1
|
Yu X, Mao Z, Zou Y, Zhao Y, Fan H, Liu T, Lei Y, Zou H, You Z. Intraocular fluid analysis-guided precision therapy in the treatment of acute retinal necrosis syndrome. Sci Rep 2025; 15:14009. [PMID: 40269190 PMCID: PMC12019151 DOI: 10.1038/s41598-025-98624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Investigate intraocular fluid testing's role in ARNs management and prognosis. 46 ARNs patients (49 eyes) treated from 2021 to 2023 were divided into precision (n = 22) and conventional (n = 24) groups based on intraocular fluid testing. Precision group received intravitreal ganciclovir (20 mg/ml [viral copies < 5 × 106] or 40 mg/ml [> 5 × 106]) twice weekly; conventional group received fixed 20 mg/ml. BCVA, viral copies, cytokines (IL-6, IL-8, IL-10), and biomarkers (VCAM, VEGF, BFGF) were analyzed. No baseline differences in BCVA, IOP, or clinical features between groups (P > 0.05). Precision group showed fewer injections, higher final BCVA, and lower retinal detachment rates (P < 0.05). Viral copies negatively correlated with final BCVA (P < 0.05). In precision group: viral copies positively correlated with injection frequency, IL-6, IL-8, VCAM, BFGF; retinal necrosis extent positively linked to initial/final BCVA but inversely with IL-6, IL-8, and viral load. Conventional group showed retinal necrosis involvement positively correlated with detachment risk (P < 0.05). Intraocular fluid testing optimizes ARNs treatment personalization, improves outcomes, and enhances prognostic evaluation.
Collapse
Affiliation(s)
- Xiao Yu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ziqing Mao
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuling Zou
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yao Zhao
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Huimin Fan
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Teng Liu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiming Lei
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hua Zou
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhipeng You
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
AQP2 trafficking in health and diseases: an updated overview. Int J Biochem Cell Biol 2022; 149:106261. [DOI: 10.1016/j.biocel.2022.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
|
3
|
Cen J, Lv L, Wei Y, Deng L, Huang L, Deng X, Qin Q, Sun Y, Pang L. Comparative proteome analysis of amniotic fluids and placentas from patients with idiopathic polyhydramnios. Placenta 2019; 89:67-77. [PMID: 31704631 DOI: 10.1016/j.placenta.2019.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Idiopathic polyhydramnios (IPH) is an abnormal increase in amniotic fluid volume (AFV). This condition has unknown etiologies and is associated with various adverse pregnancy outcomes including maternal and fetal complication. This study aims to establish a comparative proteome profile for the human amniotic fluid (AF) of IPH and normal pregnancies and identify the responsible mediators and pathways that regulate AFV. METHODS We first employed coupled isobaric tags for relative and absolute quantitation (iTRAQ) proteomics and bioinformatics analysis to examine the differentially expression proteins (DEPs) in the AF of IPH and normal pregnancies. Second, CUL5, HIP1, FSTL3, and LAMP2 proteins were selected for verification in amnion, chorion, and placental tissues by Western blot analysis. RESULTS We identified 357 DEPs with 282 upregulated and 75 downregulated. Bioinformatics analysis revealed that cell, cellular process, and binding were the most enriched Gene Ontology terms. Amoebiasis, hematopoietic cell lineage, and NF-kappa B signaling pathway were the top significant pathways. In the verification procedure, FSTL3 protein had a highly significant expression in the amnion, chorion, and placentas of IPH and normal AFV groups (p < 0.05). DISCUSSION Our results provide new insights into idiopathic polyhydramnios and offer fundamental points for future studies on AFV.
Collapse
Affiliation(s)
- Jiao Cen
- Guangxi Medical University, Nanning, Guangxi, China
| | - Liqin Lv
- Guangxi Medical University, Nanning, Guangxi, China
| | - Yiyun Wei
- Department of Prenatal Diagnosis and Genetic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linjie Deng
- Guangxi Medical University, Nanning, Guangxi, China
| | - Le Huang
- Guangxi Medical University, Nanning, Guangxi, China
| | | | - Qinhong Qin
- Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Sun
- The Guangxi Zhuang Autonomous Region Family Planning Research Center, Nanning, Guangxi, China
| | - Lihong Pang
- Department of Prenatal Diagnosis and Genetic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. The role of cullin 5-containing ubiquitin ligases. Cell Div 2016; 11:1. [PMID: 27030794 PMCID: PMC4812663 DOI: 10.1186/s13008-016-0016-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| |
Collapse
|
5
|
Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol 2016; 7:23. [PMID: 26903868 PMCID: PMC4749865 DOI: 10.3389/fphar.2016.00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments.
Collapse
Affiliation(s)
- Tanja Vukićević
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Maike Schulz
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Dörte Faust
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlin, Germany; German Centre for Cardiovascular ResearchBerlin, Germany
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Aquaporin-2 (AQP2) water channels in principal cells of the kidney collecting duct are essential for urine concentration. Due to application of modern technologies, progress in our understanding of AQP2 has accelerated in recent years. In this article, we highlight some of the new insights into AQP2 function that have developed recently, with particular focus on the cell biological aspects of AQP2 regulation. RECENT FINDINGS AQP2 is subjected to a number of regulated modifications, including phosphorylation and ubiquitination, which are important for AQP2 function, cellular localization and degradation. AQP2 is likely internalized via clathrin and non-clathrin-mediated endocytosis. Regulation of AQP2 endocytosis, in addition to exocytosis, is a vital mechanism in determining overall AQP2 membrane abundance. AQP2 is associated with regulated membrane microdomains. Studies using membrane cholesterol depleting reagents, for example statins, have supported the role of membrane rafts in regulation of AQP2 trafficking. Noncanonical roles for AQP2, for example in epithelial cell migration, are emerging. SUMMARY AQP2 function and thus urine concentration is dependent on a variety of cell signalling mechanisms, posttranslational modification and interplay between AQP2 and its lipid environment. This complexity of regulation allows fine-tuning of AQP2 function and thus body water homeostasis.
Collapse
|
7
|
Burnatowska-Hledin MA, Barney CC. New insights into the mechanism for VACM-1/cul5 expression in vascular tissue in vivo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:79-101. [PMID: 25376490 DOI: 10.1016/b978-0-12-800177-6.00003-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasopressin-activated calcium-mobilizing (VACM-1)/cul5 is the least conserved member of a cullin protein family involved in the formation of E3-specific ligase complexes that are responsible for delivering the ubiquitin protein to their target substrate proteins selected for ubiquitin-dependent degradation. This chapter summarizes work to date that has focused on VACM-1/cul5's tissue-specific expression in vivo and on its potential role in the control of specific cellular signaling pathways in those structures. As mammalian cells may contain hundreds of E3 ligases, identification VACM-1/cul5 as a specific subunit of the system that is expressed in the endothelium and in collecting tubules, structures known for their control of cellular permeability, may have significant implications when designing studies to elucidate the mechanism of water conservation. For example, VACM-1/cul5 expression is affected by water deprivation in some tissues and there is a potential relationship between neddylated VACM-1/cul5 and aquaporins.
Collapse
Affiliation(s)
- Maria A Burnatowska-Hledin
- Department of Biology, Hope College, Holland, MI, USA; Department of Chemistry, Hope College, Holland, MI, USA
| | | |
Collapse
|