1
|
Ageing as a risk factor for cerebral ischemia: Underlying mechanisms and therapy in animal models and in the clinic. Mech Ageing Dev 2020; 190:111312. [PMID: 32663480 DOI: 10.1016/j.mad.2020.111312] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Age is the only one non-modifiable risk of cerebral ischemia. Advances in stroke medicine and behavioral adaptation to stroke risk factors and comorbidities was successful in decreasing stroke incidence and increasing the number of stroke survivors in western societies. Comorbidities aggravates the outcome after cerebral ischemia. However, due to the increased in number of elderly, the incidence of stroke has increased again paralleled by an increase in the number of stroke survivors, many with severe disabilities, that has led to an increased economic and social burden in society. Animal models of stroke often ignore age and comorbidities frequently associated with senescence. This might explain why drugs working nicely in animal models fail to show efficacy in stroke survivors. Since stroke afflicts mostly the elderly comorbid patients, it is highly desirable to test the efficacy of stroke therapies in an appropriate animal stroke model. Therefore, in this review, we make parallels between animal models of stroke und clinical data and summarize the impact of ageing and age-related comorbidities on stroke outcome.
Collapse
|
2
|
Tolstun DA, Knyazer A, Tushynska TV, Dubiley TA, Bezrukov VV, Fraifeld VE, Muradian KK. Metabolic remodelling of mice by hypoxic-hypercapnic environment: imitating the naked mole-rat. Biogerontology 2019; 21:143-153. [DOI: 10.1007/s10522-019-09848-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
|
3
|
Lu Y, Zeng X, Jing X, Yin M, Chang MMP, Wei H, Yang Y, Liao X, Dai G, Hu C. Pre-arrest hypothermia improved cardiac function of rats by ameliorating the myocardial mitochondrial injury after cardiac arrest. Exp Biol Med (Maywood) 2019; 244:1186-1192. [PMID: 31530020 DOI: 10.1177/1535370219875434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of hypothermia induced before cardiac arrest or after return of spontaneous circulation (ROSC) on cardiac function and myocardial mitochondrial injury after ROSC in a rat cardiac arrest model. Sixty healthy, male Wistar rats were randomly divided into the Normothermia group, pre-arrest hypothermia (Pre-HT) group, and post-resuscitation hypothermia (Post-HT) group. The rats underwent 8 min of untreated ventricular fibrillation followed by cardiopulmonary resuscitation. Twelve rats in each group were used to evaluate the left ventricular ejection fraction before ventricular fibrillation and 4 h after ROSC. Survival was determined at 24 h after ROSC. The remaining eight rats in each group were used to detect for heart malondialdehyde, reduced glutathione, adenosine triphosphate levels and mitochondrial histology. Oxygen consumption rate and mitochondrial membrane potential were evaluated 4 h after ROSC; 10 of 12 rats in Pre-HT group, 5 of 12 in Post-HT group, and 6 of 12 in normothermia group were successfully resuscitated. The survival rate of each group was 66.7%, 33.3%, and 25%, respectively. Rats in the Pre-HT group showed less alteration of the mitochondrial ultrastructure and oxidative stress injury, better maintenance of adenine nucleotides, and more preservation of the mitochondrial membrane potential and respiratory function when compared with rats in the Post-HT and normothermia groups. Transient hypothermia is an effective preconditioning stimulus to induce ischemic tolerance in a cardiac arrest model and worthy of further evaluation for potential clinical use. Impact statement In this paper, we investigated the effects of hypothermia induced before ischemia or after ROSC on cardiac function, oxidative stress damage, and myocardial mitochondrial ischemia–reperfusion injury after cardiac arrest in a rat model with VF. We demonstrated that pre-arrest hypothermia conferred greater cardio-protective benefits than delayed post-resuscitation hypothermia, reduced the number of defibrillations required and dosages of epinephrine during CPR, decreased oxidative stress, ameliorated mitochondrial dysfunction, and subsequently improved survival rate.
Collapse
Affiliation(s)
- Yuanzheng Lu
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,Department of Emergency Medicine, Sun Yat-sen University/The Seventh Affiliated Hospital, Shenzhen 518107, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Xiaoyun Zeng
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Xiaoli Jing
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China
| | - Meixian Yin
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Mms Mary P Chang
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas 75205, USA
| | - Hongyan Wei
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China
| | - Yan Yang
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Xiaoxing Liao
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,Department of Emergency Medicine, Sun Yat-sen University/The Seventh Affiliated Hospital, Shenzhen 518107, China
| | - Gang Dai
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Chunlin Hu
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| |
Collapse
|
4
|
Kurisu K, Kim JY, You J, Yenari MA. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr Med Chem 2019; 26:5430-5455. [PMID: 31057103 PMCID: PMC6913523 DOI: 10.2174/0929867326666190506124836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
Therapeutic hypothermia has consistently been shown to be a robust neuroprotectant in many labs studying different models of neurological disease. Although this therapy has shown great promise, there are still challenges at the clinical level that limit the ability to apply this routinely to each pathological condition. In order to overcome issues involved in hypothermia therapy, understanding of this attractive therapy is needed. We review methodological concerns surrounding therapeutic hypothermia, introduce the current status of therapeutic cooling in various acute brain insults, and review the literature surrounding the many underlying molecular mechanisms of hypothermic neuroprotection. Because recent work has shown that body temperature can be safely lowered using pharmacological approaches, this method may be an especially attractive option for many clinical applications. Since hypothermia can affect multiple aspects of brain pathophysiology, therapeutic hypothermia could also be considered a neuroprotection model in basic research, which would be used to identify potential therapeutic targets. We discuss how research in this area carries the potential to improve outcome from various acute neurological disorders.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | - Jong Youl Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Departments of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jesung You
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
5
|
Vinciguerra A, Cuomo O, Cepparulo P, Anzilotti S, Brancaccio P, Sirabella R, Guida N, Annunziato L, Pignataro G. Models and methods for conditioning the ischemic brain. J Neurosci Methods 2018; 310:63-74. [PMID: 30287283 DOI: 10.1016/j.jneumeth.2018.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.
Collapse
Affiliation(s)
- Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
6
|
Sandu RE, Dumbrava D, Surugiu R, Glavan DG, Gresita A, Petcu EB. Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects. Int J Mol Sci 2017; 19:ijms19010099. [PMID: 29286319 PMCID: PMC5796049 DOI: 10.3390/ijms19010099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/12/2022] Open
Abstract
The incidence of ischemic stroke in humans increases exponentially above 70 years both in men and women. Comorbidities like diabetes, arterial hypertension or co-morbidity factors such as hypercholesterolemia, obesity and body fat distribution as well as fat-rich diet and physical inactivity are common in elderly persons and are associated with higher risk of stroke, increased mortality and disability. Obesity could represent a state of chronic inflammation that can be prevented to some extent by non-pharmaceutical interventions such as calorie restriction and hypothermia. Indeed, recent results suggest that H₂S-induced hypothermia in aged, overweight rats could have a higher probability of success in treating stroke as compared to other monotherapies, by reducing post-stroke brain inflammation. Likewise, it was recently reported that weight reduction prior to stroke, in aged, overweight rats induced by caloric restriction, led to an early re-gain of weight and a significant improvement in recovery of complex sensorimotor skills, cutaneous sensitivity, or spatial memory. CONCLUSION animal models of stroke done in young animals ignore age-associated comorbidities and may explain, at least in part, the unsuccessful bench-to-bedside translation of neuroprotective strategies for ischemic stroke in aged subjects.
Collapse
Affiliation(s)
- Raluca Elena Sandu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Danut Dumbrava
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Roxana Surugiu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Daniela-Gabriela Glavan
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Andrei Gresita
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Eugen Bogdan Petcu
- Gold Coast Campus, School of Medicine, Griffith University, Southport 4222, Australia.
| |
Collapse
|
7
|
Rewell SSJ, Jeffreys AL, Sastra SA, Cox SF, Fernandez JA, Aleksoska E, van der Worp HB, Churilov L, Macleod MR, Howells DW. Hypothermia revisited: Impact of ischaemic duration and between experiment variability. J Cereb Blood Flow Metab 2017; 37:3380-3390. [PMID: 28084873 PMCID: PMC5624387 DOI: 10.1177/0271678x16688704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To assess the true effect of novel therapies for ischaemic stroke, a positive control that can validate the experimental model and design is vital. Hypothermia may be a good candidate for such a positive control, given the convincing body of evidence from animal models of ischaemic stroke. Taking conditions under which substantial efficacy had been seen in a meta-analysis of hypothermia for focal ischaemia in animal models, we undertook three randomised and blinded studies examining the effect of hypothermia induced immediately following the onset of middle cerebral artery occlusion on infarct volume in rats (n = 15, 23, 264). Hypothermia to a depth of 33℃ and maintained for 130 min significantly reduced infarct volume compared to normothermia treatment (by 27-63%) and depended on ischaemic duration (F(3,244) = 21.242, p < 0.05). However, the protective effect varied across experiments with differences in both the size of the infarct observed in normothermic controls and the time to reach target temperature. Our results highlight the need for sample size and power calculations to take into account variations between individual experiments requiring induction of focal ischaemia.
Collapse
Affiliation(s)
- Sarah SJ Rewell
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Amy L Jeffreys
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Steven A Sastra
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Susan F Cox
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - John A Fernandez
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Elena Aleksoska
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Malcolm R Macleod
- Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, UK
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania
- David W Howells, School of Medicine, Faculty of Health, University of Tasmania, Medical Science Precinct, 17 Liverpool Street, Hobart, Tasmania, Australia.
| |
Collapse
|
8
|
Liu K, Khan H, Geng X, Zhang J, Ding Y. Pharmacological hypothermia: a potential for future stroke therapy? Neurol Res 2017; 38:478-90. [PMID: 27320243 DOI: 10.1080/01616412.2016.1187826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mild physical hypothermia after stroke has been associated with positive outcomes. Despite the well-studied beneficial effects of hypothermia in the treatment of stroke, lack of precise temperature control, intolerance for the patient, and immunosuppression are some of the reasons which limit its clinical translation. Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models. Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives. Interestingly, drugs in the TRPV1, neurotensin, and thyroxine families have been shown to have effects in thermoregulatory control in decreasing the compensatory hypothermic response during cooling. This review will briefly present drugs in the eight classes by summarizing their proposed mechanisms of action as well as side effects. Reported thermoregulatory effects of the drugs will also be presented. This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.
Collapse
Affiliation(s)
- Kaiyin Liu
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Hajra Khan
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Jun Zhang
- c China-America Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
9
|
Lee JH, Zhang J, Yu SP. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke. Neural Regen Res 2017; 12:341-350. [PMID: 28469636 PMCID: PMC5399699 DOI: 10.4103/1673-5374.202915] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of disability and death, yet effective treatments for acute stroke has been very limited. Thus far, tissue plasminogen activator has been the only FDA-approved drug for thrombolytic treatment of ischemic stroke patients, yet its application is only applicable to less than 4–5% of stroke patients due to the narrow therapeutic window (< 4.5 hours after the onset of stroke) and the high risk of hemorrhagic transformation. Emerging evidence from basic and clinical studies has shown that therapeutic hypothermia, also known as targeted temperature management, can be a promising therapy for patients with different types of stroke. Moreover, the success in animal models using pharmacologically induced hypothermia (PIH) has gained increasing momentum for clinical translation of hypothermic therapy. This review provides an updated overview of the mechanisms and protective effects of therapeutic hypothermia, as well as the recent development and findings behind PIH treatment. It is expected that a safe and effective hypothermic therapy has a high translational potential for clinical treatment of patients with stroke and other CNS injuries.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - James Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| |
Collapse
|
10
|
Pramipexole-Induced Hypothermia Reduces Early Brain Injury via PI3K/AKT/GSK3β pathway in Subarachnoid Hemorrhage rats. Sci Rep 2016; 6:23817. [PMID: 27026509 PMCID: PMC4812308 DOI: 10.1038/srep23817] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown neuroprotective effects of hypothermia. However, its effects on subarachnoid hemorrhage (SAH)-induced early brain injury (EBI) remain unclear. In this study, a SAH rat model was employed to study the effects and mechanisms of pramipexole-induced hypothermia on EBI after SAH. Dose-response experiments were performed to select the appropriate pramipexole concentration and frequency of administration for induction of mild hypothermia (33–36 °C). Western blot, neurobehavioral evaluation, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and Fluoro-Jade B (FJB) staining were used to detect the effects of pramipexole-induced hypothermia on SAH-induced EBI, as well as to study whether controlled rewarming could attenuate these effects. Inhibitors targeting the PI3K/AKT/GSK3β pathway were administered to determine whether the neuroprotective effect of pramipexole-induced hypothermia was mediated by PI3K/AKT/GSK3β signaling pathway. The results showed that intraperitoneal injection of pramipexole at 0.25 mg/kg body weight once per 8 hours was found to successfully and safely maintain rats at mild hypothermia. Pramipexole-induced hypothermia ameliorated SAH-induced brain cell death, blood-brain barrier damage and neurobehavioral deficits in a PI3K/AKT/GSK3β signaling-dependent manner. Therefore, we may conclude that pramipexole-induced hypothermia could effectively inhibit EBI after SAH in rats via PI3K/AKT/GSK3β signaling pathway.
Collapse
|
11
|
Abstract
The Pangu Stroke Conference has been held annually in China since 2012 and is based on the successful templates of the Princeton Stroke Conference in the United States and the Marburg Conference on Cerebral Ischemia in Germany. All participants in the Pangu Stroke Conference are expert stroke clinicians or stroke basic science researchers of Chinese origin. This conference promotes collaboration between clinicians and basic science researchers and between stroke researchers in mainland China and other parts of the world. The Pangu Stroke Conference fosters translational stroke research, discussions of stroke research milestones, and proposals for future directions. Some of the keynote presentations in the third Pangu Stroke Conference are included in this special issue.
Collapse
|
12
|
Twenty-four hours hypothermia has temporary efficacy in reducing brain infarction and inflammation in aged rats. Neurobiol Aging 2015; 38:127-140. [PMID: 26827651 DOI: 10.1016/j.neurobiolaging.2015.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/19/2015] [Accepted: 11/11/2015] [Indexed: 11/23/2022]
Abstract
Stroke is a major cause of disability for which no neuroprotective measures are available. Age is the principal nonmodifiable risk factor for this disease. Previously, we reported that exposure to hydrogen sulfide for 48 hours after stroke lowers whole body temperature and confers neuroprotection in aged animals. Because the duration of hypothermia in most clinical trials is between 24 and 48 hours, we questioned whether 24 hours exposure to gaseous hypothermia confers the same neuroprotective efficacy as 48 hours exposure. We found that a shorter exposure to hypothermia transiently reduced both inflammation and infarct size. However, after 1 week, the infarct size became even larger than in controls and after 2 weeks there was no beneficial effect on regenerative processes such as neurogenesis. Behaviorally, hypothermia also had a limited beneficial effect. Finally, after hydrogen sulfide-induced hypothermia, the poststroke aged rats experienced a persistent sleep impairment during their active nocturnal period. Our data suggest that cellular events that are delayed by hypothermia in aged rats may, in the long term, rebound, and diminish the beneficial effects.
Collapse
|
13
|
Johansen FF, Hasseldam H, Nybro Smith M, Rasmussen RS. Drug-induced hypothermia by 5HT1A agonists provide neuroprotection in experimental stroke: new perspectives for acute patient treatment. J Stroke Cerebrovasc Dis 2014; 23:2879-2887. [PMID: 25307429 DOI: 10.1016/j.jstrokecerebrovasdis.2014.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Drug-induced hypothermia reduces brain damage in animal stroke models and is an undiscovered potential in human stroke treatment. We studied hypothermia induced by the serotonergic agonists S14671 (1-[2-(2-thenoylamino)ethyl]-4[1-(7- methoxynaphtyl)]piperazine) and ipsapirone in a rat stroke model and in man by literature meta-analysis. METHODS Rats had 60 minutes of middle cerebral artery occlusion (MCAO) and then 7 days of survival. Body temperatures were monitored for 22 hours. Thirty minutes after MCAO, 1 group (n = 9) received bolus of S14671 (.75 mg/kg) and continuous infusion of .06 mg/kg hour(-1) S14671 for 20 hours. Other MCAO rats (n = 7) had bolus of ipsapirone (.75 mg/kg) and continuous infusion of .25 mg/kg hour(-1) ipsapirone for 3 hours. Controls (n = 9; n = 5) received similar amounts of vehicle as bolus and continuous infusion for 20 hours/3 hours. Additional controls of the S14761 effect in MCAO were performed as previously mentioned (n = 10) but with rats kept normothermic by a heating lamp for 22 hours. Finally, a meta-analysis of ipsapirone-induced hypothermia in man was included. RESULTS Infarct volumes were reduced by 50% in hypothermic rats versus controls (P < .05). S14671 rats kept normothermic did not show infarct reduction (P > .05). The body temperature after stroke was reduced 1.0-3.0°C compared with controls for 20 hours with S14671 treatment and for 6 hours with ipsapirone treatment. In humans, ipsapirone reduced temperature in average with .55 °C ranging between .1-1.4 °C. CONCLUSIONS 5-hydroxytryptamine receptor 1A (5HT(1A)) agonists significantly reduce infarct volumes in MCAO rats primarily because of the hypothermic drug effect. 5HT(1A) agonists may be introduced to reduce body temperatures rapidly and prepare patients for further therapeutic hypothermia.
Collapse
Affiliation(s)
- Flemming Fryd Johansen
- Copenhagen Experimental Stroke Unit, Molecular Pathology at Biotech Research and Innovation Centre (BRIC), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Hasseldam
- Copenhagen Experimental Stroke Unit, Molecular Pathology at Biotech Research and Innovation Centre (BRIC), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Nybro Smith
- Copenhagen Experimental Stroke Unit, Molecular Pathology at Biotech Research and Innovation Centre (BRIC), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Skovgaard Rasmussen
- Copenhagen Experimental Stroke Unit, Molecular Pathology at Biotech Research and Innovation Centre (BRIC), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Guan J, Li H, Lv T, Chen D, Yuan Y, Qu S. Bone Morphogenic Protein-7 Contributes to Cerebral Ischemic Preconditioning Induced-Ischemic Tolerance by Activating p38 Mitogen-Activated Protein Kinase Signaling Pathway. Inflammation 2014; 37:1289-96. [DOI: 10.1007/s10753-014-9856-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|