1
|
Porcari CY, Lencina CA, Amigone JL, Antunes-Rodrigues J, Caeiro XE, Godino A. Impact of perinatal hypertonic NaCl access on adult offspring's sodium intake and angiotensin and vasopressin systems under hypertension model. Sci Rep 2025; 15:8933. [PMID: 40089597 PMCID: PMC11910541 DOI: 10.1038/s41598-025-93238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Perinatal natriophilia has programming effects on blood pressure control, inducing anatomical and molecular changes in the kidney and brain that impair blood pressure reestablishment after a pressor challenge, such as an osmotic stimulation. However, the imprinted effect of voluntary sodium consumption during this period on the development of hypertension is unclear. To evaluate this, we studied the effect of deoxycorticosterone acetate and high-salt diet (DOCA-salt) treatment on blood pressure and sodium intake responses, and gene expression in the kidney and brain in adult offspring exposed to voluntary hypertonic sodium consumption during the perinatal period (PM-NaCl group). Male PM-NaCl rats consumed more sodium than controls (PM-Ctrol group) during DOCA treatment. However, the hypertension induced did not differ between the PM-NaCl and PM-Ctrol groups. This behavioral change was accompanied by a higher angiotensin type 1 receptor (Agtr1a) gene expression at brain level in the subfornical organ and the hypothalamic paraventricular nucleus of PM-NaCl, areas key to the modulation of salt appetite and autonomic function. At renal level, programmed animals showed differing responses in gene expression induced by DOCA-salt treatment compared to the PM-Ctrol group, such as expression of Agtr1a, transient receptor potential vanilloid type 1 channel in the medulla and vasopressin 2 receptor in the renal cortex. The data indicates that the availability of a rich source of sodium during the perinatal period induces a long-term effect in DOCA-salt treated rats, modifying behavioral, brain and renal responses, suggesting that this early sodium exposure affects the vulnerability of the organisms to chronic non-communicable diseases mainly caused by changes in sodium intake and the regulatory mechanisms of the angiotensin and vasopressin systems.
Collapse
Affiliation(s)
- Cintia Y Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, Córdoba, 5016, Argentina
| | - Cristina A Lencina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, Córdoba, 5016, Argentina
| | - José L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirão Preto, CEP:14049-900, Brazil
| | - Ximena E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, Córdoba, 5016, Argentina
| | - Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, Córdoba, 5016, Argentina.
- Facultad de Psicología, Universidad Nacional de Córdoba, Boulevard de la Reforma & Enf. Gordillo Gómez, Córdoba, 5000, Argentina.
| |
Collapse
|
2
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Zhang L, Sun Z, Yang Y, Mack A, Rodgers M, Aroor A, Jia G, Sowers JR, Hill MA. Endothelial cell serum and glucocorticoid regulated kinase 1 (SGK1) mediates vascular stiffening. Metabolism 2024; 154:155831. [PMID: 38431129 DOI: 10.1016/j.metabol.2024.155831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Excessive dietary salt intake increases vascular stiffness in humans, especially in salt-sensitive populations. While we recently suggested that the endothelial sodium channel (EnNaC) contributes to salt-sensitivity related endothelial cell (EC) and arterial stiffening, mechanistic understanding remains incomplete. This study therefore aimed to explore the role of EC-serum and glucocorticoid regulated kinase 1 (SGK1), as a reported regulator of sodium channels, in EC and arterial stiffening. METHODS AND RESULTS A mouse model of salt sensitivity-associated vascular stiffening was produced by subcutaneous implantation of slow-release deoxycorticosterone acetate (DOCA) pellets, with salt (1 % NaCl, 0.2 % KCl) administered via drinking water. Preliminary data showed that global SGK1 deletion caused significantly decreased blood pressure (BP), EnNaC activity and aortic endothelium stiffness as compared to control mice following DOCA-salt treatment. To probe EC signaling pathways, selective deletion of EC-SGK1 was performed by cross-breeding cadherin 5-Cre mice with sgk1flox/flox mice. DOCA-salt treated control mice had significantly increased BP, EC and aortic stiffness in vivo and ex vivo, which were attenuated by EC-SGK1 deficiency. To demonstrate relevance to humans, human aortic ECs were cultured in the absence or presence of aldosterone and high salt with or without the SGK1 inhibitor, EMD638683 (10uM or 25uM). Treatment with aldosterone and high salt increased intrinsic stiffness of ECs, which was prevented by SGK1 inhibition. Further, the SGK1 inhibitor prevented aldosterone and high salt induced actin polymerization, a key mechanism in cellular stiffening. CONCLUSION EC-SGK1 contributes to salt-sensitivity related EC and aortic stiffening by mechanisms appearing to involve regulation of actin polymerization.
Collapse
Affiliation(s)
- Liping Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Austin Mack
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Mackenna Rodgers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Annayya Aroor
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Guanghong Jia
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Sun L, Chen Z, Guo L, Geng Z, Chen X. Proteomic Analysis of Egg Yolk Proteins During Embryonic Development in Wanxi White Goose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5212-5221. [PMID: 38433387 DOI: 10.1021/acs.jafc.3c07962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
To investigate the alterations of yolk protein during embryonic development in Wanxi white goose, the egg yolk protein composition at days 0, 4, 7, 14, 18, and 25 of incubation (D0, D4, D7, D14, D18, and D25) was analyzed by two-dimensional gel electrophoresis combined with mass spectrometry. A total of 65 spots representing 11 proteins with significant abundance changes were detected. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin mainly participated in nutrient (lipid, riboflavin, and iron ion) transport, and vitellogenin-2-like showed a lower abundance after D14. Ovomucoid-like were involved in endopeptidase inhibitory activity and immunoglobulin binding and exhibited a higher expression after D18, suggesting a potential role in promoting the absorption of immunoglobulin and providing passive immune protection for goose embryos after D18. Furthermore, myosin-9 and actin (ACTB) were involved in the tight junction pathway, potentially contributing to barrier integrity. Serum albumin mainly participated in cytolysis and toxic substance binding. Therefore, the high expression of serum albumin, myosin-9, and ACTB throughout the incubation might protect the developing embryo. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin might play a crucial role in providing nutrition for embryonic development, and VTG-2-like was preferentially degraded/absorbed.
Collapse
Affiliation(s)
- Linghong Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
- School of Biological Engineering, Huainan Normal University, 232001, Huainan, Anhui 230036, People's Republic of China
| | - Zhengkun Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Liping Guo
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
5
|
Lew SQ, Asci G, Rootjes PA, Ok E, Penne EL, Sam R, Tzamaloukas AH, Ing TS, Raimann JG. The role of intra- and interdialytic sodium balance and restriction in dialysis therapies. Front Med (Lausanne) 2023; 10:1268319. [PMID: 38111694 PMCID: PMC10726136 DOI: 10.3389/fmed.2023.1268319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
The relationship between sodium, blood pressure and extracellular volume could not be more pronounced or complex than in a dialysis patient. We review the patients' sources of sodium exposure in the form of dietary salt intake, medication administration, and the dialysis treatment itself. In addition, the roles dialysis modalities, hemodialysis types, and dialysis fluid sodium concentration have on blood pressure, intradialytic symptoms, and interdialytic weight gain affect patient outcomes are discussed. We review whether sodium restriction (reduced salt intake), alteration in dialysis fluid sodium concentration and the different dialysis types have any impact on blood pressure, intradialytic symptoms, and interdialytic weight gain.
Collapse
Affiliation(s)
- Susie Q. Lew
- Department of Medicine, George Washington University, Washington, DC, United States
| | - Gulay Asci
- Department of Nephrology, Ege University Medical School, Izmir, Türkiye
| | - Paul A. Rootjes
- Department of Internal Medicine, Gelre Hospitals, Apeldoorn, Netherlands
| | - Ercan Ok
- Department of Nephrology, Ege University Medical School, Izmir, Türkiye
| | - Erik L. Penne
- Department of Nephrology, Northwest Clinics, Alkmaar, Netherlands
| | - Ramin Sam
- Division of Nephrology, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Antonios H. Tzamaloukas
- Research Service, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Todd S. Ing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Jochen G. Raimann
- Research Division, Renal Research Institute, New York City, NY, United States
- Katz School of Science and Health at Yeshiva University, New York City, NY, United States
| |
Collapse
|
6
|
Schneider H, Sarkis AL, Sturm L, Britz V, Lechner A, Potzel AL, Müller LM, Heinrich DA, Künzel H, Nowotny HF, Seiter TM, Kunz S, Bidlingmaier M, Reincke M, Adolf C. Moderate dietary salt restriction improves blood pressure and mental well-being in patients with primary aldosteronism: The salt CONNtrol trial. J Intern Med 2023. [PMID: 36945842 DOI: 10.1111/joim.13618] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Primary aldosteronism (PA) is a frequent cause of hypertension. Aldosterone excess together with high dietary salt intake aggravates cardiovascular damage, despite guideline-recommended mineralocorticoid receptor antagonist (MRA) treatment. OBJECTIVES To investigate the antihypertensive impact of a moderate dietary salt restriction and associated physiological changes, including mental well-being. METHODS A total of 41 patients with PA on a stable antihypertensive regimen-including MRA-followed a dietary salt restriction for 12 weeks with structured nutritional training and consolidation by a mobile health app. Salt intake and adherence were monitored every 4 weeks using 24-h urinary sodium excretion and nutrition protocols. Body composition was assessed by bioimpedance analysis and mental well-being by validated questionnaires. RESULTS Dietary salt intake significantly decreased from 9.1 to 5.2 g/d at the end of the study. In parallel, systolic (130 vs. 121 mm Hg) and diastolic blood pressure (BP) (84 vs. 81 mm Hg) improved significantly. Patients' aptitude of estimating dietary salt content was refined significantly (underestimation by 2.4 vs. 1.4 g/d). Salt restriction entailed a significant weight loss of 1.4 kg, improvement in pulse pressure (46 vs. 40 mm Hg) and normalization of depressive symptoms (PHQD scale, p < 0.05). Salt restriction, cortisol after dexamethasone suppression test and dosage of renin-angiotensin-aldosterone-system (RAAS) blockers were independently associated with BP reduction. CONCLUSION A moderate restriction of dietary salt intake in patients with PA substantially reduces BP and depressive symptoms. Moreover, the findings underline that a sufficient RAAS blockade seems to augment the effects of salt restriction on BP and cardiovascular risk.
Collapse
Affiliation(s)
- Holger Schneider
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Anna-Lina Sarkis
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Lisa Sturm
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Vera Britz
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Andreas Lechner
- Privatpraxis Prof. Lechner, Dr. Spann & Prof. Wechsler, Munich, Germany
- CCG Type 2 Diabetes, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anne L Potzel
- Physicians Association for Nutrition e.V, Munich, Germany
- CCG Type 2 Diabetes, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lisa Marie Müller
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Daniel A Heinrich
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Heike Künzel
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Hanna F Nowotny
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Thomas Marchant Seiter
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Sonja Kunz
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
7
|
Lucas C, Sauter KS, Steigert M, Mallet D, Wilmouth J, Olabe J, Plotton I, Morel Y, Aeberli D, Wagner F, Clevers H, Pandey AV, Val P, Roucher-Boulez F, Flück CE. Loss of LGR4/GPR48 causes severe neonatal salt wasting due to disrupted WNT signaling altering adrenal zonation. J Clin Invest 2023; 133:164915. [PMID: 36538378 PMCID: PMC9927937 DOI: 10.1172/jci164915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Disorders of isolated mineralocorticoid deficiency, which cause potentially life-threatening salt-wasting crisis early in life, have been associated with gene variants of aldosterone biosynthesis or resistance; however, in some patients no such variants are found. WNT/β-catenin signaling is crucial for differentiation and maintenance of the aldosterone-producing adrenal zona glomerulosa (zG). Herein, we describe a highly consanguineous family with multiple perinatal deaths and infants presenting at birth with failure to thrive, severe salt-wasting crises associated with isolated hypoaldosteronism, nail anomalies, short stature, and deafness. Whole exome sequencing revealed a homozygous splice variant in the R-SPONDIN receptor LGR4 gene (c.618-1G>C) regulating WNT signaling. The resulting transcripts affected protein function and stability and resulted in loss of Wnt/β-catenin signaling in vitro. The impact of LGR4 inactivation was analyzed by adrenal cortex-specific ablation of Lgr4, using Lgr4fl/fl mice mated with Sf1:Cre mice. Inactivation of Lgr4 within the adrenal cortex in the mouse model caused decreased WNT signaling, aberrant zonation with deficient zG, and reduced aldosterone production. Thus, human LGR4 mutations establish a direct link between LGR4 inactivation and decreased canonical WNT signaling, which results in abnormal zG differentiation and endocrine function. Therefore, variants in WNT signaling and its regulators should systematically be considered in familial hyperreninemic hypoaldosteronism.
Collapse
Affiliation(s)
- Cécily Lucas
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Kay-Sara Sauter
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Michael Steigert
- Department of Pediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Delphine Mallet
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - James Wilmouth
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Julie Olabe
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Ingrid Plotton
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Yves Morel
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Daniel Aeberli
- Department of Rheumatology and Clinical Immunology/Allergology and
| | - Franca Wagner
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, Netherlands
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Pierre Val
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Florence Roucher-Boulez
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Kwon YJ, Lee HS, Park G, Lee JW. Association between dietary sodium, potassium, and the sodium-to-potassium ratio and mortality: A 10-year analysis. Front Nutr 2022; 9:1053585. [PMID: 36438773 PMCID: PMC9691953 DOI: 10.3389/fnut.2022.1053585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 10/05/2023] Open
Abstract
There is inconclusive evidence of the association between dietary sodium, potassium, and the sodium-to-potassium ratio and all-cause and cardiovascular disease mortality. To investigate the association between dietary sodium, potassium, and the sodium-to-potassium ratio and all-cause and cardiovascular disease mortality risks. Data from 143,050 adult participants were analyzed from prospective 10-year community-based cohort analysis. Dietary sodium, potassium, and the sodium-to-potassium ratio at baseline were assessed by a food frequency questionnaire. In Cox proportional hazards regression models, the association between dietary sodium, potassium, and their ratio and all-cause and cardiovascular disease mortality was estimated using hazard ratios and 95% confidence intervals, and their predictive ability as mortality predictors was evaluated using Harrell's c-index. During the mean (range) 10.1 (0.2-15.9) years of follow-up, 5,436 participants died, of whom 985 died of cardiovascular causes. After adjustment for age, sex, body mass index, alcohol intake, smoking, regular exercise, total calorie intake, dyslipidemia, hypertension, diabetes, chronic kidney diseases (CKDs), and potassium or sodium intake, respectively, sodium intake was unassociated with all-cause mortality whereas potassium intake was significantly associated inversely with all-cause (Quintile-5 vs. Quintile-1, hazard ratio, 95% confidence interval, 1.09, 0.97-1.22, and 0.79, 0.69-0.91, respectively). The sodium-to-potassium ratio was not significantly associated with all-cause mortality in the adjusted model, and similar trends were observed for cardiovascular disease mortality.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, Seoul, Gyeonggi, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, South Korea
| | - Goeun Park
- Biomedical Statistics Center, Samsung Medical Center, Research Institute for Future Medicine, Seoul, South Korea
| | - Ji-Won Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Nguyen TM, Le HL, Hwang KB, Hong YC, Kim JH. Predicting High Blood Pressure Using DNA Methylome-Based Machine Learning Models. Biomedicines 2022; 10:biomedicines10061406. [PMID: 35740428 PMCID: PMC9220060 DOI: 10.3390/biomedicines10061406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
DNA methylation modification plays a vital role in the pathophysiology of high blood pressure (BP). Herein, we applied three machine learning (ML) algorithms including deep learning (DL), support vector machine, and random forest for detecting high BP using DNA methylome data. Peripheral blood samples of 50 elderly individuals were collected three times at three visits for DNA methylome profiling. Participants who had a history of hypertension and/or current high BP measure were considered to have high BP. The whole dataset was randomly divided to conduct a nested five-group cross-validation for prediction performance. Data in each outer training set were independently normalized using a min–max scaler, reduced dimensionality using principal component analysis, then fed into three predictive algorithms. Of the three ML algorithms, DL achieved the best performance (AUPRC = 0.65, AUROC = 0.73, accuracy = 0.69, and F1-score = 0.73). To confirm the reliability of using DNA methylome as a biomarker for high BP, we constructed mixed-effects models and found that 61,694 methylation sites located in 15,523 intragenic regions and 16,754 intergenic regions were significantly associated with BP measures. Our proposed models pioneered the methodology of applying ML and DNA methylome data for early detection of high BP in clinical practices.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Hoang Long Le
- Department of Computer Science & Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Kyu-Baek Hwang
- School of Computer Science & Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea;
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
- Correspondence: ; Tel.: +82-2-3408-3655
| |
Collapse
|
10
|
Zhang L, Yang Y, Aroor AR, Jia G, Sun Z, Parrish A, Litherland G, Bonnard B, Jaisser F, Sowers JR, Hill MA. Endothelial sodium channel activation mediates DOCA-salt-induced endothelial cell and arterial stiffening. Metabolism 2022; 130:155165. [PMID: 35183546 PMCID: PMC8977070 DOI: 10.1016/j.metabol.2022.155165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION High salt intake and aldosterone are both associated with vascular stiffening in humans. However, our preliminary work showed that high dietary salt alone did not increase endothelial cell (EC) or vascular stiffness or endothelial sodium channel (EnNaC) activation in mice, presumably because aldosterone production was significantly suppressed as a result of the high salt diet. We thus hypothesized that high salt consumption along with an exogenous mineralocorticoid would substantially increase EC and vascular stiffness via activation of the EnNaC. METHODS AND RESULTS Mice were implanted with slow-release DOCA pellets and given salt in their drinking water for 21 days. Mice with either specific deletion of the alpha subunit of EnNaC or treated with a pharmacological inhibitor of mTOR, a downstream signaling molecule involved in mineralocorticoid receptor activation of EnNaC, were studied. DOCA-salt treated control mice had increased blood pressure, EC Na+ transport activity, EC and arterial stiffness, which were attenuated in both the αEnNaC-/- and mTOR inhibitor treated groups. Further, depletion of αEnNaC prevented DOCA-salt-induced impairment in EC-dependent vascular relaxation. CONCLUSION While high salt consumption alone does not cause EC or vascular stiffening, the combination of EC MR activation and high salt causes activation of EnNaC which increases EC and arterial stiffness and impairs vascular relaxation. Underlying mechanisms appear to include mTOR signaling.
Collapse
Affiliation(s)
- Liping Zhang
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Annayya R Aroor
- Diabetes and Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Guanghong Jia
- Diabetes and Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Alan Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Garrett Litherland
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Cordeliers Research Center, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Frederic Jaisser
- INSERM, UMRS 1138, Cordeliers Research Center, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - James R Sowers
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Diabetes and Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Beaver JN, Gilman TL. Salt as a non-caloric behavioral modifier: A review of evidence from pre-clinical studies. Neurosci Biobehav Rev 2021; 135:104385. [PMID: 34634356 DOI: 10.1016/j.neubiorev.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
Though excess salt intake is well-accepted as a dietary risk factor for cardiovascular diseases, relatively little has been explored about how it impacts behavior, despite the ubiquity of salt in modern diets. Given the challenges of manipulating salt intake in humans, non-human animals provide a more tractable means for evaluating behavioral sequelae of high salt. By describing what is known about the impact of elevated salt on behavior, this review highlights how underexplored salt's behavioral effects are. Increased salt consumption in adulthood does not affect spontaneous anxiety-related behaviors or locomotor activity, nor acquisition of maze or fear tasks, but does impede expression of spatial/navigational and fear memory. Nest building is reduced by heightened salt in adults, and stress responsivity is augmented. When excess salt exposure occurs during development, and/or to parents, offspring locomotion is increased, and both spatial memory expression and social investigation are attenuated. The largely consistent findings reviewed here indicate expanded study of salt's effects will likely uncover broader behavioral implications, particularly in the scarcely studied female sex.
Collapse
Affiliation(s)
- Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
12
|
Bełtowski J. Salt Intake, Aldosterone Secretion, and Obesity: Role in the Pathogenesis of Resistant Hypertension. Am J Hypertens 2021; 34:588-590. [PMID: 33438728 DOI: 10.1093/ajh/hpab015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Adolf C, Görge V, Heinrich DA, Hoster E, Schneider H, Handgriff L, Künzel H, Sturm L, Beuschlein F, Reincke M. Altered Taste Perception for Sodium Chloride in Patients With Primary Aldosteronism: A Prospective Cohort Study. Hypertension 2021; 77:1332-1340. [PMID: 33641355 DOI: 10.1161/hypertensionaha.120.16440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Christian Adolf
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany
| | - Veronika Görge
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany
| | - Daniel A Heinrich
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany
| | - Eva Hoster
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE) (E.H.), Klinikum der Universität München, LMU München, Munich, Germany.,Department of Medicine III (E.H.), Klinikum der Universität München, LMU München, Munich, Germany
| | - Holger Schneider
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany
| | - Laura Handgriff
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany
| | - Heike Künzel
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany
| | - Lisa Sturm
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany
| | - Felix Beuschlein
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany.,Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Switzerland (F.B.)
| | - Martin Reincke
- From the Medizinische Klinik und Poliklinik IV (C.A., V.G., D.A.H., H.S., L.H., H.K., L.S., F.B., M.R.), Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
15
|
Sodium butyrate ameliorates deoxycorticosterone acetate/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway. Hypertens Res 2020; 44:168-178. [PMID: 32908237 DOI: 10.1038/s41440-020-00548-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023]
Abstract
Our recent work demonstrates that infusion of sodium butyrate (NaBu) into the renal medulla blunts angiotensin II-induced hypertension and improves renal injury. The present study aimed to test whether oral administration of NaBu attenuates salt-sensitive hypertension in deoxycorticosterone acetate (DOCA)/salt-treated rats. Uninephrectomized male Sprague-Dawley (SD) rats were treated with DOCA pellets (150 mg/rat) plus 1% NaCl drinking water for 2 weeks. Animals received oral administration of NaBu (1 g/kg) or vehicle once per day. Our results showed that NaBu administration significantly attenuated DOCA/salt-increased mean arterial pressure from 156 ± 4 mmHg to 136 ± 1 mmHg. DOCA/salt treatment markedly enhanced renal damage as indicated by an increased ratio of kidney weight/body weight, elevated urinary albumin, extensive fibrosis, and inflammation, whereas kidneys from NaBu-treated rats exhibited a significant reduction in these renal damage responses. Compared to the DOCA/salt group, the DOCA/salt-NaBu group had ~30% less salt water intake and decreased Na+ and Cl- excretion in urine but no alteration in 24-h urine excretion. Mechanistically, NaBu inhibited the protein levels of several sodium transporters stimulated by DOCA/salt in vivo, such as βENaC, γENaC, NCC, and NKCC-2. Further examination showed that NaBu downregulated the expression of mineralocorticoid receptor (MR) and serum and glucocorticoid-dependent protein kinase 1 (SGK1) in DOCA/salt-treated rats or aldosterone-treated human renal tubular duct epithelial cells. These results provide evidence that NaBu may attenuate DOCA/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway.
Collapse
|
16
|
Zhu W, Zhang J, He K, Geng Z, Chen X. Proteomic analysis of fertilized egg yolk proteins during embryonic development. Poult Sci 2020; 99:2775-2784. [PMID: 32359615 PMCID: PMC7597458 DOI: 10.1016/j.psj.2019.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/10/2023] Open
Abstract
Egg yolk is an important source of nutrients for embryo development. In this study, the egg yolk protein composition at 0, 10, and 18 D of incubation was analyzed by 2-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A significant difference in the abundance of 42 protein spots representing 12 proteins were identified (P < 0.05). The 2-DE gel image analysis exhibited that the molecular weight (MW) of 29 protein spots was lower than their theoretical value, in which 14 vitellogenin (VTG) fragments were lower than the theoretical value. There were 13 protein spots showed a higher MW including 5 ovotransferrins with MW of 87.2 kDa. The gene ontology enrichment analysis suggested that biological process of the differentially expressed proteins were mainly involved in lipid transport and lipid localization at 10 and 18 D of incubation. The molecular function of the differentially expressed proteins was involved in nutrient reservoir activity, lipid transporter activity, and antigen binding at 10 D of incubation. At 18 D of incubation, the differentially expressed proteins mainly participated in nutrient reservoir activity and substrate-specific transporter activity. The high abundance of VTGs at 10 D of incubation might participate in lipid localization and lipid transportation to facilitate the yolk nutrient transport to embryo. The low expression of ovotransferrins at 10 D of incubation indicated the chondrogenesis of embryo.
Collapse
Affiliation(s)
- Wenjun Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Junzhi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Kaiqin He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
17
|
Li Q, Fung E. Multifaceted Functions of Epithelial Na + Channel in Modulating Blood Pressure. Hypertension 2019; 73:273-281. [PMID: 30580685 DOI: 10.1161/hypertensionaha.118.12330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qi Li
- From the Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Q.L., E.F.).,Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR (Q.L., E.F.)
| | - Erik Fung
- From the Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Q.L., E.F.).,Gerald Choa Cardiac Research Centre, Faculty of Medicine, The Chinese University of Hong Kong (E.F.).,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong (E.F.).,Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR (Q.L., E.F.)
| |
Collapse
|
18
|
Gorini S, Kim SK, Infante M, Mammi C, La Vignera S, Fabbri A, Jaffe IZ, Caprio M. Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging. Front Endocrinol (Lausanne) 2019; 10:584. [PMID: 31507534 PMCID: PMC6716354 DOI: 10.3389/fendo.2019.00584] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The mineralocorticoid receptor (MR) was originally identified as a regulator of blood pressure, able to modulate renal sodium handling in response to its principal ligand aldosterone. MR is expressed in several extra-renal tissues, including the heart, vasculature, and adipose tissue. More recent studies have shown that extra-renal MR plays a relevant role in the control of cardiovascular and metabolic functions and has recently been implicated in the pathophysiology of aging. MR activation promotes vasoconstriction and acts as a potent pro-fibrotic agent in cardiovascular remodeling. Aging is associated with increased arterial stiffness and vascular tone, and modifications of arterial structure and function are responsible for these alterations. MR activation contributes to increase blood pressure with aging by regulating myogenic tone, vasoconstriction, and vascular oxidative stress. Importantly, aging represents an important contributor to the increased prevalence of cardiometabolic syndrome. In the elderly, dysregulation of MR signaling is associated with hypertension, obesity, and diabetes, representing an important cause of increased cardiovascular risk. Clinical use of MR antagonists is limited by the adverse effects induced by MR blockade in the kidney, raising the risk of hyperkalaemia in older patients with reduced renal function. Therefore, there is an unmet need for the enhanced understanding of the role of MR in aging and for development of novel specific MR antagonists in the context of cardiovascular rehabilitation in the elderly, in order to reduce relevant side effects.
Collapse
Affiliation(s)
- Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Seung Kyum Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
- Department of Sports Science, Seoul National University of Science and Technology, Seoul, South Korea
| | - Marco Infante
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University of Rome Tor Vergata, Rome, Italy
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
19
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
20
|
Abstract
Fierce debate has developed whether low-sodium intake, like high-sodium intake, could be associated with adverse outcome. The debate originates in earlier epidemiological studies associating high-sodium intake with high blood pressure and more recent studies demonstrating a higher cardiovascular event rate with both low- and high-sodium intake. This brings into question whether we entirely understand the consequences of high- and (very) low-sodium intake for the systemic hemodynamics, the kidney function, the vascular wall, the immune system, and the brain. Evolutionarily, sodium retention mechanisms in the context of low dietary sodium provided a survival advantage and are highly conserved, exemplified by the renin-angiotensin system. What is the potential for this sodium-retaining mechanism to cause harm? In this paper, we will consider current views on how a sodium load is handled, visiting aspects including the effect of sodium on the vessel wall, the sympathetic nervous system, the brain renin-angiotensin system, the skin as "third compartment" coupling to vascular endothelial growth factor C, and the kidneys. From these perspectives, several mechanisms can be envisioned whereby a low-sodium diet could potentially cause harm, including the renin-angiotensin system and the sympathetic nervous system. Altogether, the uncertainties preclude a unifying model or practical clinical guidance regarding the effects of a low-sodium diet for an individual. There is a very strong need for fundamental and translational studies to enhance the understanding of the potential adverse consequences of low-salt intake as an initial step to facilitate better clinical guidance.
Collapse
Affiliation(s)
- Branko Braam
- Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Physiology, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine / Division of Nephrology and Immunology, University of Alberta Hospital, 11-132 CSB Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| | - Xiaohua Huang
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - William A Cupples
- Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Shereen M Hamza
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Resch JM, Fenselau H, Madara JC, Wu C, Campbell JN, Lyubetskaya A, Dawes BA, Tsai LT, Li MM, Livneh Y, Ke Q, Kang PM, Fejes-Tóth G, Náray-Fejes-Tóth A, Geerling JC, Lowell BB. Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling. Neuron 2017; 96:190-206.e7. [PMID: 28957668 DOI: 10.1016/j.neuron.2017.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/10/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTSHSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTSHSD2 neuron activation, identify the circuit by which NTSHSD2 neurons drive appetite, and uncover an interaction between the NTSHSD2 circuit and ATII signaling. NTSHSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Nav1.5 channels. Remarkably, NTSHSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTSHSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTSHSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.
Collapse
Affiliation(s)
- Jon M Resch
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Henning Fenselau
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chen Wu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John N Campbell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian A Dawes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Monica M Li
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yoav Livneh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qingen Ke
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Géza Fejes-Tóth
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Anikó Náray-Fejes-Tóth
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Joëls M, de Kloet ER. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. J Endocrinol 2017. [PMID: 28634266 DOI: 10.1530/joe-16-0660] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In 1968, Bruce McEwen discovered that 3H-corticosterone administered to adrenalectomised rats is retained in neurons of hippocampus rather than those of hypothalamus. This discovery signalled the expansion of endocrinology into the science of higher brain regions. With this in mind, our contribution highlights the saga of the brain mineralocorticoid receptor (MR) in three episodes. First, the precloning era dominated by the conundrum of two types of corticosterone-binding receptors in the brain, which led to the identification of the high-affinity corticosterone receptor as the 'promiscuous' MR cloned in 1987 by Jeff Arriza and Ron Evans in addition to the classical glucocorticoid receptor (GR). Then, the post-cloning period aimed to disentangle the function of the brain MR from that of the closely related GR on different levels of biological complexity. Finally, the synthesis section that highlights the two faces of brain MR: Salt and Stress. 'Salt' refers to the regulation of salt appetite, and reciprocal arousal, motivation and reward, by a network of aldosterone-selective MR-expressing neurons projecting from nucleus tractus solitarii (NTS) and circumventricular organs. 'Stress' is about the limbic-forebrain nuclear and membrane MRs, which act as a switch in the selection of the best response to cope with a stressor. For this purpose, activation of the limbic MR promotes selective attention, memory retrieval and the appraisal process, while driving emotional expressions of fear and aggression. Subsequently, rising glucocorticoid concentrations activate GRs in limbic-forebrain circuitry underlying executive functions and memory storage, which contribute in balance with MR-mediated actions to homeostasis, excitability and behavioural adaptation.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Translational NeuroscienceBrain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
- University of GroningenUniversity Medical Center, Groningen, The Netherlands
| | - E Ronald de Kloet
- Division of EndocrinologyDepartment of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Schütten MTJ, Houben AJHM, de Leeuw PW, Stehouwer CDA. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology (Bethesda) 2017; 32:197-209. [PMID: 28404736 DOI: 10.1152/physiol.00037.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
Obese individuals frequently develop hypertension, which is for an important part attributable to renin-angiotensin-aldosterone system (RAAS) overactivity. This review summarizes preclinical and clinical evidence on the involvement of dysfunctional adipose tissue in RAAS activation and on the renal, central, and vascular mechanisms linking RAAS components to obesity-associated hypertension.
Collapse
Affiliation(s)
- Monica T J Schütten
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter W de Leeuw
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
24
|
Affiliation(s)
- Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
26
|
Han L, Liu Y, Duan S, Perry B, Li W, He Y. DNA methylation and hypertension: emerging evidence and challenges. Brief Funct Genomics 2016; 15:460-469. [PMID: 27142121 DOI: 10.1093/bfgp/elw014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypertension is a multifactorial disease influenced by an interaction of environmental and genetic factors. The exact molecular mechanism of hypertension remains unknown. Aberrant DNA methylation is the most well-defined epigenetic modification that regulates gene transcription. However, studies on the association between DNA methylation and hypertension are still in their infancy. This review summarizes the latest evidence and challenges regarding the role of DNA methylation on hypertension.
Collapse
|
27
|
Affiliation(s)
- Friedrich C. Luft
- From Experimental and Clinical Research Center and Charité Medical Faculty, Berlin, Germany; and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
28
|
Aldosterone Induces Renal Fibrosis and Inflammatory M1-Macrophage Subtype via Mineralocorticoid Receptor in Rats. PLoS One 2016; 11:e0145946. [PMID: 26730742 PMCID: PMC4701403 DOI: 10.1371/journal.pone.0145946] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/10/2015] [Indexed: 01/03/2023] Open
Abstract
We aimed to evaluate macrophages heterogeneity and structural, functional and inflammatory alterations in rat kidney by aldosterone + salt administration. The effects of treatment with spironolactone on above parameters were also analyzed. Male Wistar rats received aldosterone (1 mgkg-1d-1) + 1% NaCl for 3 weeks. Half of the animals were treated with spironolactone (200 mg kg-1d-1). Systolic and diastolic blood pressures were elevated (p<0.05) in aldosterone + salt–treated rats. Relative kidney weight, collagen content, fibronectin, macrophage infiltrate, CTGF, Col I, MMP2, TNF-α, CD68, Arg2, and SGK-1 were increased (p<0.05) in aldosterone + salt–treated rats, being reduced by spironolactone (p<0.05). Increased iNOS and IFN-γ mRNA gene expression (M1 macrophage markers) was observed in aldosterone + salt rats, whereas no significant differences were observed in IL-10 and gene ArgI mRNA expression or ED2 protein content (M2 macrophage markers). All the observed changes were blocked with spironolactone treatment. Macrophage depletion with liposomal clodronate reduced macrophage influx and inflammatory M1 markers (INF-γ or iNOS), whereas interstitial fibrosis was only partially reduced after this intervention, in aldosterone plus salt-treated rats. In conclusion, aldosterone + salt administration mediates inflammatory M1 macrophage phenotype and increased fibrosis throughout mineralocorticoid receptors activation.
Collapse
|
29
|
Ahmed M, Honisch S, Pelzl L, Fezai M, Hosseinzadeh Z, Bock CT, Kandolf R, Lang F. Up-regulation of epithelial Na(+) channel ENaC by human parvovirus B19 capsid protein VP1. Biochem Biophys Res Commun 2015; 468:179-184. [PMID: 26522226 DOI: 10.1016/j.bbrc.2015.10.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Clinical disorders caused by parvovirus B19 (B19V) infection include endothelial dysfunction with cardiac ischemia. The virus is effective in part by lysophosphatidylcholine-producing phospholipase A2 (PLA2) activity of B19V capsid protein VP1. Mechanisms compromising endothelial function include up-regulation of amiloride sensitive epithelial Na(+)-channel ENaC leading to endothelial cell stiffness. Regulators of ENaC include ubiquitin-ligase Nedd4-2. The present study explored whether VP1 modifies ENaC-activity. METHODS cRNA encoding ENaC was injected into Xenopus oocytes without or with cRNA encoding VP1. Experiments were made with or without coexpression of Nedd4-2. ENaC activity was estimated from amiloride (50 μM) sensitive current. RESULTS Injection of cRNA encoding ENaC into Xenopus oocytes was followed by appearance of amiloride sensitive current, which was significantly enhanced by additional injection of cRNA encoding VP1, but not by additional injection of cRNA encoding PLA2-negative VP1 mutant (H153A). The effect of VP1 on ENaC was mimicked by treatment of ENaC expressing oocytes with lysophosphatidylcholine (1 μg/ml). The effect of VP1 and lysophosphatidylcholine was not additive. ENaC activity was downregulated by Nedd4-2, an effect not reversed by VP1. CONCLUSIONS The B19V capsid protein VP1 up-regulates ENaC, an effect at least partially due to phospholipase A2 (PLA) dependent formation of lysophosphatidylcholine.
Collapse
Affiliation(s)
- Musaab Ahmed
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | - Sabina Honisch
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | - Lisann Pelzl
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | - Myriam Fezai
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | - Zohreh Hosseinzadeh
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | - C-Thomas Bock
- Department of Molecular Pathology, University of Tuebingen, Liebermeisterstraße 8, 72076 Tuebingen, Germany
| | - Reinhard Kandolf
- Department of Molecular Pathology, University of Tuebingen, Liebermeisterstraße 8, 72076 Tuebingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
30
|
Smith CM, Walker LL, Chua BE, McKinley MJ, Gundlach AL, Denton DA, Lawrence AJ. Involvement of central relaxin-3 signalling in sodium (salt) appetite. Exp Physiol 2015; 100:1064-72. [PMID: 26147879 DOI: 10.1113/ep085349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/30/2015] [Indexed: 01/21/2023]
Abstract
NEW FINDINGS What is the central question of this study? Sodium appetite is controlled by conserved neuronal transmitter-receptor systems. Here, we tested the contribution made by relaxin family peptide 3 receptor (RXFP3), the cognate G-protein-coupled receptor for the neuropeptide relaxin-3. What is the main finding and its importance? Intracerebroventricular infusion of an RXFP3 antagonist reduced in a dose-dependent manner the volume of 0.3 m NaCl consumed by sodium-depleted C57Bl/6J (wild-type) mice. This effect was absent in sodium-depleted Rxfp3 knockout mice, and RXFP3 antagonist infusion did not alter water consumption in wild-type mice subjected to multiple thirst tests, indicating both the pharmacological and the physiological specificity of observed effects. Our findings identify endogenous relaxin-3-RXFP3 signalling as a modulator of sodium appetite. Overconsumption of highly salted foods is common in Western diets and contributes significantly to metabolic disorders such as hypertension, renal dysfunction and diabetes. Sodium appetite, or the desire of terrestrial animals to seek and consume sodium-containing salts, is a behaviour mediated by a set of evolutionarily conserved neuronal systems. In these studies, we tested whether this instinctive behavioural drive is influenced by the G-protein-coupled relaxin family peptide 3 receptor (RXFP3), the cognate receptor for the neuropeptide relaxin-3, because relaxin-3-RXFP3 signalling can modulate arousal, motivation and ingestive behaviours. Intracerebroventricular (i.c.v.) infusion of the selective RXFP3 antagonist, R3(B1-22)R, reduced in a dose-dependent manner the volume of 0.3 m NaCl solution consumed when offered to sodium-depleted C57Bl/6J wild-type mice, relative to vehicle-treated control animals. Notably, i.c.v. R3(B1-22)R infusion did not alter 0.3 m NaCl consumption relative to vehicle in sodium-depleted Rxfp3 knockout mice, confirming the pharmacological specificity of this effect. Furthermore, i.c.v. R3(B1-22)R did not alter the volume of water consumed by wild-type mice in three tests where water drinking was the normal physiological response, suggesting that the ability of R3(B1-22)R to reduce activated salt appetite is specific and not due to a generalized reduction in drinking behaviour. These findings identify, for the first time, that endogenous relaxin-3-RXFP3 signalling is a powerful mediator of salt appetite in mice and further elucidate the functional role of the relaxin-3-RXFP3 system in the integrative control of motivated behaviours.
Collapse
Affiliation(s)
- Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Lesley L Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Berenice E Chua
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Michael J McKinley
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| | - Derek A Denton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Office of the Dean, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Shimizu Y, Kadota K, Koyamatsu J, Yamanashi H, Nagayoshi M, Noda M, Nishimura T, Tayama J, Nagata Y, Maeda T. Salt intake and mental distress among rural community-dwelling Japanese men. J Physiol Anthropol 2015; 34:26. [PMID: 26109460 PMCID: PMC4480897 DOI: 10.1186/s40101-015-0064-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Activated mineralocorticoid receptors influence the association between daily salt intake and blood pressure. A relatively low mineralocorticoid receptor function is reported to be a risk for mental distress such as depression. Since mental distress is also a known risk for hypertension and cardiovascular disease, understanding of the association between estimated daily salt intake and mental distress contributing to hypertension is important for risk estimation for cardiovascular disease. However, no single study has reported this association. METHODS We conducted a cross-sectional study of 1014 Japanese men undergoing general health check-ups. Mental distress was diagnosed as a Kessler 6 scale score ≥5. We also classified mental distress by levels of hypertension. Estimated daily salt intake was calculated from a causal urine specimen. RESULTS Independent from classical cardiovascular risk factors and thyroid disease, we found a significant inverse association between estimated daily salt intake and mental distress. When we analyzed for mental distress and hypertension, we also found a significant association. With the reference group being the lowest tertiles of estimated daily salt intake, the multivariable odds ratios (ORs) of mental distress and mental distress with hypertension for the highest tertiles were 0.50 (0.29-0.88) and 0.46 (0.22-0.96). CONCLUSIONS Lower estimated daily salt intake is a significant risk of mental distress for rural community-dwelling Japanese men. Since depression is reported to be associated with cardiovascular disease, risk estimation for the lower intake of salt on mental distress, especially for mental distress with hypertension, may become an important tool to prevent cardiovascular disease.
Collapse
Affiliation(s)
- Yuji Shimizu
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Koichiro Kadota
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Jun Koyamatsu
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Hirotomo Yamanashi
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Mako Nagayoshi
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Miki Noda
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Takayuki Nishimura
- Department of Public Health, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Jun Tayama
- Graduate School of Education, Nagasaki University, Nagasaki, Japan. .,Center for Health and Community Medicine, Nagasaki University, Nagasaki, Japan.
| | - Yasuhiro Nagata
- Center for Comprehensive Community Care Education, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| | - Takahiro Maeda
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan. .,Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan.
| |
Collapse
|
32
|
Abstract
Classical effects of mineralocorticoids include stimulation of Na(+) reabsorption and K(+) secretion in the kidney and other epithelia including colon and several glands. Moreover, mineralocorticoids enhance the excretion of Mg(2+) and renal tubular H(+) secretion. The renal salt retention following mineralocorticoid excess leads to extracellular volume expansion and hypertension. The increase of blood pressure following mineralocorticoid excess is, however, not only the result of volume expansion but may result from stiff endothelial cell syndrome impairing the release of vasodilating nitric oxide. Beyond that, mineralocorticoids are involved in the regulation of a wide variety of further functions, including cardiac fibrosis, platelet activation, neuronal function and survival, inflammation as well as vascular and tissue fibrosis and calcification. Those functions are briefly discussed in this short introduction to the special issue. Beyond that, further contributions of this special issue amplify on mineralocorticoid-induced sodium appetite and renal salt retention, the role of mineralocorticoids in the regulation of acid-base balance, the involvement of aldosterone and its receptors in major depression, the mineralocorticoid stimulation of inflammation and tissue fibrosis and the effect of aldosterone on osteoinductive signaling and vascular calcification. Clearly, still much is to be learned about the various ramifications of mineralocorticoid-sensitive physiology and pathophysiology.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|