1
|
Haesen S, Jager MM, Brillouet A, de Laat I, Vastmans L, Verghote E, Delaet A, D’Haese S, Hamad I, Kleinewietfeld M, Mebis J, Mullens W, Lambrichts I, Wolfs E, Deluyker D, Bito V. Pyridoxamine Limits Cardiac Dysfunction in a Rat Model of Doxorubicin-Induced Cardiotoxicity. Antioxidants (Basel) 2024; 13:112. [PMID: 38247537 PMCID: PMC10812466 DOI: 10.3390/antiox13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
The use of doxorubicin (DOX) chemotherapy is restricted due to dose-dependent cardiotoxicity. Pyridoxamine (PM) is a vitamin B6 derivative with favorable effects on diverse cardiovascular diseases, suggesting a cardioprotective effect on DOX-induced cardiotoxicity. The cardioprotective nature of PM was investigated in a rat model of DOX-induced cardiotoxicity. Six-week-old female Sprague Dawley rats were treated intravenously with 2 mg/kg DOX or saline (CTRL) weekly for eight weeks. Two other groups received PM via the drinking water next to DOX (DOX+PM) or saline (CTRL+PM). Echocardiography, strain analysis, and hemodynamic measurements were performed to evaluate cardiac function. Fibrotic remodeling, myocardial inflammation, oxidative stress, apoptosis, and ferroptosis were evaluated by various in vitro techniques. PM significantly attenuated DOX-induced left ventricular (LV) dilated cardiomyopathy and limited TGF-β1-related LV fibrotic remodeling and macrophage-driven myocardial inflammation. PM protected against DOX-induced ferroptosis, as evidenced by restored DOX-induced disturbance of redox balance, improved cytosolic and mitochondrial iron regulation, and reduced mitochondrial damage at the gene level. In conclusion, PM attenuated the development of cardiac damage after DOX treatment by reducing myocardial fibrosis, inflammation, and mitochondrial damage and by restoring redox and iron regulation at the gene level, suggesting that PM may be a novel cardioprotective strategy for DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Sibren Haesen
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Manon Marie Jager
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Aline Brillouet
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Iris de Laat
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Lotte Vastmans
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Eline Verghote
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Anouk Delaet
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Sarah D’Haese
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- Cardiovascular Research Institute Maastricht (CARIM), School for Cardiovascular Diseases, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ibrahim Hamad
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC) Hasselt University, 3590 Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC) Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen Mebis
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- Department of Medical Oncology, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Wilfried Mullens
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- Department of Cardiology, Ziekenhuis Oost Limburg, Schiepse Bos 6, 3600 Genk, Belgium
| | - Ivo Lambrichts
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Esther Wolfs
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Dorien Deluyker
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Virginie Bito
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| |
Collapse
|
2
|
Zakharchenko A, Rock CA, Thomas TE, Keeney S, Hall EJ, Takano H, Krieger AM, Ferrari G, Levy RJ. Inhibition of advanced glycation end product formation and serum protein infiltration in bioprosthetic heart valve leaflets: Investigations of anti-glycation agents and anticalcification interactions with ethanol pretreatment. Biomaterials 2022; 289:121782. [PMID: 36099713 PMCID: PMC10015409 DOI: 10.1016/j.biomaterials.2022.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Bioprosthetic heart valves (BHV) fabricated from heterograft tissue, such as glutaraldehyde pretreated bovine pericardium (BP), are the most frequently used heart valve replacements. BHV durability is limited by structural valve degeneration (SVD), mechanistically associated with calcification, advanced glycation end products (AGE), and serum protein infiltration. We investigated the hypothesis that anti-AGE agents, Aminoguanidine, Pyridoxamine [PYR], and N-Acetylcysteine could mitigate AGE-serum protein SVD mechanisms in vitro and in vivo, and that these agents could mitigate calcification or demonstrate anti-calcification interactions with BP pretreatment with ethanol. In vitro, each of these agents significantly inhibited AGE-serum protein infiltration in BP. However, in 28-day rat subdermal BP implants only orally administered PYR demonstrated significant inhibition of AGE and serum protein uptake. Furthermore, BP PYR preincubation of BP mitigated AGE-serum protein SVD mechanisms in vitro, and demonstrated mitigation of both AGE-serum protein uptake and reduced calcification in vivo in 28-day rat subdermal BP explants. Inhibition of BP calcification as well as inhibition of AGE-serum protein infiltration was observed in 28-day rat subdermal BP explants pretreated with ethanol followed by PYR preincubation. In conclusion, AGE-serum protein and calcification SVD pathophysiology are significantly mitigated by both PYR oral therapy and PYR and ethanol pretreatment of BP.
Collapse
Affiliation(s)
- Andrey Zakharchenko
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christopher A Rock
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tina E Thomas
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Samuel Keeney
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily J Hall
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hajime Takano
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Abba M Krieger
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giovanni Ferrari
- Departments of Surgery and Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Robert J Levy
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients 2022; 14:nu14193982. [PMID: 36235635 PMCID: PMC9572209 DOI: 10.3390/nu14193982] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of advanced glycation end-products (AGE) in tissues is a physiological process; however, excessive production and storage are pathological and lead to inflammation. A sedentary lifestyle, hypercaloric and high-fructose diet and increased intake of processed food elements contribute to excessive production of compounds, which are created in the non-enzymatic multi-stage glycation process. The AGE’s sources can be endogenous and exogenous, mainly due to processing food at high temperatures and low moisture, including grilling, roasting, and frying. Accumulation of AGE increases oxidative stress and initiates various disorders, leading to the progression of atherosclerosis, cardiovascular disease, diabetes and their complications. Inborn defensive mechanisms, recovery systems, and exogenous antioxidants (including polyphenols) protect from excessive AGE accumulation. Additionally, numerous products have anti-glycation properties, occurring mainly in fruits, vegetables, herbs, and spices. It confirms the role of diet in the prevention of civilization diseases.
Collapse
|
4
|
Aboolian A, Urner S, Roden M, Jha JC, Jandeleit-Dahm K. Diabetic Kidney Disease: From Pathogenesis to Novel Treatment Possibilities. Handb Exp Pharmacol 2022; 274:269-307. [PMID: 35318511 DOI: 10.1007/164_2021_576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the microvascular complications of diabetes is diabetic kidney disease (DKD), often leading to end stage renal disease (ESRD) in which patients require costly dialysis or transplantation. The silent onset and irreversible progression of DKD are characterized by a steady decline of the estimated glomerular filtration rate, with or without concomitant albuminuria. The diabetic milieu allows the complex pathophysiology of DKD to enter a vicious cycle by inducing the synthesis of excessive amounts of reactive oxygen species (ROS) causing oxidative stress, inflammation, and fibrosis. As no cure is available, intensive research is required to develop novel treatments possibilities. This chapter provides an overview of the important pathomechanisms identified in diabetic kidney disease, the currently established therapies, as well as recently developed novel therapeutic strategies in DKD.
Collapse
Affiliation(s)
- Ara Aboolian
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jay Chandra Jha
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Diabetes, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Abstract
The primary hyperoxalurias are three rare inborn errors of the glyoxylate metabolism in the liver, which lead to massively increased endogenous oxalate production, thus elevating urinary oxalate excretion and, based on that, recurrent urolithiasis and/or progressive nephrocalcinosis. Frequently, especially in type 1 primary hyperoxaluria, early end-stage renal failure occurs. Treatment possibilities are scare, namely, hyperhydration and alkaline citrate medication. In type 1 primary hyperoxaluria, vitamin B6, though, is helpful in patients with specific missense or mistargeting mutations. In those vitamin B6 responsive, urinary oxalate excretion and concomitantly urinary glycolate is significantly decreased, or even normalized. In patients non-responsive to vitamin B6, RNA interference medication is now available. Lumasiran® is already available on prescription and targets the messenger RNA of glycolate oxidase, thus blocking the conversion of glycolate into glyoxylate, hence decreasing oxalate, but increasing glycolate production. Nedosiran blocks liver-specific lactate dehydrogenase A and thus the final step of oxalate production. Similar to vitamin B6 treatment, where both RNA interference urinary oxalate excretion can be (near) normalized and plasma oxalate decreases, however, urinary and plasma glycolate increases with lumasiran treatment. Future treatment possibilities are on the horizon, for example, substrate reduction therapy with small molecules or gene editing, induced pluripotent stem cell-derived autologous hepatocyte-like cell transplantation, or gene therapy with newly developed vector technologies. This review provides an overview of current and especially new and future treatment options.
Collapse
Affiliation(s)
| | - Cristina Martin-Higueras
- German Hyperoxaluria Center, Bonn, Germany.
- Institute of Biomedical Technologies, CIBERER, Campus de Ofra s/n 38200, University of La Laguna, Tenerife, Spain.
| |
Collapse
|
6
|
Evens L, Beliën H, D’Haese S, Haesen S, Verboven M, Rummens JL, Bronckaers A, Hendrikx M, Deluyker D, Bito V. Combinational Therapy of Cardiac Atrial Appendage Stem Cells and Pyridoxamine: The Road to Cardiac Repair? Int J Mol Sci 2021; 22:ijms22179266. [PMID: 34502175 PMCID: PMC8431115 DOI: 10.3390/ijms22179266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
Myocardial infarction (MI) occurs when the coronary blood supply is interrupted. As a consequence, cardiomyocytes are irreversibly damaged and lost. Unfortunately, current therapies for MI are unable to prevent progression towards heart failure. As the renewal rate of cardiomyocytes is minimal, the optimal treatment should achieve effective cardiac regeneration, possibly with stem cells transplantation. In that context, our research group identified the cardiac atrial appendage stem cells (CASCs) as a new cellular therapy. However, CASCs are transplanted into a hostile environment, with elevated levels of advanced glycation end products (AGEs), which may affect their regenerative potential. In this study, we hypothesize that pyridoxamine (PM), a vitamin B6 derivative, could further enhance the regenerative capacities of CASCs transplanted after MI by reducing AGEs’ formation. Methods and Results: MI was induced in rats by ligation of the left anterior descending artery. Animals were assigned to either no therapy (MI), CASCs transplantation (MI + CASCs), or CASCs transplantation supplemented with PM treatment (MI + CASCs + PM). Four weeks post-surgery, global cardiac function and infarct size were improved upon CASCs transplantation. Interstitial collagen deposition, evaluated on cryosections, was decreased in the MI animals transplanted with CASCs. Contractile properties of resident left ventricular cardiomyocytes were assessed by unloaded cell shortening. CASCs transplantation prevented cardiomyocyte shortening deterioration. Even if PM significantly reduced cardiac levels of AGEs, cardiac outcome was not further improved. Conclusion: Limiting AGEs’ formation with PM during an ischemic injury in vivo did not further enhance the improved cardiac phenotype obtained with CASCs transplantation. Whether AGEs play an important deleterious role in the setting of stem cell therapy after MI warrants further examination.
Collapse
Affiliation(s)
- Lize Evens
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Hanne Beliën
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Sarah D’Haese
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Sibren Haesen
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Maxim Verboven
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Jean-Luc Rummens
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
- UHasselt—Hasselt University, Faculty of Medicine and Life Sciences, Agoralaan, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Marc Hendrikx
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Dorien Deluyker
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Virginie Bito
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
- Correspondence: ; Tel.: +32-11269285
| |
Collapse
|
7
|
Advanced Glycation End Products Impair Cardiac Atrial Appendage Stem Cells Properties. J Clin Med 2021; 10:jcm10132964. [PMID: 34279448 PMCID: PMC8269351 DOI: 10.3390/jcm10132964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND During myocardial infarction (MI), billions of cardiomyocytes are lost. The optimal therapy should effectively replace damaged cardiomyocytes, possibly with stem cells able to engraft and differentiate into adult functional cardiomyocytes. As such, cardiac atrial appendage stem cells (CASCs) are suitable candidates. However, the presence of elevated levels of advanced glycation end products (AGEs) in cardiac regions where CASCs are transplanted may affect their regenerative potential. In this study, we examine whether and how AGEs alter CASCs properties in vitro. METHODS AND RESULTS CASCs in culture were exposed to ranging AGEs concentrations (50 µg/mL to 400 µg/mL). CASCs survival, proliferation, and migration capacity were significantly decreased after 72 h of AGEs exposure. Apoptosis significantly increased with rising AGEs concentration. The harmful effects of these AGEs were partially blunted by pre-incubation with a receptor for AGEs (RAGE) inhibitor (25 µM FPS-ZM1), indicating the involvement of RAGE in the observed negative effects. CONCLUSION AGEs have a time- and concentration-dependent negative effect on CASCs survival, proliferation, migration, and apoptosis in vitro, partially mediated through RAGE activation. Whether anti-AGEs therapies are an effective treatment in the setting of stem cell therapy after MI warrants further examination.
Collapse
|
8
|
Cellular and Molecular Aspects of Blood Cell-Endothelium Interactions in Vascular Disorders. Int J Mol Sci 2020; 21:ijms21155315. [PMID: 32727002 PMCID: PMC7432596 DOI: 10.3390/ijms21155315] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022] Open
Abstract
In physiology and pathophysiology the molecules involved in blood cell–blood cell and blood cell–endothelium interactions have been identified. Platelet aggregation and adhesion to the walls belonging to vessels involve glycoproteins (GP), GP llb and GP llla and the GP Ib–IX–V complex. Red blood cells (RBCs) in normal situations have little interaction with the endothelium. Abnormal adhesion of RBCs was first observed in sickle cell anemia involving vascular cell adhesion molecule (VCAM)-1, α4β1, Lu/BCAM, and intercellular adhesion molecule (ICAM)-4. More recently RBC adhesion was found to be increased in retinal-vein occlusion (RVO) and in polycythemia vera (PV). The molecules which participate in this process are phosphatidylserine and annexin V in RVO, and phosphorylated Lu/BCAM and α5 laminin chain in PV. The additional adhesion in diabetes mellitus occurs due to the glycated RBC band 3 and the advanced glycation end-product receptors. The multiligand receptor binds advanced glycation end products (AGEs) or S100 calgranulins, or β-amyloid peptide. This receptor for advanced glycation end products is known as RAGE. The binding to RAGE-activated endothelial cells leads to an inflammatory reaction and a prothrombotic state via NADPH activation and altered gene expression. RAGE blockade is a potential target for drugs preventing the deleterious consequences of RAGE activation.
Collapse
|
9
|
Fu H, Liu S, Bastacky SI, Wang X, Tian XJ, Zhou D. Diabetic kidney diseases revisited: A new perspective for a new era. Mol Metab 2019; 30:250-263. [PMID: 31767176 PMCID: PMC6838932 DOI: 10.1016/j.molmet.2019.10.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Globally, diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. As the most common microvascular complication of diabetes, DKD is a thorny, clinical problem in terms of its diagnosis and management. Intensive glucose control in DKD could slow down but not significantly halt disease progression. Revisiting the tremendous advances that have occurred in the field would enhance recognition of DKD pathogenesis as well as improve our understanding of translational science in DKD in this new era. SCOPE OF REVIEW In this review, we summarize advances in the understanding of the local microenvironmental changes in diabetic kidneys and discuss the involvement of genetic and epigenetic factors in the pathogenesis of DKD. We also review DKD prevalence changes and analyze the challenges in optimizing the diagnostic approaches and management strategies for DKD in the clinic. As we enter the era of 'big data', we also explore the possibility of linking systems biology with translational medicine in DKD in the current healthcare system. MAJOR CONCLUSION Newer understanding of the structural changes of diabetic kidneys and mechanisms of DKD pathogenesis, as well as emergent research technologies will shed light on new methods of dealing with the existing clinical challenges of DKD.
Collapse
Affiliation(s)
- Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaojie Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Kassab S, Begley P, Church SJ, Rotariu SM, Chevalier-Riffard C, Dowsey AW, Phillips AM, Zeef LAH, Grayson B, Neill JC, Cooper GJS, Unwin RD, Gardiner NJ. Cognitive dysfunction in diabetic rats is prevented by pyridoxamine treatment. A multidisciplinary investigation. Mol Metab 2019; 28:107-119. [PMID: 31451429 PMCID: PMC6822151 DOI: 10.1016/j.molmet.2019.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The impact of diabetes mellitus on the central nervous system is less widely studied than in the peripheral nervous system, but there is increasing evidence that it elevates the risk of developing cognitive deficits. The aim of this study was to characterize the impact of experimental diabetes on the proteome and metabolome of the hippocampus. We tested the hypothesis that the vitamin B6 isoform pyridoxamine is protective against functional and molecular changes in diabetes. METHODS We tested recognition memory using the novel object recognition (NOR) test in streptozotocin (STZ)-induced diabetic, age-matched control, and pyridoxamine- or insulin-treated diabetic male Wistar rats. Comprehensive untargeted metabolomic and proteomic analyses, using gas chromatography-mass spectrometry and iTRAQ-enabled protein quantitation respectively, were utilized to characterize the molecular changes in the hippocampus in diabetes. RESULTS We demonstrated diabetes-specific, long-term (but not short-term) recognition memory impairment and that this deficit was prevented by insulin or pyridoxamine treatment. Metabolomic analysis showed diabetes-associated changes in 13/82 identified metabolites including polyol pathway intermediates glucose (9.2-fold), fructose (4.9-fold) and sorbitol (5.2-fold). We identified and quantified 4807 hippocampal proteins; 806 were significantly altered in diabetes. Pathway analysis revealed significant alterations in cytoskeletal components associated with synaptic plasticity, glutamatergic signaling, oxidative stress, DNA damage and FXR/RXR activation pathways in the diabetic rat hippocampus. CONCLUSIONS Our data indicate a protective effect of pyridoxamine against diabetes-induced cognitive deficits, and our comprehensive 'omics datasets provide insight into the pathogenesis of cognitive dysfunction enabling development of further mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Sarah Kassab
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Paul Begley
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | | | | | - Andrew W Dowsey
- Department of Population Health Sciences and Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 2BN, UK
| | - Alexander M Phillips
- Department of Electrical Engineering and Electronics, University of Liverpool, UK
| | - Leo A H Zeef
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Ben Grayson
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Joanna C Neill
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Garth J S Cooper
- Faculty of Biology, Medicine and Health, University of Manchester, UK; School of Biological Sciences, University of Auckland, New Zealand
| | - Richard D Unwin
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | |
Collapse
|
11
|
Glycation-induced modification of tissue-specific ECM proteins: A pathophysiological mechanism in degenerative diseases. Biochim Biophys Acta Gen Subj 2019; 1863:129411. [PMID: 31400438 DOI: 10.1016/j.bbagen.2019.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glycation driven generation of advanced glycation end products (AGEs) and their patho-physiological role in human degenerative diseases has remained one of the thrust areas in the mainstream of disease biology. Glycation of extracellular matrix (ECM) proteins have deleterious effect on the mechanical and functional properties of tissues. Owing to the adverse pathophysiological concerns of glycation, there is a need to decipher the underlying mechanisms. SCOPE OF REVIEW AGE-modified ECM proteins affect the cell in the vicinity by altering protein structure-function, matrix-matrix or matrix-cell interaction and by activating signalling pathway through receptor for AGE. This review is intended for addressing the AGE-induced modification of tissue-specific ECM proteins and its implication in the pathogenesis of various organ-specific human ailments. MAJOR CONCLUSIONS The glycation affects the canonical cell behaviour due to alteration in the interaction of glycated ECM with receptors like integrins and discodin domain, and the signalling cues generated subsequently affect the downstream signalling pathways. Consequently, the variation of structural and functional properties of tissues due to matrix glycation helps in the initiation or progression of the disease condition. GENERAL SIGNIFICANCE This review offers comprehensive knowledge about the remodelling of glycation induced ECM and tissue-specific pathological concerns. As glycation of ECM affects the normal tissues and cell behaviour, the scientific discourse may also provide cues for developing candidate drugs that may help in attenuating the adverse effects of AGEs and perhaps open a research window of tailoring novel strategies for the management of glycation induced human degenerative diseases.
Collapse
|
12
|
Walker DI, Marder ME, Yano Y, Terrell M, Liang Y, Barr DB, Miller GW, Jones DP, Marcus M, Pennell KD. Multigenerational metabolic profiling in the Michigan PBB registry. ENVIRONMENTAL RESEARCH 2019; 172:182-193. [PMID: 30782538 PMCID: PMC6534816 DOI: 10.1016/j.envres.2019.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 05/17/2023]
Abstract
Although polychlorinated biphenyls and polybrominated biphenyls are no longer manufactured the United States, biomonitoring in human populations show that exposure to these pollutants persist in human tissues. The objective of this study was to identify metabolic variations associated with exposure to 2,2'4,4',5,5'-hexabromobiphenyl (PBB-153) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB-153) in two generations of participants enrolled in the Michigan PBB Registry (http://pbbregistry.emory.edu/). Untargeted, high-resolution metabolomic profiling of plasma collected from 156 individuals was completed using liquid chromatography with high-resolution mass spectrometry. PBB-153 and PCB-153 levels were measured in the same individuals using targeted gas chromatography-tandem mass spectrometry and tested for dose-dependent correlation with the metabolome. Biological response to these exposures were evaluated using identified endogenous metabolites and pathway enrichment. When compared to lipid-adjusted concentrations for adults in the National Health and Nutrition Examination Survey (NHANES) for years 2003-2004, PCB-153 levels were consistent with similarly aged individuals, whereas PBB-153 concentrations were elevated (p<0.0001) in participants enrolled in the Michigan PBB Registry. Metabolic alterations were correlated with PBB-153 and PCB-153 in both generations of participants, and included changes in pathways related to catecholamine metabolism, cellular respiration, essential fatty acids, lipids and polyamine metabolism. These pathways were consistent with pathophysiological changes observed in neurodegenerative disease and included previously identified metabolomic markers of Parkinson's disease. To determine if the metabolic alterations detected in this study are replicated other cohorts, we evaluated correlation of PBB-153 and PCB-153 with plasma fatty acids measured in NHANES. Both pollutants showed similar associations with fatty acids previously linked to PCB exposure. Thus, the results from this study show metabolic alterations correlated with PBB-153 and PCB-153 exposure can be detected in human populations and are consistent with health outcomes previously reported in epidemiological and mechanistic studies.
Collapse
Affiliation(s)
- Douglas I Walker
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford MA 02155, United States; Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - M Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Yukiko Yano
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Ave Hall #7360, Berkeley CA 94720, United States.
| | - Metrecia Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Yongliang Liang
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford MA 02155, United States.
| |
Collapse
|
13
|
Rangel Silvares R, Nunes Goulart da Silva Pereira E, Eduardo Ilaquita Flores E, Lino Rodrigues K, Ribeiro Silva A, Gonçalves-de-Albuquerque CF, Daliry A. High-fat diet-induced kidney alterations in rats with metabolic syndrome: endothelial dysfunction and decreased antioxidant defense. Diabetes Metab Syndr Obes 2019; 12:1773-1781. [PMID: 31564943 PMCID: PMC6735540 DOI: 10.2147/dmso.s211253] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION This study aimed to investigate changes in renal function and the AGE-RAGE axis in the kidney of a non-genetic animal model of metabolic syndrome (MetS) induced by high-fat diet (HFD). Additionally, we evaluated the protective effect of pyridoxamine (PM), a vitamin B6 analog with anti-AGE effects, in the context of diet-related renal endothelial dysfunction. METHODOLOGY In Wistar rats, the MetS animal model was induced by 20 or 28 weeks of HFD feeding. When indicated, a subgroup of animals was treated daily with PM (60 mg/kg) for 2 months. Tissue perfusion in renal microcirculation was examined by laser speckle contrast imaging. Oxidative stress was analyzed by thiobarbituric acid reactive species and the inflammatory markers by ELISA (TNF-α and IL-1β). Reverse transcription polymerase chain reaction was used to analyze eNOs, IL-6, vascular cell adhesion molecule (VCAM), NADPH oxidase subunit 47 (N47), catalase, and receptor for AGE (RAGE) gene expression. RESULTS Wistar rats fed a HFD showed negligible alteration in renal function, decrease in catalase mRNA transcripts and catalase enzyme activity compared to control (CTL) animals. Increased levels of IL-1β were observed in the kidney of MetS-induced rats. HFD-fed rats exhibited kidney endothelial dysfunction, with no significant differences in basal microvascular blood flow. PM significantly improved kidney vasorelaxation in HFD-fed rats. eNOS, VCAM, and RAGE gene expression and AGE content were not altered in kidneys of HFD-induced MetS rats in comparison to CTLs. CONCLUSIONS Our findings suggest that HFD-induced microvascular dysfunction precedes the decline in renal function, and could be related to antioxidant machinery defects and inflammation activation in the kidney. PM showed a vasoprotective effect, and thus, could be an important contributory factor in ameliorating diet-induced renal damage.
Collapse
Affiliation(s)
- Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | - Edgar Eduardo Ilaquita Flores
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Cassiano Felipe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Laboratory of Immunopharmacology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Correspondence: Anissa DaliryInstituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Manguinhos, Rio de Janeiro, CEP: 21.040-360, RJ, BrazilEmail
| |
Collapse
|
14
|
Keri KC, Samji NS, Blumenthal S. Diabetic nephropathy: newer therapeutic perspectives. J Community Hosp Intern Med Perspect 2018; 8:200-207. [PMID: 30181826 PMCID: PMC6116149 DOI: 10.1080/20009666.2018.1500423] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN is a dreaded consequence of diabetes mellitus, accounting for about 40% of end-stage renal disease (ESRD). It is responsible for significant morbidity and mortality, both directly by causing ESRD and indirectly by increasing cardiovascular risk. Extensive research in this field has thrown light on multiple pathways that can be pharmacologically targeted, to control or reverse the process of DN. Glomerulocentric approach of DN still continues to produce favourable results as evidenced by the recent data on SGLT-2 (sodium glucose co-transporter type 2) inhibitors. Beyond the glomerular mechanisms, numerous novel pathways have been discovered in the last decade. Some of these pathways target inflammatory and oxidative damage, while the others target more specific mechanisms such as AGE-RAGE (advanced glycation end products-receptors for advanced glycation end products), ASK (apoptotic signal-regulating kinase), and endothelin-associated pathways. As a result of the research, a handful of clinically relevant drugs have made it to the human trials which have been elucidated in the following review, bearing in the mind that there are many more to come over the next few years. Ongoing research is expected to inform the clinicians regarding the use of the newer drugs in DN. Abbreviations: USFDA: Unites States Food and Drug Administration; SGLT-2: Sodium glucose transporter type 2; GLP-1: Glucagon-like peptide-1; DDP-4: Dipeptidyl peptidase-4; UACR: urinary albumin creatinine ratio; eGFR: Estimated glomerular filtration rate; CKD: Chronic kidney disease; DN: Diabetic nephropathy; TGF: Tubuloglomerular feedback; RAAS: Renin angiotensin aldosterone system; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; RCT: Randomized controlled trial; AGE-RAGE: Advanced glycation end products-receptors for advanced glycation end products; ASK-1: Apoptotic signal-regulating kinase-1; Nrf-2: Nuclear 1 factor [erythroid derived-2]-related factor 2; ml/min/1.73m2: Millilitre/minute/1.73 square meters of body surface area; ~: Approximately.
Collapse
Affiliation(s)
- Krishna C Keri
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Naga S Samji
- Internal Medicine Department, Primary Care, Bellin Health, Marinette, WI, USA
| | - Samuel Blumenthal
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of recent preclinical and clinical studies, which demonstrate new insights for the treatment of diabetic kidney disease (DKD) and to outline future directions with respect to novel therapies. RECENT FINDINGS Positive findings with respect to new glucose-lowering agents such as sodium-dependent glucose transporter 2 inhibitors may lead to a change in the way we treat diabetic individuals with or at risk of DKD. Additional positive phase 2 clinical studies with drugs that have hemodynamic actions such as endothelin antagonists and mineralocorticoid receptor antagonists have led to larger phase 3 trials with atrasentan and finerenone, respectively, in order to address if these drugs indeed delay the development of end-stage renal disease. A number of other pathways are currently under active preclinical investigation and hopefully over the next decade will lead to promising drug candidates for subsequent clinical trials. SUMMARY DKD remains an area of active preclinical and clinical investigation. Positive results with some of the more promising agents should lead to strategies to reverse, attenuate or prevent DKD.
Collapse
|
16
|
Ge J, Chen L, Yang Y, Lu X, Xiang Z. Sparstolonin B prevents lumbar intervertebral disc degeneration through toll like receptor 4, NADPH oxidase activation and the protein kinase B signaling pathway. Mol Med Rep 2017; 17:1347-1353. [PMID: 29115481 DOI: 10.3892/mmr.2017.7966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/10/2017] [Indexed: 02/05/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is the most common pathogeny of lumbago. It is the pathological basis for a series of spinal degenerative diseases. For a long time, the diagnosis and treatment of lumbago have rendered difficult, since the pathogeny has not been identified. Therefore, the present study aimed to investigate the protective effect of Sparstolonin B in preventing lumbar intervertebral disc degeneration, and explored its potential mechanism in rats. Firstly, Sparstolonin B effectively reduced the histological score of disc degeneration and increased endplate porosity of L2 superior endplates in a lumbar IVDD rat model. Sparstolonin B significantly inhibited the IVDD‑induced inflammatory factors tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6, oxidative stress factors (malondialdehyde), and superoxide dismutase and caspase‑3/9 activities. Treatment with Sparstolonin B significantly suppressed toll‑like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MyD88) and nuclear factor (NF)‑κB protein expression, inhibited NAPDH oxidase 2 protein expression and induced phosphoinositide 3‑kinase and phosphorylated protein kinase B protein expression in the IVDD rat model. These results demonstrated that Sparstolonin B prevents lumbar IVDD‑induced inflammation, oxidative stress and apoptosis through TLR4/MyD88/NF‑κB, NADPH oxidase activation and the phosphoinositide 3‑kinase/protein kinase B signaling pathway. These results implicate Sparstolonin B for use as a therapeutic agent for IVDD in clinical applications.
Collapse
Affiliation(s)
- Jianhua Ge
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Long Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yunkang Yang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaobo Lu
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Wautier MP, Guillausseau PJ, Wautier JL. Activation of the receptor for advanced glycation end products and consequences on health. Diabetes Metab Syndr 2017; 11:305-309. [PMID: 27612394 DOI: 10.1016/j.dsx.2016.09.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/03/2016] [Indexed: 12/19/2022]
Abstract
Advanced glycation end products (AGE) resulted from a reaction between free amino group of proteins and carbohydrates. This reaction is followed by oxidation and molecular rearrangement. Alternatively AGEs can be produced by glycolysis and oxidation. AGEs bind to a cellular receptor RAGE. RAGE engagement by ligands AGE, β-amyloid peptide, and S100 calgranulin induces a stimulation of NADPH oxidase, reactive oxygen intermediate formation, NFκB activation and gene transcription. This cascade of reaction leads to an inflammatory reaction responsible for alteration of microvessels in the retina and the kidney. Blockade of RAGE by antibodies anti-RAGE, TTP488 (azeliragon), or rRAGE prevents or limits the deleterious effect of AGEs.
Collapse
Affiliation(s)
- Marie-Paule Wautier
- Laboratoire de Biologie Vasculaire et Cellulaire, 6 rue Alexandre Cabanel, 75015 Paris, France
| | - Pierre-Jean Guillausseau
- Université Denis Diderot Paris 7, 10 avenue de Verdun, 75010 Paris, France; APHP, Département de Médecine Interne, Hôpital Lariboisière 2 rue Ambroise Paré, 75010 Paris, France
| | - Jean-Luc Wautier
- Université Denis Diderot Paris 7, 10 avenue de Verdun, 75010 Paris, France; Laboratoire de Biologie Vasculaire et Cellulaire, 6 rue Alexandre Cabanel, 75015 Paris, France.
| |
Collapse
|
18
|
Quenching activity of carnosine derivatives towards reactive carbonyl species: Focus on α−(methylglyoxal) and β−(malondialdehyde) dicarbonyls. Biochem Biophys Res Commun 2017; 492:487-492. [DOI: 10.1016/j.bbrc.2017.08.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022]
|
19
|
Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences. Free Radic Biol Med 2017; 111:328-344. [PMID: 28161307 DOI: 10.1016/j.freeradbiomed.2017.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE biotransformations discussing both the molecular mechanisms involved and the biological effects elicited. The review will also describe the most important analytical enhancements that have permitted the here discussed advancements in our understanding of the HNE metabolic fate and which will permit in a near future an even better knowledge of this enigmatic molecule.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Genny Degani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
20
|
Abstract
Diabetic nephropathy (DN) is currently well established as the most common cause of end-stage renal disease in most parts of the world. Notwithstanding the expanding basic and clinical research in this field, the pathogenesis remains far from clear and hence the treatment of DN remains suboptimal. There is a critical need for the development of newer therapeutic strategies including alternative and complementary therapies. One of the natural products that was extensively studied in cancer and other chronic disease states such as diabetes is curcumin, an active ingredient in turmeric, a spice extensively used in India. In this manuscript, we present a critical review of the experimental and clinical evidence that supports the use of curcumin and its analogs in DN as well as the various proposed mechanisms for its biological actions in health and disease states.
Collapse
|
21
|
Computational approaches in the rational design of improved carbonyl quenchers: focus on histidine containing dipeptides. Future Med Chem 2016; 8:1721-37. [PMID: 27584013 DOI: 10.4155/fmc-2016-0088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM The inhibition of protein carbonylation can play therapeutic roles in several oxidative-based diseases and direct carbonyl quenching appears the most effective inhibition strategies. l-carnosine derivatives are effective and selective quenchers toward 4-hydroxy-2-nonenal even though their activity was never investigated in a fully comparable way. RESULTS The reported results revealed that anserine, homocarnosine and carnosinamide retain a remarkable quenching activity combined with a satisfactory selectivity. In silico analyses confirmed the key role of flexibility, lipophilicity and nucleophilicity parameters in rationalizing the measured reactivity. CONCLUSION This study confirms that in silico approaches can be successfully used in the rational design of improved carbonyl quenchers. Physicochemical and stereoelectronic descriptors appear really informative especially when explored by their corresponding property spaces.
Collapse
|
22
|
The pecking order of skin Advanced Glycation Endproducts (AGEs) as long-term markers of glycemic damage and risk factors for micro- and subclinical macrovascular disease progression in Type 1 diabetes. Glycoconj J 2016; 33:569-79. [PMID: 27342131 DOI: 10.1007/s10719-016-9702-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022]
Abstract
To date more than 20 glycation products were identified, of which ~15 in the insoluble human skin collagen fraction. The goal of this review is to streamline 30 years of research and ask a set of important questions: in Type 1 diabetes which glycation products correlate best with 1) past mean glycemia 2) reversibility with improved glycemic control, 2) cross-sectional severity of retinopathy, nephropathy and neuropathy and 3) the future long-term risk of progression of micro- and subclinical macrovascular disease. The trio of glycemia related glycation markers furosine (FUR)/fructose-lysine (FL), glucosepane and methylglyoxal hydroimidazolone (MG-H1) emerges as extraordinarily strong predictors of existing and future microvascular disease progression risk despite adjustment for both past and prospective A1c levels. X(2) values are up to 25.1, p values generally less than 0.0001, and significance remains after adjustment for various factors such as A1c, former treatment group, log albumin excretion rate, abnormal autonomic nerve function and LDL levels at baseline. In contrast, subclinical cardiovascular progression is more weakly correlated with AGEs/glycemia with X(2) values < 5.0 and p values generally < 0.05 after all adjustments. Except for future carotid intima-media thickness, which correlates with total AGE burden (MG-H1, pentosidine, fluorophore LW-1 and decreased collagen solubility), adjusted FUR and Collagen Fluorescence (CLF) are the strongest markers for future coronary artery calcium deposition, while cardiac hypertrophy is associated with LW-1 and CLF adjusted for A1c. We conclude that a robust clinical skin biopsy AGE risk panel for microvascular disease should include at least FUR/FL, glucosepane and MG-H1, while a macrovascular disease risk panel should include at least FL/FUR, MG-H1, LW-1 and CLF.
Collapse
|
23
|
Abstract
Chronic kidney disease (CKD) represents a leading cause of death in the United States. There is no cure for this disease, with current treatment strategies relying on blood pressure control through blockade of the renin-angiotensin system. Such approaches only delay the development of end-stage kidney disease and can be associated with serious side effects. Recent identification of several novel mechanisms contributing to CKD development - including vascular changes, loss of podocytes and renal epithelial cells, matrix deposition, inflammation and metabolic dysregulation - has revealed new potential therapeutic approaches for CKD. This Review assesses emerging strategies and agents for CKD treatment, highlighting the associated challenges in their clinical development.
Collapse
|
24
|
Skrypnyk NI, Voziyan P, Yang H, de Caestecker CR, Theberge MC, Drouin M, Hudson B, Harris RC, de Caestecker MP. Pyridoxamine reduces postinjury fibrosis and improves functional recovery after acute kidney injury. Am J Physiol Renal Physiol 2016; 311:F268-77. [PMID: 27194713 DOI: 10.1152/ajprenal.00056.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is a common and independent risk factor for death and chronic kidney disease (CKD). Despite promising preclinical data, there is no evidence that antioxidants reduce the severity of injury, increase recovery, or prevent CKD in patients with AKI. Pyridoxamine (PM) is a structural analog of vitamin B6 that interferes with oxidative macromolecular damage via a number of different mechanisms and is in a phase 3 clinical efficacy trial to delay CKD progression in patients with diabetic kidney disease. Because oxidative stress is implicated as one of the main drivers of renal injury after AKI, the ability of PM to interfere with multiple aspects of oxidative damage may be favorable for AKI treatment. In these studies we therefore evaluated PM treatment in a mouse model of AKI. Pretreatment with PM caused a dose-dependent reduction in acute tubular injury, long-term postinjury fibrosis, as well as improved functional recovery after ischemia-reperfusion AKI (IR-AKI). This was associated with a dose-dependent reduction in the oxidative stress marker isofuran-to-F2-isoprostane ratio, indicating that PM reduces renal oxidative damage post-AKI. PM also reduced postinjury fibrosis when administered 24 h after the initiating injury, but this was not associated with improvement in functional recovery after IR-AKI. This is the first report showing that treatment with PM reduces short- and long-term injury, fibrosis, and renal functional recovery after IR-AKI. These preclinical findings suggest that PM, which has a favorable clinical safety profile, holds therapeutic promise for AKI and, most importantly, for prevention of adverse long-term outcomes after AKI.
Collapse
Affiliation(s)
- Nataliya I Skrypnyk
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul Voziyan
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haichun Yang
- Division of Pathology, Microbiology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christian R de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Billy Hudson
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Biochemistry, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Raymond C Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Cell and Developmental Biology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
25
|
López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2244-2252. [PMID: 27166197 DOI: 10.1016/j.bbadis.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Post-translational modification of proteins imparts diversity to protein functions. The process of glycation represents a complex set of pathways that mediates advanced glycation endproduct (AGE) formation, detoxification, intracellular disposition, extracellular release, and induction of signal transduction. These processes modulate the response to hyperglycemia, obesity, aging, inflammation, and renal failure, in which AGE formation and accumulation is facilitated. It has been shown that endogenous anti-AGE protective mechanisms are thwarted in chronic disease, thereby amplifying accumulation and detrimental cellular actions of these species. Atop these considerations, receptor for advanced glycation endproducts (RAGE)-mediated pathways downregulate expression and activity of the key anti-AGE detoxification enzyme, glyoxalase-1 (GLO1), thereby setting in motion an interminable feed-forward loop in which AGE-mediated cellular perturbation is not readily extinguished. In this review, we consider recent work in the field highlighting roles for glycation in obesity and atherosclerosis and discuss emerging strategies to block the adverse consequences of AGEs. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States.
| |
Collapse
|
26
|
Lytvyn Y, Bjornstad P, Pun N, Cherney DZI. New and old agents in the management of diabetic nephropathy. Curr Opin Nephrol Hypertens 2016; 25:232-9. [PMID: 26890303 PMCID: PMC5841607 DOI: 10.1097/mnh.0000000000000214] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Diabetic nephropathy is a long-standing complication of diabetes mellitus and is responsible for more than 40% of end-stage renal disease cases in developed countries. Unfortunately, conventional renin-angiotensin-aldosterone system (RAAS) inhibitor medications only partially protect against the development and progression of diabetic nephropathy. Moreover, RAAS inhibitors have failed as primary prevention therapy in type 1 diabetes. Thus, agents targeting alternative pathogenic mechanisms leading to diabetic nephropathy have been intensively investigated, which is the topic of this review. RECENT FINDINGS Promising emerging agents have targeted neurohormonal activation (alternative components of the RAAS and neprilysin inhibition), tubuloglomerular feedback mechanisms (sodium glucose cotransporter 2 inhibition and incretin-based therapy) and renal inflammation/fibrosis. SUMMARY Evidence demonstrating the potential of these agents to protect and prevent progression of diabetic nephropathy is summarized in this review. There are dedicated clinical trials ongoing with these therapies, which have the potential to change the clinical practice.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- aDivision of Nephrology, Department of Medicine, University Health Network bDepartment of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada cDepartment of Pediatric Endocrinology, University of Colorado School of Medicine dBarbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA *Drs Lytvyn, Bjornstad and Pun are the co-first authors of the article
| | | | | | | |
Collapse
|
27
|
Dwyer JP, Greco BA, Umanath K, Packham D, Fox JW, Peterson R, Broome BR, Greene LE, Sika M, Lewis JB. Pyridoxamine dihydrochloride in diabetic nephropathy (PIONEER-CSG-17): lessons learned from a pilot study. Nephron Clin Pract 2014; 129:22-8. [PMID: 25532068 DOI: 10.1159/000369310] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Pyridoxamine dihydrochloride (Pyridorin™) blocks pathogenic oxidative pathways in the progression of diabetic nephropathy. The pyridoxamine pilot study was designed to test entry criteria and outcomes. Subjects had SCr 1.3-3.5 mg/dl, protein-to-creatinine ≥1,200 mg/g and used a surrogate outcome of ΔSCr over 52 weeks. Subjects had to be on a maximally tolerated dose of ACE/ARB for 3 months; stable other antihypertensive doses for 2 months; stable diuretic dose for 2 weeks, and BP ≤160/90 mm Hg; or enter a Pharmaco-Stabilization Phase (PSP). This pilot failed to detect an effect on ΔSCr in intent-to-treat analysis. METHODS We queried the locked clinical trial database for subgroups in which there was a treatment effect. RESULTS Subjects not requiring PSP and those with entry SCr <2.0 mg/dl had a treatment effect. Subjects entering PSP required more changes in antihypertensive medications and experienced larger ΔSCr over 52 weeks. PSP subjects with BP >140/90 mm Hg had no treatment effect, but those ≤140/90 mm Hg did. CONCLUSION Time required for acute effects of ACE/ARB to stabilize is unknown, but these data suggest >3 months. Thus, subjects in the pivotal trial must be on ACE/ARB for 6 months. Frequent antihypertensive adjustment could engender SCr changes unrelated to CKD progression. Thus, we will require subjects to have BP ≤150/90 mm Hg and on stable antihypertensives for 26 weeks, or ≤140/90 mm Hg and on stable antihypertensives for 13 weeks. Since ΔSCr over 52 weeks is limited as a surrogate outcome, the pivotal trial uses a time-to-event analysis of baseline SCr to at least a 50% increase in SCr or ESRD as the primary outcome. This substantial ΔSCr is protected from noise and is clinically relevant. The pyridoxamine pilot provided critical information to inform the design of PIONEER-CSG-17, which we conducted under the SPA agreement with FDA.
Collapse
|