1
|
Li B, Lu X, Wang J, He X, Gu Q, Wang L, Yang Y. The metabonomics study of P-selectin glycoprotein ligand-1 (PSGL-1) deficiency inhibiting the progression of atherosclerosis in LDLR -/- mice. Int J Biol Sci 2018; 14:36-46. [PMID: 29483823 PMCID: PMC5821047 DOI: 10.7150/ijbs.23082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/17/2017] [Indexed: 01/24/2023] Open
Abstract
Atherosclerosis (AS) is a multi-factorial chronic disease commonly associated with the mechanisms of metabolism disorder, endothelial dysfunction and chronic inflammation. AS an inflammatory molecule, p-selectin glycoprotein ligand-1 (PSGL-1) played an important role in the inflammatory process of atherogenesis involving the recruitment of leukocyte and transmitting signals to activate leukocyte during the adhesion process. So far, there has been little study regarding the effects of PSGL-1 on AS progression and the metabolic regulation. In this report, we studied the effect of PSGL-1 deficiency on the formation and progression of AS and the metabolic regulation by use of LDLR-/-, PSGL-1-/- transgenic mice based on metabonomics. It was found that the PSGL-1 deficiency reduced the atherosclerotic plaque area, inflammatory cells infiltration and fiber hyperplasia during the AS development. The serum metabonomics study showed that the LDLR-/- ,PSGL-1-/- mice had higher levels of HDL, valine, acetate, pyruvate, choline, PC, GPC and glycine, and lower levels of LDL+VLDL and lactate at the early stage of atherosclerosis, while lactate, citrate and glutamine showed statistical significance at the late stage of atherosclerosis. These results showed that the PSGL-1 deficiency inhibited the AS progression and regulated glucose metabolism, lipid metabolism, amino acid and phospholipid metabolism in LDLR-/- mice.
Collapse
Affiliation(s)
- Binglin Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xin Lu
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jia Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Quliang Gu
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yongxia Yang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
The Interaction of Selectins and PSGL-1 as a Key Component in Thrombus Formation and Cancer Progression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6138145. [PMID: 28680883 PMCID: PMC5478826 DOI: 10.1155/2017/6138145] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
Cellular interaction is inevitable in the pathomechanism of human disease. Formation of heterotypic cellular aggregates, between distinct cells of hematopoietic and nonhematopoietic origin, may be involved in events leading to inflammation and the complex process of cancer progression. Among adhesion receptors, the family of selectins with their ligands have been considered as one of the major contributors to cell-cell interactions. Consequently, the inhibition of the interplay between selectins and their ligands may have potential therapeutic benefits. In this review, we focus on the current evidence on the selectins as crucial modulators of inflammatory, thrombotic, and malignant disorders. Knowing that there is promiscuity in selectin binding, we outline the importance of a key protein that serves as a ligand for all selectins. This dimeric mucin, the P-selectin glycoprotein ligand 1 (PSGL-1), has emerged as a major player in inflammation, thrombus, and cancer development. We discuss the interaction of PSGL-1 with various selectins in physiological and pathological processes with particular emphasis on mechanisms that lead to severe disease.
Collapse
|