delivery systems are of importance when designing new formulations. Viscosity not only affects features such as spreadability and skin feel, but may also affect the skin penetration of incorporated actives. Data on the latter aspect are controversial. Our objective was to elucidate the relation between viscosity and drug delivery performance of different model hydrogels assuming that enhanced microviscosity might delay drug release and penetration. Materials and Methods Hydrogels covering a broad viscosity range were prepared by adding either HPMC or HEC as gelling agents in different concentrations. To investigate the ability of the gels to deliver a model drug into the skin, sulphadiazine sodium was incorporated and its in vitro skin penetration was monitored using tape stripping/HPLC analysis and non‐invasive confocal Raman spectroscopy. Results The trends observed with the two different experimental setups were comparable. Drug penetration depths decreased slightly with increasing viscosity, suggesting slower drug release due to the increasingly dense gel networks. However, the total penetrated drug amounts were independent of the exact formulation viscosity. Conclusion Drug penetration was largely unaffected by hydrogel viscosity. Moderately enhanced viscosity is advisable when designing cellulose ether hydrogels to allow for convenient application.
Collapse
Affiliation(s)
- Lisa Binder
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Julia Mazál
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Romana Petz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.,Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', University of Vienna, Vienna, Austria
| | - Claudia Valenta
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.,Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Simultaneous penetration monitoring of oil component and active drug from fluorinated nanoemulsions. Int J Pharm 2018; 552:312-318. [DOI: 10.1016/j.ijpharm.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/24/2023]
|
6
|
Wolf M, Klang V, Stojcic T, Fuchs C, Wolzt M, Valenta C. NLC versus nanoemulsions: Effect on physiological skin parameters during regular in vivo application and impact on drug penetration. Int J Pharm 2018; 549:343-351. [DOI: 10.1016/j.ijpharm.2018.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
|
7
|
Wolf M, Reiter F, Heuser T, Kotisch H, Klang V, Valenta C. Monoacyl-phospatidylcholine based drug delivery systems for lipophilic drugs: Nanostructured lipid carriers vs. nano-sized emulsions. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Binder L, Kulovits EM, Petz R, Ruthofer J, Baurecht D, Klang V, Valenta C. Penetration monitoring of drugs and additives by ATR-FTIR spectroscopy/tape stripping and confocal Raman spectroscopy - A comparative study. Eur J Pharm Biopharm 2018; 130:214-223. [PMID: 29981829 DOI: 10.1016/j.ejpb.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Vibrational spectroscopy is a useful tool for analysis of skin properties and to confirm the penetration of drugs and other formulation compounds into the skin. In particular, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and confocal Raman spectroscopy (CRS) have been optimised for skin analysis. Despite an impressive amount of data on these techniques, a comparative methodological assessment for skin penetration monitoring of model substances is still amiss. Thus, in vitro skin penetration studies were conducted in parallel using the same porcine material and four model substances, namely sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), sulfathiazole sodium (STZ) and dimethyl sulfoxide (DMSO). ATR-FTIR spectroscopy in combination with tape stripping and CRS were employed to evaluate the skin penetration of the applied substances. In addition, the skin hydration status or change in skin hydration after application was investigated. The results show that both methods provide valuable information on the skin penetration potential of applied substances. The penetration profiles determined by CRS or ATR-FTIR/tape stripping were comparable for all substances; a slow decrease in relative substance concentration was visible from the skin surface inwards within the stratum corneum (SC). In general, deeper penetration into the SC was observed with CRS, which may be related to the depth resolution of the employed device. However, when related to the respective total SC thickness of each experiment, the penetration depths determined by parallel CRS and ATR-FTIR analysis were in good agreement for all model substances. The observed order of the penetration depth was DMSO > SDS > SLES > STZ with both techniques. A decrease of the relative concentration to 10% of the maximum value was found approximately between 34 and 89% of total SC thickness. Summarising these findings, advantages and drawbacks of the two techniques for in vitro skin penetration studies are discussed.
Collapse
Affiliation(s)
- Lisa Binder
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Eva Maria Kulovits
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Romana Petz
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Johanna Ruthofer
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Dieter Baurecht
- University of Vienna, Department of Physical Chemistry, Faculty of Chemistry, Währingerstraße 42, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria.
| | - Claudia Valenta
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
9
|
Ashtikar M, Langelüddecke L, Fahr A, Deckert V. Tip-enhanced Raman scattering for tracking of invasomes in the stratum corneum. Biochim Biophys Acta Gen Subj 2017; 1861:2630-2639. [DOI: 10.1016/j.bbagen.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
|
10
|
Binder L, Jatschka J, Baurecht D, Wirth M, Valenta C. Novel concentrated water-in-oil emulsions based on a non-ionic silicone surfactant: Appealing application properties and tuneable viscoelasticity. Eur J Pharm Biopharm 2017; 120:34-42. [DOI: 10.1016/j.ejpb.2017.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/30/2022]
|
11
|
Pyo SM, Hespeler D, Keck CM, Müller RH. Dermal miconazole nitrate nanocrystals – formulation development, increased antifungal efficacy & skin penetration. Int J Pharm 2017; 531:350-359. [DOI: 10.1016/j.ijpharm.2017.08.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
|
12
|
Importance of a suitable working protocol for tape stripping experiments on porcine ear skin: Influence of lipophilic formulations and strip adhesion impairment. Int J Pharm 2015; 491:162-9. [DOI: 10.1016/j.ijpharm.2015.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022]
|
13
|
Hoppel M, Reznicek G, Kählig H, Kotisch H, Resch GP, Valenta C. Topical delivery of acetyl hexapeptide-8 from different emulsions: Influence of emulsion composition and internal structure. Eur J Pharm Sci 2015; 68:27-35. [DOI: 10.1016/j.ejps.2014.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
14
|
Nagelreiter C, Kratochvilova E, Valenta C. Dilution of semi-solid creams: Influence of various production parameters on rheological properties and skin penetration. Int J Pharm 2015; 478:429-38. [DOI: 10.1016/j.ijpharm.2014.11.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 12/31/2022]
|
15
|
Sohn M, Korn V, Imanidis G. Porcine ear skin as a biological substrate for in vitro testing of sunscreen performance. Skin Pharmacol Physiol 2014; 28:31-41. [PMID: 25096635 DOI: 10.1159/000358273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE The purpose of the study was to examine the use of skin from porcine ears as a biological substrate for in vitro testing of sunscreens in order to overcome the shortcomings of the presently used polymethylmethacrylate (PMMA) plates that generally fail to yield a satisfactory correlation between sun protection factors (SPF) in vitro and in vivo. PROCEDURES Trypsin-separated stratum corneum and heat-separated epidermis provided UV-transparent substrates that were laid on quartz or on PMMA plates. These were used to determine surface roughness by chromatic confocal imaging and to measure SPF in vitro of 2 sunscreens by diffuse transmission spectroscopy. RESULTS The recovered skin layers showed a lower roughness than full-thickness skin but yielded SPF in vitro values that more accurately reflected the SPF determined in vivo by a validated procedure than PMMA plates, although the latter had in part roughness values identical to those of intact skin. Combination of skin tissue with a high roughness PMMA plate also provided accurate SPF in vitro. CONCLUSIONS Besides roughness, the improved affinity of the sunscreen to the skin substrate compared to PMMA plates may explain the better in vitro prediction of SPF achieved with the use of a biological substrate.
Collapse
Affiliation(s)
- Myriam Sohn
- Institute of Pharmaceutical Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | | | | |
Collapse
|
16
|
D’Alvise J, Mortensen R, Hansen SH, Janfelt C. Detection of follicular transport of lidocaine and metabolism in adipose tissue in pig ear skin by DESI mass spectrometry imaging. Anal Bioanal Chem 2014; 406:3735-42. [DOI: 10.1007/s00216-014-7802-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
|
17
|
Windbergs M, Hansen S, Schroeter A, Schaefer U, Lehr CM, Bouwstra J. From the Structure of the Skin Barrier and Dermal Formulations to in vitro Transport Models for Skin Absorption: Skin Research in the Netherlands and in Germany. Skin Pharmacol Physiol 2013; 26:317-30. [DOI: 10.1159/000351936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/03/2013] [Indexed: 11/19/2022]
|
18
|
Lademann J, Meinke MC, Schanzer S, Richter H, Darvin ME, Haag SF, Fluhr JW, Weigmann HJ, Sterry W, Patzelt A. In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier. Int J Cosmet Sci 2012; 34:551-9. [PMID: 22957937 DOI: 10.1111/j.1468-2494.2012.00750.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/14/2012] [Indexed: 01/21/2023]
Abstract
The efficacy of a drug is characterized by its action mechanism and its ability to pass the skin barrier. In this article, different methods are discussed, which permit this penetration process to be analysed non-invasively. Providing qualitative and quantitative information, tape stripping is one of the oldest procedures for penetration studies. Although single cell layers of corneocytes are removed from the skin surface, this procedure is considered as non-invasive and is applicable exclusively to the stratum corneum. Recently, optical and spectroscopic methods have been used to investigate the penetration process. Fluorescence-labelled drugs can be easily detected in the skin by laser scanning microscopy. This method has the disadvantage that the dye labelling changes the molecular structures of the drug and consequently might influence the penetration properties. The penetration process of non-fluorescent substances can be analysed by Raman spectroscopy, electron paramagnetic resonance, CARS and multiphoton microscopic measurements. Using these methods, the concentration of the topically applied formulations in different depths of the stratum corneum can be detected by moving the laser focus from the skin surface deeper into the stratum corneum. The advantages and disadvantages of these methods will be discussed in this article.
Collapse
Affiliation(s)
- J Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology-CCP, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|