1
|
MicroRNA-4472 Promotes Tumor Proliferation and Aggressiveness in Breast Cancer by Targeting RGMA and Inducing EMT. Clin Breast Cancer 2019; 20:e113-e126. [PMID: 31899158 DOI: 10.1016/j.clbc.2019.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Breast cancer is the most common cause of cancer-related death in women worldwide. MicroRNA (miRNA) ectopic expression has been reported to be involved in the regulation of gene expression in breast cancer. We screened several differentially expressed miRNAs associated with breast cancer chemoresistance, growth, and metastasis using a miRNA microarray. Increased expression of miR-4472 has been associated with larger breast tumors and chemoresistance. However, the biologic function of miR-4472 and its molecular mechanisms in cancer progression have not yet been reported. MATERIALS AND METHODS Real-time quantitative polymerase chain reaction was used to measure the expression of miR-4472 in breast cancer tissue and cell lines. The biologic functions of miR-4472 and its target gene were explored using Transwell, cell proliferation, and flow cytometry assays. Bioinformatics tools, dual-luciferase reporter assays, and Western blot were used to identify the target genes of miR-4472. Western blot was used to explain the participation of miR-4472 and target gene in epithelial-to-mesenchymal transition. RESULTS miR-4472 was significantly upregulated in highly metastatic breast cancer tissues, and its expression was positively associated with larger tumor size and advanced pTNM stage. miR-4472 promoted breast cancer cell metastasis and growth. Repulsive guidance molecule A (RGMA) was a direct target gene of miR-4472. RGMA was identified as a suppressor in cancer metastasis. miR-4472 downregulated expression of RGMA and promoted epithelial-to-mesenchymal transition by suppressing E-cadherin and initiating vimentin, β-catenin, and Slug. CONCLUSIONS miR-4472 contributes to the progression of breast cancer by regulating RGMA expression and inducing epithelial-to-mesenchymal transition, indicating that miR-4472/RGMA might serve as a therapeutic target for breast cancer.
Collapse
|
2
|
Kim DY, Park JA, Kim Y, Noh M, Park S, Lie E, Kim E, Kim YM, Kwon YG. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175. FASEB J 2019; 33:9842-9857. [PMID: 31170000 PMCID: PMC6704462 DOI: 10.1096/fj.201802516rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis depends on VEGF-mediated signaling. However, the regulatory mechanisms and functions of individual VEGF receptor 2 (VEGFR2) phosphorylation sites remain unclear. Here, we report that synaptic adhesion-like molecule 4 (SALM4) regulates a specific VEGFR2 phosphorylation site. SALM4 silencing in HUVECs and Salm4 knockout (KO) in lung endothelial cells (ECs) of Salm4−/− mice suppressed phosphorylation of VEGFR2 tyrosine (Y) 1175 (Y1173 in mice) and downstream signaling upon VEGF-A stimulation. However, VEGFR2 phosphorylation at Y951 (Y949 in mice) and Y1214 (Y1212 in mice) remained unchanged. Knockdown and KO of SALM4 inhibited VEGF-A–induced angiogenic functions of ECs. SALM4 depletion reduced endothelial leakage, sprouting, and migratory activities. Furthermore, in an ischemia and reperfusion (I/R) model, brain injury was attenuated in Salm4−/− mice compared with wild-type (WT) mice. In brain lysates after I/R, VEGFR2 phosphorylation at Y949, Y1173, and Y1212 were induced in WT brains, but only Y1173 phosphorylation of VEGFR2 was reduced in Salm4−/− brains. Taken together, our results demonstrate that SALM4 specifically regulates VEGFR2 phosphorylation at Y1175 (Y1173 in mice), thereby fine-tuning VEGF signaling in ECs.—Kim, D. Y., Park, J. A., Kim, Y., Noh, M., Park, S., Lie, E., Kim, E., Kim, Y.-M., Kwon, Y.-G. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeomyung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Songyi Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunkyung Lie
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon-si, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
3
|
Pircher A, Schäfer G, Eigentler A, Pichler R, Puhr M, Steiner E, Horninger W, Gunsilius E, Klocker H, Heidegger I. Robo 4 - the double-edged sword in prostate cancer: impact on cancer cell aggressiveness and tumor vasculature. Int J Med Sci 2019; 16:115-124. [PMID: 30662335 PMCID: PMC6332478 DOI: 10.7150/ijms.28735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background: The magic roundabout receptor 4 (Robo 4) is a tumor endothelial marker expressed in the vascular network of various tumor entities. However, the role of Robo 4 in prostate cancer (PCa), the second common cause of cancer death among men in -developed countries, has not been described yet. Thus, the present study investigates for the first time the impact of Robo 4 in PCa both in the clinical setting and in vitro. Methods and Results: Immunohistochemical analyses of benign and malignant prostate tissue samples of 95 PCa patients, who underwent radical prostatectomy (RPE), revealed a significant elevated expression of Robo 4 as well as its ligand Slit 2 protein in cancerous tissue compared to benign. Moreover, increased Robo 4 expression was associated with higher Gleason score and pT stage. In advanced stage we observed a hypothesis-generating trend that high Robo 4 and Slit 2 expression is associated with delayed development of tumor recurrence compared to patients with low Robo 4 and Slit 2 expression, respectively. In contrast to so far described exclusive expression of Robo 4 in the tumor vascular network, our analyses showed that in PCa Robo 4 is not only expressed in the tumor stroma but also in cancer epithelial cells. This finding was also confirmed in vitro as PC3 PCa cells express Robo 4 on mRNA as well as protein level. Overexpression of Robo 4 in PC3 as well as in Robo 4 negative DU145 and LNCaP PCa cells was associated with a significant decrease in cell-proliferation and cell-viability. Conclusion: In summary we observed that Robo 4 plays a considerable role in PCa development as it is expressed in cancer epithelial cells as well as in the surrounding tumor stroma. Moreover, higher histological tumor grade was associated with increased Robo 4 expression; controversially patients with high Robo 4 tend to exert lower biochemical recurrence possibly reflecting a protective role of Robo 4.
Collapse
Affiliation(s)
- Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Medical University Innsbruck, Austria
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, Austria
| | | | - Renate Pichler
- Department of Pathology, Medical University Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University Innsbruck, Austria
| | | | | | - Eberhard Gunsilius
- Department of Hematology and Oncology, Internal Medicine V, Medical University Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, Austria
| | | |
Collapse
|
4
|
Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E. Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Rev Rep 2018; 14:642-667. [DOI: 10.1007/s12015-018-9825-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Yee M, Cohen ED, Domm W, Porter GA, McDavid AN, O’Reilly MA. Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation. Am J Physiol Lung Cell Mol Physiol 2018; 314:L846-L859. [PMID: 29345197 PMCID: PMC6008126 DOI: 10.1152/ajplung.00409.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Supplemental oxygen given to preterm infants has been associated with permanently altering postnatal lung development. Now that these individuals are reaching adulthood, there is growing concern that early life oxygen exposure may also promote cardiovascular disease through poorly understood mechanisms. We previously reported that adult mice exposed to 100% oxygen between postnatal days 0 and 4 develop pulmonary hypertension, defined pathologically by capillary rarefaction, dilation of arterioles and veins, cardiac failure, and a reduced lifespan. Here, Affymetrix Gene Arrays are used to identify early transcriptional changes that take place in the lung before pulmonary capillary rarefaction. We discovered neonatal hyperoxia reduced expression of cardiac muscle genes, including those involved in contraction, calcium signaling, mitochondrial respiration, and vasodilation. Quantitative RT-PCR, immunohistochemistry, and genetic lineage mapping using Myh6CreER; Rosa26RmT/mG mice revealed this reflected loss of pulmonary vein cardiomyocytes. The greatest loss of cadiomyocytes was seen within the lung followed by a graded loss beginning at the hilum and extending into the left atrium. Loss of these cells was seen by 2 wk of age in mice exposed to ≥80% oxygen and was attributed, in part, to reduced proliferation. Administering mitoTEMPO, a scavenger of mitochondrial superoxide during neonatal hyperoxia prevented loss of these cells. Since pulmonary vein cardiomyocytes help pump oxygen-rich blood out of the lung, their early loss following neonatal hyperoxia may contribute to cardiovascular disease seen in these mice, and perhaps in people who were born preterm.
Collapse
Affiliation(s)
- Min Yee
- 1Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Ethan David Cohen
- 2Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - William Domm
- 1Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - George A. Porter
- 1Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Andrew N. McDavid
- 3Biostatistics and Computational Biology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | | |
Collapse
|
6
|
Pircher A, Jöhrer K, Kocher F, Steiner N, Graziadei I, Heidegger I, Pichler R, Leonhartsberger N, Kremser C, Kern J, Untergasser G, Gunsilius E, Hilbe W. Biomarkers of evasive resistance predict disease progression in cancer patients treated with antiangiogenic therapies. Oncotarget 2018; 7:20109-23. [PMID: 26956051 PMCID: PMC4991441 DOI: 10.18632/oncotarget.7915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/16/2016] [Indexed: 01/03/2023] Open
Abstract
Numerous antiangiogenic agents are approved for the treatment of oncological diseases. However, almost all patients develop evasive resistance mechanisms against antiangiogenic therapies. Currently no predictive biomarker for therapy resistance or response has been established. Therefore, the aim of our study was to identify biomarkers predicting the development of therapy resistance in patients with hepatocellular cancer (n = 11), renal cell cancer (n = 7) and non-small cell lung cancer (n = 2). Thereby we measured levels of angiogenic growth factors, tumor perfusion, circulating endothelial cells (CEC), circulating endothelial progenitor cells (CEP) and tumor endothelial markers (TEM) in patients during the course of therapy with antiangiogenic agents, and correlated them with the time to antiangiogenic progression (aTTP). Importantly, at disease progression, we observed an increase of proangiogenic factors, upregulation of CEC/CEP levels and downregulation of TEMs, such as Robo4 and endothelial cell-specific chemotaxis regulator (ECSCR), reflecting the formation of torturous tumor vessels. Increased TEM expression levels tended to correlate with prolonged aTTP (ECSCR high = 275 days vs. ECSCR low = 92.5 days; p = 0.07 and for Robo4 high = 387 days vs. Robo4 low = 90.0 days; p = 0.08). This indicates that loss of vascular stabilization factors aggravates the development of antiangiogenic resistance. Thus, our observations confirm that CEP/CEC populations, proangiogenic cytokines and TEMs contribute to evasive resistance in antiangiogenic treated patients. Higher TEM expression during disease progression may have clinical and pathophysiological implications, however, validation of our results is warranted for further biomarker development.
Collapse
Affiliation(s)
- Andreas Pircher
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Florian Kocher
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Normann Steiner
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Ivo Graziadei
- Department of Internal Medicine II, Gastroenterology and Hepatology, Medical University Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Christian Kremser
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Gerold Untergasser
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Eberhard Gunsilius
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang Hilbe
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria.,Department of Oncology, Hematology and Palliative Care Wilhelminenspital, Vienna, Austria
| |
Collapse
|
7
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
8
|
Carrasco P, Zuazo-Gaztelu I, Casanovas O. Sprouting strategies and dead ends in anti-angiogenic targeting of NETs. J Mol Endocrinol 2017; 59:R77-R91. [PMID: 28469004 DOI: 10.1530/jme-17-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023]
Abstract
Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms that arise from cells of the neuroendocrine system. NETs are characterized by being highly vascularized tumors that produce large amounts of proangiogenic factors. Due to their complexity and heterogeneity, progress in the development of successful therapeutic approaches has been limited. For instance, standard chemotherapy-based therapies have proven to be poorly selective for tumor cells and toxic for normal tissues. Considering the urge to develop an efficient therapy to treat NET patients, vascular targeting has been proposed as a new approach to block tumor growth. This review provides an update of the mechanisms regulating different components of vessels and their contribution to tumor progression in order to develop new therapeutic drugs. Following the description of classical anti-angiogenic therapies that target VEGF pathway, new angiogenic targets such as PDGFs, EGFs, FGFs and semaphorins are further explored. Based on recent research in the field, the combination of therapies that target multiple and different components of vessel formation would be the best approach to specifically target NETs and inhibit tumor growth.
Collapse
Affiliation(s)
- Patricia Carrasco
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| |
Collapse
|
9
|
Movassagh H, Saati A, Nandagopal S, Mohammed A, Tatari N, Shan L, Duke-Cohan JS, Fowke KR, Lin F, Gounni AS. Chemorepellent Semaphorin 3E Negatively Regulates Neutrophil Migration In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 198:1023-1033. [PMID: 27913633 DOI: 10.4049/jimmunol.1601093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/11/2016] [Indexed: 11/19/2022]
Abstract
Neutrophil migration is an essential step in leukocyte trafficking during inflammatory responses. Semaphorins, originally discovered as axon guidance cues in neural development, have been shown to regulate cell migration beyond the nervous system. However, the potential contribution of semaphorins in the regulation of neutrophil migration is not well understood. This study examines the possible role of a secreted chemorepellent, Semaphorin 3E (Sema3E), in neutrophil migration. In this study, we demonstrated that human neutrophils constitutively express Sema3E high-affinity receptor, PlexinD1. Sema3E displayed a potent ability to inhibit CXCL8/IL-8-induced neutrophil migration as determined using a microfluidic device coupled to real-time microscopy and a transwell system in vitro. The antimigratory effect of Sema3E on human neutrophil migration was associated with suppression of CXCL8/IL-8-mediated Ras-related C3 botulinum toxin substrate 1 GTPase activity and actin polymerization. We further addressed the regulatory role of Sema3E in the regulation of neutrophil migration in vivo. Allergen airway exposure induced higher neutrophil recruitment into the lungs of Sema3e-/- mice compared with wild-type controls. Administration of exogenous recombinant Sema3E markedly reduced allergen-induced neutrophil recruitment into the lungs, which was associated with alleviation of allergic airway inflammation and improvement of lung function. Our data suggest that Sema3E could be considered an essential regulatory mediator involved in modulation of neutrophil migration throughout the course of neutrophilic inflammation.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abeer Saati
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Saravanan Nandagopal
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada.,Department of Physics and Astronomy, Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ashfaque Mohammed
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Nazanin Tatari
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215; and
| | - Keith R Fowke
- Department of Medical Microbiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Francis Lin
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada.,Department of Physics and Astronomy, Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada;
| |
Collapse
|
10
|
Meucci S, Keilholz U, Tinhofer I, Ebner OA. Mutational load and mutational patterns in relation to age in head and neck cancer. Oncotarget 2016; 7:69188-69199. [PMID: 27596625 PMCID: PMC5342469 DOI: 10.18632/oncotarget.11312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/23/2016] [Indexed: 11/25/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a cancer with well-defined tumor causes such as HPV infection, smoking and drinking. Using The Cancer Genome Atlas (TCGA) HNSCC cohort we systematically studied the mutational load as well as patterns related to patient age in HNSCC. To obtain a homogenous set we excluded all patients with HPV infection as well as wild type TP53. We found that the overall mutational load is higher in patients of old age. Through unsupervised hierarchical clustering, we detected distinct mutational clusters in very young as well as very old patients. In the group of old patients, we identified four enriched pathways ("Axon Guidance", "ECM-Receptor Interaction", "Focal Adhesion" and "Notch Signaling") that are only sporadically mutated in the other age groups. Our findings indicate that the four pathways regulate cell motility, tumor invasion and angiogenesis supposedly leading to less aggressive tumors in older age patients. Importantly, we did not see a strict pattern of genes always mutated in older age but rather an accumulation of mutations in the same pathways. Our study provides indications of age-dependent differences in mutational backgrounds of tumors that might be relevant for treatment approaches of HNSCCs patients.
Collapse
Affiliation(s)
- Stefano Meucci
- Charité Comprehensive Cancer Center, Charité University Hospital, Charitéplatz, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité University Hospital, Charitéplatz, Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiation Oncology and Radiotherapy, Charité University Hospital Berlin, Translational Radiation Oncology Research Laboratory, Charitéplatz, Berlin, Germany
| | - Oliva A. Ebner
- Charité Comprehensive Cancer Center, Charité University Hospital, Charitéplatz, Berlin, Germany
| |
Collapse
|
11
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
12
|
Abstract
BACKGROUND We have previously shown that hsa-miR-520d-5p can convert cancer cells into induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs) via a dedifferentiation by a demethylation mechanism. METHODS We tested the effect of miR-520d-5p on human fibroblasts to determine whether it could be safely used in normal cells for future clinical therapeutic applications. After we transfected the microRNA into fibroblasts, we analyzed the phenotypic changes, gene expression levels, and stemness induction in vitro, and we evaluated tumor formation in an in vivo xenograft model. RESULTS The transfected fibroblasts turned into CD105+ cell populations, survived approximately 24 weeks, and exhibited increases in both the collagen-producing ability and in differentiation. Combinatorial transfection of small interfering RNAs for miR-520d-5p target genes (ELAVL2, GATAD2B, and TEAD1) produced similar results to miR-520d-5p transfection. These molecules converted normal cells into MSCs and not iPSCs. CONCLUSIONS In vitro data indicate the potent usefulness of this small molecule as a therapeutic biomaterial in normal cells and cancer cells because CD105+ cells never converted to iPSCs despite repeated transfections and all types of transfectants lost their tumorigenicity. This maintenance of a benign state following miR-520d-5p transfection appears to be caused by p53 upregulation. We conclude that miR-520d-5p may be a useful biomaterial at an in vitro level.
Collapse
|
13
|
Zhang Z, Zhang F, Lu Y, Zheng S. Update on implications and mechanisms of angiogenesis in liver fibrosis. Hepatol Res 2015; 45:162-78. [PMID: 25196587 DOI: 10.1111/hepr.12415] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/15/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023]
Abstract
Liver fibrosis occurs as a compensatory response to the process of tissue repair in a wide range of chronic liver injures. It is characterized by excessive deposition of extracellular matrix in liver tissues. As the pathogenesis progresses without effective management, it will lead to formation of liver fiber nodules and disruption of normal liver structure and function, finally culminating in cirrhosis and hepatocellular carcinoma. A new discovery shows that liver angiogenesis is strictly associated with, and may even favor fibrogenic progression of chronic liver diseases. Recent basic and clinical investigations also demonstrate that liver fibrogenesis is accompanied by pathological angiogenesis and sinusoidal remodeling, which critically determine the pathogenesis and prognosis of liver fibrosis. Inhibition of pathological angiogenesis is considered to be a new strategy for the treatment of liver fibrosis. This review summarizes current knowledge on the process of angiogenesis, the relationships between angiogenesis and liver fibrosis, and on the molecular mechanisms of liver angiogenesis. On the other hand, it also presents the different strategies that have been used in experimental models to counteract excessive angiogenesis and the role of angiogenesis in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | |
Collapse
|
14
|
Netrins and their roles in placental angiogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:901941. [PMID: 25143950 PMCID: PMC4124232 DOI: 10.1155/2014/901941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/18/2014] [Indexed: 11/23/2022]
Abstract
Netrins, a family of laminin-related proteins, were originally identified as axonal guidance molecules. Subsequently, netrins were found to modulate various biological processes including morphogenesis, tumorogenesis, adhesion, and, recently, angiogenesis. In human placenta, the most vascularized organ, the presence of netrins has also been reported. Recent studies demonstrated the involvement of netrins in the regulation of placental angiogenesis. In this review we focused on the role of netrins in human placental angiogenesis. Among all netrins examined, netrin-4 and netrin-1 have been found to be either pro- or antiangiogenic factors. These opposite effects appear to be related to the endothelial cell phenotype studied and seem also to depend on the receptor type to which netrin binds, that is, the canonical receptor member of the DCC family, the members of the UNC5 family, or the noncanonical receptor members of the integrin family or DSCAM.
Collapse
|