1
|
Rudd Garces G, Farke D, Schmidt MJ, Letko A, Schirl K, Abitbol M, Leeb T, Lyons LA, Lühken G. PAX3 haploinsufficiency in Maine Coon cats with dominant blue eyes and hearing loss resembling the human Waardenburg syndrome. G3 (BETHESDA, MD.) 2024; 14:jkae131. [PMID: 38869246 PMCID: PMC11373664 DOI: 10.1093/g3journal/jkae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
This study investigated the dominant blue eyes (DBE) trait linked to hearing impairment and variable white spotting in Maine Coon cats. Fifty-eight animals descending from 2 different DBE lineages, the Dutch and the Topaz lines, were sampled. They comprised 48 cats from the Dutch bloodline, including 9 green-eyed and 31 blue-eyed cats, with some individuals exhibiting signs of deafness, and 8 stillborn kittens. Samples from the Topaz lineage included 10 blue-eyed animals. A brainstem auditory evoked response test revealed a reduced to absent response to auditory stimuli and absent physiological waveforms in all of the 8 examined DBE animals. We sequenced the genome of 2 affected cats from the Dutch line and searched for variants in 19 candidate genes for the human Waardenburg syndrome and pigmentary disorders. This search yielded 9 private protein-changing candidate variants in the genes PAX3, EDN3, KIT, OCA2, SLC24A5, HERC2, and TYRP1. The genotype-phenotype cosegregation was observed for the PAX3 variant within all animals from the Dutch lineage. The mutant allele was absent from 461 control genomes and 241 additionally genotyped green-eyed Maine Coons. We considered the PAX3 variant as the most plausible candidate-a heterozygous nonsense single base pair substitution in exon 6 of PAX3 (NC_051841.1:g.205,787,310G>A, XM_019838731.3:c.937C>T, XP_019694290.1:p.Gln313*), predicted to result in a premature stop codon. PAX3 variants cause auditory-pigmentary syndrome in humans, horses, and mice. Together with the comparative data from other species, our findings strongly suggest PAX3:c.937C>T (OMIA:001688-9685) as the most likely candidate variant for the DBE, deafness, and minimal white spotting in the Maine Coon Dutch line. Finally, we propose the designation of DBERE (Rociri Elvis Dominant Blue Eyes) allele in the domestic cat.
Collapse
Affiliation(s)
- Gabriela Rudd Garces
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Giessen, Germany
- Generatio GmbH, 69115 Heidelberg, Germany
| | - Daniela Farke
- Clinic for Small Animals, Neurosurgery, Neuroradiology and Clinical Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Martin J Schmidt
- Clinic for Small Animals, Neurosurgery, Neuroradiology and Clinical Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Anna Letko
- Vetsuisse Faculty, Institute of Genetics, University of Bern, 3012 Bern, Switzerland
| | - Katja Schirl
- Department of Molecular Biology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany
| | - Marie Abitbol
- Université Claude Bernard Lyon, VetAgro Sup, 69280 Marcy-l'Etoile, France
- Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Université Claude Bernard Lyon 1, Rockefeller, 69008 Lyon, France
| | - Tosso Leeb
- Vetsuisse Faculty, Institute of Genetics, University of Bern, 3012 Bern, Switzerland
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Giessen, Germany
| |
Collapse
|
2
|
Dai D, Sari EM, Si J, Ashari H, Dagong MIA, Pauciullo A, Lenstra JA, Han J, Zhang Y. Genomic analysis reveals the association of KIT and MITF variants with the white spotting in swamp buffaloes. BMC Genomics 2024; 25:713. [PMID: 39048931 PMCID: PMC11267946 DOI: 10.1186/s12864-024-10634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Swamp-type buffaloes with varying degrees of white spotting are found exclusively in Tana Toraja, South Sulawesi, Indonesia, where spotted buffalo bulls are highly valued in accordance with the Torajan customs. The white spotting depigmentation is caused by the absence of melanocytes. However, the genetic variants that cause this phenotype have not been fully characterized. The objective of this study was to identify the genomic regions and variants responsible for this unique coat-color pattern. RESULTS Genome-wide association study (GWAS) and selection signature analysis identified MITF as a key gene based on the whole-genome sequencing data of 28 solid and 39 spotted buffaloes, while KIT was also found to be involved in the development of this phenotype by a candidate gene approach. Alternative candidate mutations included, in addition to the previously reported nonsense mutation c.649 C > T (p.Arg217*) and splice donor mutation c.1179 + 2T > A in MITF, a nonsense mutation c.2028T > A (p.Tyr676*) in KIT. All these three mutations were located in the genomic regions that were highly conserved exclusively in Indonesian swamp buffaloes and they accounted largely (95%) for the manifestation of white spotting. Last but not the least, ADAMTS20 and TWIST2 may also contribute to the diversification of this coat-color pattern. CONCLUSIONS The alternative mutations identified in this study affect, at least partially and independently, the development of melanocytes. The presence and persistence of such mutations may be explained by significant financial and social value of spotted buffaloes used in historical Rambu Solo ceremony in Tana Toraja, Indonesia. Several de novo spontaneous mutations have therefore been favored by traditional breeding for the spotted buffaloes.
Collapse
Affiliation(s)
- Dongmei Dai
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Eka Meutia Sari
- Department of Animal Science, Agriculture Faculty, Universitas Syiah Kuala (USK), Banda Aceh, 23111, Indonesia.
| | - Jingfang Si
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hidayat Ashari
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Muhammad Ihsan Andi Dagong
- Animal Production Department, Faculty of Animal Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), 10095, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Yi Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Molecular Cytogenetics in Domestic Bovids: A Review. Animals (Basel) 2023; 13:ani13050944. [PMID: 36899801 PMCID: PMC10000107 DOI: 10.3390/ani13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.
Collapse
|
4
|
Cristina R, Viviana G, Domenico I, Filomena M, Angela P, Alfredo P. State of the art on the physical mapping of the Y-chromosome in the <i>Bovidae</i> and comparison with other species. Anim Biosci 2022; 35:1289-1302. [PMID: 35240029 PMCID: PMC9449390 DOI: 10.5713/ab.21.0480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022] Open
Abstract
The next generation sequencing has significantly contributed to clarify the genome structure of many species of zootechnical interest. However, to date, some portions of the genome, especially those linked to a heterogametic nature such as the Y chromosome, are difficult to assemble and many gaps are still present. It is well known that the fluorescence in situ hybridization (FISH) is an excellent tool for identifying genes unequivocably mapped on chromosomes. Therefore, FISH can contribute to the localization of unplaced genome sequences, as well as to correct assembly errors generated by comparative bioinformatics. To this end, it is necessary to have starting points; therefore, in this study, we reviewed the physically mapped genes on the Y chromosome of cattle, buffalo, sheep, goats, pigs, horses and alpacas. A total of 208 loci were currently mapped by FISH. 89 were located in the male-specific region of the Y chromosome (MSY) and 119 were identified in the pseudoautosomal region (PAR). The loci reported in MSY and PAR were respectively: 18 and 25 in Bos taurus, 5 and 7 in Bubalus bubalis, 5 and 24 in Ovis aries, 5 and 19 in Capra hircus, 10 and 16 in Sus scrofa, 46 and 18 in Equus caballus. While in Vicugna pacos only 10 loci are reported in the PAR region. The correct knowledge and assembly of all genome sequences, including those of genes mapped on the Y chromosome, will help to elucidate their biological processes, as well as to discover and exploit potentially epistasis effects useful for selection breeding programs.
Collapse
|
5
|
Genualdo V, Rossetti C, Pauciullo A, Musilova P, Incarnato D, Perucatti A. A de novo reciprocal chromosomal translocation t(3;6)(p14;q26) in the black Lucano pig. Reprod Domest Anim 2020; 55:677-682. [PMID: 32125727 DOI: 10.1111/rda.13664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023]
Abstract
In the past two decades, several cytogenetic screening programmes identified different chromosome rearrangements in pig, most of which represented by reciprocal translocation (rcp). This chromosome abnormality does not involve the variation in the number of chromosomes, but only the rearrangement of genetic material, resulting in phenotypically normal carriers with fertility problems. During an occasional cytogenetic screening, a new reciprocal translocation was detected in the black Lucano pig native breed. We analysed 15 animals reared by a family-run piggery in Basilicata region (Southern Italy). After karyotyping, four pigs (two boars and two sows) revealed two unpaired chromosomes. Analysis of the RBA karyotype and the dual-colour FISH technique confirmed that these pigs showed the same reciprocal translocation involving the chromosomes SSC3 and SSC6. The precise location of breakpoints was identified by RBH-FISH t(3;6)(p14;q26), whereas the analysis of the pedigree showed a case of Mendelian inheritance within a family, after the de novo occurrence of the new rcp. Considering the consequences of the rcp on the fertility, this study points out the importance of the cytogenetic screening in the native breeds for the safeguard of the genetic biodiversity and the sustainability of the rural areas.
Collapse
Affiliation(s)
- Viviana Genualdo
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Cristina Rossetti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Alfredo Pauciullo
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy.,Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Domenico Incarnato
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Angela Perucatti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| |
Collapse
|
6
|
Pauciullo A, Shuiep ET, Ogah MD, Cosenza G, Di Stasio L, Erhardt G. Casein Gene Cluster in Camelids: Comparative Genome Analysis and New Findings on Haplotype Variability and Physical Mapping. Front Genet 2019; 10:748. [PMID: 31555318 PMCID: PMC6726744 DOI: 10.3389/fgene.2019.00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
The structure of casein genes has been fully understood in llamas, whereas in other camelids, this information is still incomplete. In fact, structure and polymorphisms have been identified in three (CSN1S1, αs1-CN; CSN2, β-CN; CSN3, κ-CN) out of four casein genes, whereas controversial information is available for the CSN1S2 (αs2-CN) in terms of structure and genetic diversity. Data from the genome analysis, whose assembly is available for feral camel, Bactrian, dromedary, and alpaca, can contribute to a better knowledge. However, a majority of the scaffolds available in GenBank are still unplaced, and the comparative annotation is often inaccurate or lacking.Therefore, the aims of this study are 1) to perform a comparative genome analysis and synthesize the literature data on camelids casein cluster; 2) to analyze the casein variability in two dromedary populations (Sudanese and Nigerian) using polymorphisms at CSN1S1 (c.150G > T), CSN2 (g.2126A > G), and CSN3 (g.1029T > C); and 3) to physically map the casein cluster in alpaca. Exon structures, gene and intergenic distances, large insertion/deletion events, SNPs, and microsatellites were annotated. In all camelids, the CSN1S2 consists of 17 exons, confirming the structure of llama CSN1S2 gene. The comparative analysis of the complete casein cluster (∼190kb) shows 12,818 polymorphisms. The most polymorphic gene is the CSN1S1 (99 SNPs in Bactrian vs. 248 in dromedary vs. 626 in alpaca). The less polymorphic is the CSN3 in the Bactrian (22 SNPs) and alpaca (301 SNPs), whereas it is the CSN1S2 in dromedary (79 SNPs). In the two investigated dromedary populations, the allele frequencies for the three markers are slightly different: the allele C at CSN1S1 is very rare in Nigerian (0.054) and Sudanese dromedaries (0.094), whereas the frequency of the allele G at CSN2 is almost inverted. Haplotype analysis evidenced GAC as the most frequent (0.288) and TGC as the rarest (0.005). The analysis of R-banding metaphases hybridized with specific probes mapped the casein genes on chromosome 2q21 in alpaca. These data deepen the information on the structure of the casein cluster in camelids and add knowledge on the cytogenetic map and haplotype variability.
Collapse
Affiliation(s)
- Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - El Tahir Shuiep
- Institute of Molecular Biology, University of Nyala, Nyala, Sudan
| | - Moses Danlami Ogah
- Department of Animal Science, Nasarawa State University, Keffi, Shabu-Lafia, Nigeria
| | - Gianfranco Cosenza
- Department of Agriculture, University of Napoli Federico II, Portici Italy
| | - Liliana Di Stasio
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Georg Erhardt
- Department for Animal Breeding and Genetics, Justus Liebig University, Gießen, Germany
| |
Collapse
|
7
|
Abstract
High resolution fiber-Fluorescence in situ hybridization (FISH) is an advanced FISH technology that can effectively bridge the resolution gap between probe hybridizing on DNA molecules and chromosomal regions. Since various types of DNA and chromatin fibers can be generated reflecting different degrees of DNA/chromatin packaging status, fiber-FISH technology has been successfully used in diverse molecular cytogenetic/cytogenomic studies. Following a brief review of this technology, including its major development and increasing applications, typical protocols to generate DNA/chromatin fiber will be described, coupled with rationales, as well as technical tips. These released DNA/chromatin fibers are suitable for an array of cytogenetic/cytogenomic analyses.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 3226 Scott Hall, 540 E, Detroit, MI, 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Deen J, Sempels W, De Dier R, Vermant J, Dedecker P, Hofkens J, Neely RK. Combing of genomic DNA from droplets containing picograms of material. ACS NANO 2015; 9:809-816. [PMID: 25561163 PMCID: PMC4344373 DOI: 10.1021/nn5063497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 05/30/2023]
Abstract
Deposition of linear DNA molecules is a critical step in many single-molecule genomic approaches including DNA mapping, fiber-FISH, and several emerging sequencing technologies. In the ideal situation, the DNA that is deposited for these experiments is absolutely linear and uniformly stretched, thereby enabling accurate distance measurements. However, this is rarely the case, and furthermore, current approaches for the capture and linearization of DNA on a surface tend to require complex surface preparation and large amounts of starting material to achieve genomic-scale mapping. This makes them technically demanding and prevents their application in emerging fields of genomics, such as single-cell based analyses. Here we describe a simple and extremely efficient approach to the deposition and linearization of genomic DNA molecules. We employ droplets containing as little as tens of picograms of material and simply drag them, using a pipet tip, over a polymer-coated coverslip. In this report we highlight one particular polymer, Zeonex, which is remarkably efficient at capturing DNA. We characterize the method of DNA capture on the Zeonex surface and find that the use of droplets greatly facilitates the efficient deposition of DNA. This is the result of a circulating flow in the droplet that maintains a high DNA concentration at the interface of the surface/solution. Overall, our approach provides an accessible route to the study of genomic structural variation from samples containing no more than a handful of cells.
Collapse
Affiliation(s)
- Jochem Deen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Wouter Sempels
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Raf De Dier
- Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46, Heverlee 3001, Belgium
| | - Jan Vermant
- Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46, Heverlee 3001, Belgium
- Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, CH 8093 Zürich, Switzerland
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Robert K. Neely
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|