1
|
Beklemisheva VR, Lemskaya NA, Prokopov DY, Perelman PL, Romanenko SA, Proskuryakova AA, Serdyukova NA, Utkin YA, Nie W, Ferguson-Smith MA, Yang F, Graphodatsky AS. Maps of Constitutive-Heterochromatin Distribution for Four Martes Species (Mustelidae, Carnivora, Mammalia) Show the Formative Role of Macrosatellite Repeats in Interspecific Variation of Chromosome Structure. Genes (Basel) 2023; 14:489. [PMID: 36833416 PMCID: PMC9957230 DOI: 10.3390/genes14020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.
Collapse
Affiliation(s)
- Violetta R. Beklemisheva
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya A. Lemskaya
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry Yu. Prokopov
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Polina L. Perelman
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Svetlana A. Romanenko
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia A. Proskuryakova
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya A. Serdyukova
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yaroslav A. Utkin
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Fentang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Alexander S. Graphodatsky
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
de Moraes RLR, Sember A, Bertollo LAC, de Oliveira EA, Ráb P, Hatanaka T, Marinho MMF, Liehr T, Al-Rikabi ABH, Feldberg E, Viana PF, Cioffi MDB. Comparative Cytogenetics and Neo-Y Formation in Small-Sized Fish Species of the Genus Pyrrhulina (Characiformes, Lebiasinidae). Front Genet 2019; 10:678. [PMID: 31428127 PMCID: PMC6689988 DOI: 10.3389/fgene.2019.00678] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of Pyrrhulina species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in Pyrrhulina semifasciata and P. brevis. Our results showed 2n = 42 in both sexes of P. brevis, while the difference in 2n between male and female in P. semifasciata (♂41/♀42) stands out due to the presence of a multiple X1X2Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male-vs.-female CGH experiments in P. semifasciata highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species’ genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the P. semifasciata-derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X1 and X2 chromosomes in both male and female chromosomes of P. semifasciata. In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested Pyrrhulina species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among Pyrrhulina species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.
Collapse
Affiliation(s)
- Renata Luiza Rosa de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Luiz Antônio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Ezequiel Aguiar de Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil.,Secretaria de Estado de Educação de Mato Grosso - SEDUC-MT, Cuiabá, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | | | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | | | - Eliana Feldberg
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| | - Patrik F Viana
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil.,Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
3
|
Liehr T. From Human Cytogenetics to Human Chromosomics. Int J Mol Sci 2019; 20:E826. [PMID: 30769866 PMCID: PMC6413437 DOI: 10.3390/ijms20040826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The concept of "chromosomics" was introduced by Prof. Uwe Claussen in 2005. Herein, the growing insights into human chromosome structure finally lead to a "chromosomic view" of the three-dimensional constitution and plasticity of genes in interphase nuclei are discussed. This review is dedicated to the memory of Prof. Uwe Claussen (30 April 1945⁻20 July 2008). RECENT FINDINGS Chromosomics is the study of chromosomes, their three-dimensional positioning in the interphase nucleus, the consequences from plasticity of chromosomal subregions and gene interactions, the influence of chromatin-modification-mediated events on cells, and even individuals, evolution, and disease. Progress achieved in recent years is summarized, including the detection of chromosome-chromosome-interactions which, if damaged, lead to malfunction and disease. However, chromosomics in the Human Genetics field is not progressing presently, as research interest has shifted from single cell to high throughput, genomic approaches. CONCLUSION Chromosomics and its impact were predicted correctly in 2005 by Prof. Claussen. Although some progress was achieved, present reconsiderations of the role of the chromosome and the single cell in Human Genetic research are urgently necessary.
Collapse
Affiliation(s)
- Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
4
|
Abstract
Abstract
Chromosomes were discovered more than 130 years ago. The implementation of chromosomal investigations in clinical diagnostics was fueled by determining the correct number of human chromosomes to be 46 and the development of specific banding techniques. Subsequent technical improvements in the field of genetic diagnostics, such as fluorescence in situ hybridization (FISH), chromosomal microarrays (CMA, array CGH) or next-generation sequencing (NGS) techniques, partially succeeded in overcoming limitations of banding cytogenetics. Consequently, nowadays, higher diagnostic yields can be achieved if new approaches such as NGS, CMA or FISH are applied in combination with cytogenetics. Nonetheless, high-resolution DNA-focused techniques have dominated clinical diagnostics more recently, rather than a “chromosomic view,” including banding cytogenetics as a precondition for the application of higher resolution methods. Currently, there is a renaissance of this “chromosomic view” in research, understanding chromosomes to be an essential feature of genomic architecture, owing to the discovery of (i) higher order chromosomal sub-compartments, (ii) chromosomal features that influence genomic architecture, gene expression, and evolution, and (iii) 3D and 4D chromatin organization within the nucleus, including the complex way in which chromosomes interact with each other. Interestingly, in many instances research was triggered by specific clinical diagnostic cases or diseases that contributed to new and fascinating insights, not only into disease mechanisms but also into basic principles of chromosome biology. Here we review the role, the intrinsic value, and the perspectives of chromosomes in a molecular genetics-dominated human genetics diagnostic era and make comparison with basic research, where these benefits are well-recognized.
Collapse
|
5
|
|
6
|
Sangpakdee W, Tanomtong A, Chaveerach A, Pinthong K, Trifonov V, Loth K, Hensel C, Liehr T, Weise A, Fan X. Molecular Cytogenetic Analysis of One African and Five Asian Macaque Species Reveals Identical Karyotypes as in Mandrill. Curr Genomics 2018; 19:207-215. [PMID: 29606908 PMCID: PMC5850509 DOI: 10.2174/1389202918666170721115047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022] Open
Abstract
Background The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Deficiency Syndrome (AIDS). Materials & Methods Karyotypes of five macaque species from South East Asia and of one macaque species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys. Molecular cytogenetics applying human probes and probe sets was applied in chromosomes of Macaca arctoides, M. fascicularis, M. nemestrina, M. assamensis, M. sylvanus, M. mulatta and Mandrillus sphinx. Established two- to multicolor-fluorescence in situ hybridization (FISH) approaches were applied. Locus-specific probes, whole and partial chromosome paint probes were hybridized. Especially the FISH-banding approach multicolor-banding (MCB) as well as probes oriented towards heterochromatin turned out to be highly efficient for interspecies comparison. Conclusion Karyotypes of all seven studied species could be characterized in detail. Surprisingly, no evolutionary conserved differences were found among macaques, including mandrill. Between the seven here studied and phenotypically so different species we expected several via FISH detectable karyoypic and submicroscopic changes and were surprised to find none of them on a molecular cytogenetic level. Spatial separation, may explain the speciation and different evolution for some of them, like African M. sylvanus, Mandrillus sphinx and the South Asian macaques. However, for the partially or completely overlapping habitats of the five studied South Asian macaques the species separation process can also not be deduced to karyotypic separation.
Collapse
Affiliation(s)
- Wiwat Sangpakdee
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Alongkoad Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Krit Pinthong
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand.,Faculty of Science and Technology, Surindra Rajabhat University, 186 Moo 1, Maung District, Surin 32000, Thailand
| | - Vladimir Trifonov
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Institute of Molecular and Cellular Biology, Lavrentev Str. 8/2, Novosibirsk630090, Russian Federation
| | - Kristina Loth
- Serengeti-Park Hodenhagen, Am Safaripark 1, D-29693 Hodenhagen, Germany
| | | | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| | - Xiaobo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| |
Collapse
|
7
|
Zlotina A, Kulikova T, Kosyakova N, Liehr T, Krasikova A. Microdissection of lampbrush chromosomes as an approach for generation of locus-specific FISH-probes and samples for high-throughput sequencing. BMC Genomics 2016; 17:126. [PMID: 26897606 PMCID: PMC4761191 DOI: 10.1186/s12864-016-2437-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/05/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Over the past two decades, chromosome microdissection has been widely used in diagnostics and research enabling analysis of chromosomes and their regions through probe generation and establishing of chromosome- and chromosome region-specific DNA libraries. However, relatively small physical size of mitotic chromosomes limited the use of the conventional chromosome microdissection for investigation of tiny chromosomal regions. RESULTS In the present study, we developed a workflow for mechanical microdissection of giant transcriptionally active lampbrush chromosomes followed by the preparation of whole-chromosome and locus-specific fluorescent in situ hybridization (FISH)-probes and high-throughput sequencing. In particular, chicken (Gallus g. domesticus) lampbrush chromosome regions as small as single chromomeres, individual lateral loops and marker structures were successfully microdissected. The dissected fragments were mapped with high resolution to target regions of the corresponding lampbrush chromosomes. For investigation of RNA-content of lampbrush chromosome structures, samples retrieved by microdissection were subjected to reverse transcription. Using high-throughput sequencing, the isolated regions were successfully assigned to chicken genome coordinates. As a result, we defined precisely the loci for marker structures formation on chicken lampbrush chromosomes 2 and 3. Additionally, our data suggest that large DAPI-positive chromomeres of chicken lampbrush chromosome arms are characterized by low gene density and high repeat content. CONCLUSIONS The developed technical approach allows to obtain DNA and RNA samples from particular lampbrush chromosome loci, to define precisely the genomic position, extent and sequence content of the dissected regions. The data obtained demonstrate that lampbrush chromosome microdissection provides a unique opportunity to correlate a particular transcriptional domain or a cytological structure with a known DNA sequence. This approach offers great prospects for detailed exploration of functionally significant chromosomal regions.
Collapse
Affiliation(s)
- Anna Zlotina
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Tatiana Kulikova
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Alla Krasikova
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
8
|
Sangpakdee W, Tanomtong A, Fan X, Pinthong K, Weise A, Liehr T. Application of multicolor banding combined with heterochromatic and locus-specific probes identify evolutionary conserved breakpoints in Hylobates pileatus. Mol Cytogenet 2016; 9:17. [PMID: 26893612 PMCID: PMC4758170 DOI: 10.1186/s13039-016-0228-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The question what makes Homo sapiens sapiens (HSA) special among other species is one of the basic questions of mankind. A small contribution to answer this question is to study the chromosomal constitution of HSA compared to other, closely related species. In order to check the types and extent of evolutionary conserved breakpoints we studied here for the first time the chromosomes of Hylobates pileatus (HPI) compared to HSA and Hylobates lar (HLA) by means of molecular cytogenetics. RESULTS Overall, 68 new evolutionary conserved breakpoints compared to HSA could be characterized in this study. Interestingly, only seven of those were different compared to HLA. However, application of heterochromatic human DNA-probes provided evidence that observed high chromosomal rearrangement rates of gibbons in HPI happened rather in these repetitive elements than in euchromatin, even though most centromeric positions were preserved in HPI compared to HSA. CONCLUSION Understanding genomes of other species and comparing them to HSA needs full karyotypic and high resolution genomic data to approach both: euchromatic and heterochromatic regions of the studied chromosome-content. This study provides full karyotypic data and previously not available data on heterochromatin-syntenies of HPI and HSA.
Collapse
Affiliation(s)
- Wiwat Sangpakdee
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany ; Department of Biology Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen, 40002 Thailand
| | - Alongklod Tanomtong
- Department of Biology Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen, 40002 Thailand
| | - Xiaobo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Krit Pinthong
- Faculty of Science and Technology, Surindra Rajabhat University, 186 Moo 1, Maung District, Surin, 32000 Thailand
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| |
Collapse
|
9
|
Fan X, Supiwong W, Weise A, Mrasek K, Kosyakova N, Tanomtong A, Pinthong K, Trifonov VA, Cioffi MDB, Grothmann P, Liehr T, Oliveira EH. Comprehensive characterization of evolutionary conserved breakpoints in four New World Monkey karyotypes compared to Chlorocebus aethiops and Homo sapiens. Heliyon 2015; 1:e00042. [PMID: 27441227 PMCID: PMC4945616 DOI: 10.1016/j.heliyon.2015.e00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/21/2022] Open
Abstract
Comparative cytogenetic analysis in New World Monkeys (NWMs) using human multicolor banding (MCB) probe sets were not previously done. Here we report on an MCB based FISH-banding study complemented with selected locus-specific and heterochromatin specific probes in four NWMs and one Old World Monkey (OWM) species, i.e. in Alouatta caraya (ACA), Callithrix jacchus (CJA), Cebus apella (CAP), Saimiri sciureus (SSC), and Chlorocebus aethiops (CAE), respectively. 107 individual evolutionary conserved breakpoints (ECBs) among those species were identified and compared with those of other species in previous reports. Especially for chromosomal regions being syntenic to human chromosomes 6, 8, 9, 10, 11, 12 and 16 previously cryptic rearrangements could be observed. 50.4% (54/107) NWM-ECBs were colocalized with those of OWMs, 62.6% (62/99) NWM-ECBs were related with those of Hylobates lar (HLA) and 66.3% (71/107) NWM-ECBs corresponded with those known from other mammalians. Furthermore, human fragile sites were aligned with the ECBs found in the five studied species and interestingly 66.3% ECBs colocalized with those fragile sites (FS). Overall, this study presents detailed chromosomal maps of one OWM and four NWM species. This data will be helpful to further investigation on chromosome evolution in NWM and hominoids in general and is prerequisite for correct interpretation of future sequencing based genomic studies in those species.
Collapse
Key Words
- ACA, Alouatta caraya
- Atelidae
- BACs, bacterial artificial chromosomes
- CAE, Chlorocebus aethiops
- CAP, Cebus apella
- CJA, Callithrix jacchus
- Cebidae
- EC, evolutionary conserved
- ECBs, evolutionary conserved breakpoints
- Evolutionary conserved breakpoints
- Evolutionary genetics
- FISH, fluorescence in situ hybridization
- FS, fragile site
- Fragile sites
- Genetics
- HCM, heterochromatin mix
- HLA, Hylobates lar
- HSA, Homo sapiens
- HSBs, homologous syntenic blocks
- MCB, multicolor banding
- Multicolor banding
- NGS, Next-generation sequencing
- NOR, nucleolus organizer region
- NWMs, New World Monkeys
- New World Monkeys
- OWMs, Old World Monkeys
- Old World Monkeys
- SSC, Saimiri sciureus
- subCTM, sub-centromere/subtelomere-specific multicolor (FISH)
- wcp, whole human chromosome painting
Collapse
Affiliation(s)
- Xiaobo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Weerayuth Supiwong
- Department of Biology Faculty of Science, KhonKaen University, 123 Moo 16 Mittapap Rd., Muang District, KhonKaen 40002, Thailand
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Alongkoad Tanomtong
- Department of Biology Faculty of Science, KhonKaen University, 123 Moo 16 Mittapap Rd., Muang District, KhonKaen 40002, Thailand
| | - Krit Pinthong
- Department of Biology Faculty of Science, KhonKaen University, 123 Moo 16 Mittapap Rd., Muang District, KhonKaen 40002, Thailand
| | | | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Pierre Grothmann
- Serengeti-Park Hodenhagen GmbH, Am Safaripark 1, 29693, Hodenhagen, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Edivaldo H.C.de Oliveira
- Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Campus Universitário do Guamá, 66075-110 Belém-PA, Brazil
| |
Collapse
|