1
|
Arogundade TT, Gbadamosi I, Enaibe BU. Maternal diet supplemented with African walnuts enhances cortico-hippocampal gene expression and histomorphology in rat offspring. Nutr Neurosci 2024; 27:159-171. [PMID: 36635992 DOI: 10.1080/1028415x.2023.2166804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The brain is built up during pregnancy. How it functions afterwards depends on how the expectant mother's diet nourishes it. Walnuts contain significant quantities of polyunsaturated fatty acids (PUFAs) and bioactive phytochemicals, which enhance brain health and function even with advancing age. This study examined the effects of a walnut-enriched diet (WED) on corticohippocampal histoarchitecture and gene expression in rat offspring. MATERIALS AND METHODS Twenty-eight female adult Wistar rats (n= 7) averaging about 185 g in weight were used for this study. After mating, pregnant dams were split randomly into four groups: A (standard rat chow/control), B (WED from GD 0 - PND 21), C (WED from GD 0 - PND 1), D (WED from PND 1 - PND 21). Offspring of dams were sacrificed at adolescence (PND 35), with brain tissues of interest harvested for subsequent analyses. RESULTS We observed no significant correlates in litter size, body, and brain weights across the experimental groups. Histomorphology revealed no distortion in cellular layering and delineation of cells in the PFC and dentate gyrus of both control and WED groups. Nissl staining intensity was enhanced in the offspring of dams exposed to WED versus the control, indicating improved proteostasis. Upregulated mRNA expression of DNMT3a, H2Ax, OPA1, and BDNF was observed in cortical and hippocampal tissues of WEDexposed offspring compared with the control group. CONCLUSION A diet enriched with African walnuts during early development induced changes predictive of cognitive improvements and enhanced stress-response signalling, plasticity, and neural resilience in rat offspring.
Collapse
Affiliation(s)
- Tolulope T Arogundade
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY - Center of Excellence for Neural Plasticity and Brain Disorders, Institute of Experimental Biology Marceli Nencki, Polish Academy of Sciences, Warsaw, Poland
| | - Bernard U Enaibe
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
Hossain SR, Karem H, Jafari Z, Kolb BE, Mohajerani MH. Tactile stimulation improves cognition, motor, and anxiety-like behaviors and attenuates the Alzheimer's disease pathology in adult APP NL-G-F/NL-G-F mice. Synapse 2023; 77:e22257. [PMID: 36255152 DOI: 10.1002/syn.22257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is one of the largest health crises in the world. There are limited pharmaceutical interventions to treat AD, however, and most of the treatment options are not for cure or prevention, but rather to slow down the progression of the disease. The aim of this study was to examine the effect of tactile stimulation (TS) on AD-like symptoms and pathology in APPNL-G-F/NL-G-F mice, a mouse model of AD. The results show that TS reduces the AD-like symptoms on tests of cognition, motor, and anxiety-like behaviors and these improvements in behavior are associated with reduced AD pathology in APP mice. Thus, TS appears to be a promising noninvasive strategy for slowing the onset of dementia in aging animals.
Collapse
Affiliation(s)
- Shakhawat R Hossain
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
3
|
Mitchell AJ, Dunn GA, Sullivan EL. The Influence of Maternal Metabolic State and Nutrition on Offspring Neurobehavioral Development: A Focus on Preclinical Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:450-460. [PMID: 34915175 PMCID: PMC9086110 DOI: 10.1016/j.bpsc.2021.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
The prevalence of both obesity and neurodevelopmental disorders has increased substantially over the last several decades. Early environmental factors, including maternal nutrition and metabolic state during gestation, influence offspring neurodevelopment. Both human and preclinical models demonstrate a link between poor maternal nutrition, altered metabolic state, and risk of behavioral abnormalities in offspring. This review aims to highlight evidence from the current literature connecting maternal nutrition and the associated metabolic changes with neural and behavioral outcomes in the offspring, as well as identify possible mechanisms underlying these neurodevelopmental outcomes. Owing to the highly correlated nature of poor nutrition and obesity in humans, preclinical animal models are important in distinguishing the unique effects of maternal nutrition and metabolic state on offspring brain development. We use a translational lens to highlight results from preclinical animal models of maternal obesogenic diet related to alterations in behavioral and neurodevelopmental outcomes in offspring. Specifically, we aim to highlight results that resemble behavioral phenotypes described in the diagnostic criteria of neurodevelopmental conditions in humans. Finally, we examine the proinflammatory nature of maternal obesity and consumption of a high-fat diet as a mechanism for neurodevelopmental alterations that may alter offspring behavior later in life. It is important that future studies examine potential therapeutic interventions and prevention strategies to interrupt the transgenerational transmission of the disease. Given the tremendous risk to the next generation, changes need to be made to ensure that all pregnant people have access to nutritious food and are informed about the optimal diet for their developing child.
Collapse
Affiliation(s)
- A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Psychiatry, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon; Department of Human Physiology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
4
|
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Front Neurosci 2021; 15:632312. [PMID: 33642988 PMCID: PMC7902933 DOI: 10.3389/fnins.2021.632312] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Is play a behavior system, and, if so, what kind? Behav Processes 2019; 160:1-9. [DOI: 10.1016/j.beproc.2018.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022]
|
6
|
Zamani A, Mychasiuk R, Semple BD. Determinants of social behavior deficits and recovery after pediatric traumatic brain injury. Exp Neurol 2019; 314:34-45. [PMID: 30653969 DOI: 10.1016/j.expneurol.2019.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/12/2019] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) during early childhood is associated with a particularly high risk of developing social behavior impairments, including deficits in social cognition that manifest as reduced social interactions, with profound consequences for the individuals' quality of life. A number of pre-injury, post-injury, and injury-related factors have been identified or hypothesized to determine the extent of social behavior problems after childhood TBI. These include variables associated with the individual themselves (e.g. age, genetics, the injury severity, and extent of white matter damage), proximal environmental factors (e.g. family functioning, parental mental health), and more distal environmental factors (e.g. socioeconomic status, access to resources). In this review, we synthesize the available evidence demonstrating which of these determinants influence risk versus resilience to social behavior deficits after pediatric TBI, drawing upon the available clinical and preclinical literature. Injury-related pathology in neuroanatomical regions associated with social cognition and behaviors will also be described, with a focus on findings from magnetic resonance imaging and diffusion tensor imaging. Finally, study limitations and suggested future directions are highlighted. In summary, while no single variable can alone accurately predict the manifestation of social behavior problems after TBI during early childhood, an increased understanding of how both injury and environmental factors can influence social outcomes provides a useful framework for the development of more effective rehabilitation strategies aiming to optimize recovery for young brain-injured patients.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Prahran, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Prahran, VIC, Australia; Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Wise LM, Hernández-Saavedra D, Boas SM, Pan YX, Juraska JM. Perinatal High-Fat Diet and Bisphenol A: Effects on Behavior and Gene Expression in the Medial Prefrontal Cortex. Dev Neurosci 2018; 41:1-16. [PMID: 30580332 PMCID: PMC6941347 DOI: 10.1159/000494879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/23/2018] [Indexed: 01/24/2023] Open
Abstract
Both high-fat diets (HFD) and bisphenol A (BPA), an environmental endocrine disruptor, are prevalent in industrialized societies. Previous studies have detected separate effects of BPA and HFD; however, none have assessed possible interactive effects. Here, pregnant dams consumed 0, 40, or 400 µg BPA/kg/day and were fed either a control (CON; 15.8% kcal fat) or HFD (45% kcal fat) from gestational day 2 through parturition. The pups were individually dosed with BPA from postnatal days (P) 1-10, while the dams continued to consume one of the two diets. Maternal behavior increased with the HFD while the offspring's periadolescent social play decreased with BPA, but no interactive effects were observed. Neither HFD nor BPA exposure changed performance on a social recognition task, and only BPA had an effect on the elevated plus maze. BPA increased several cytokines in the medial prefrontal cortex (mPFC) of P10 males but not females. Expression of several genes related to hormone synthesis and receptors, inflammation, oxidative stress, and apoptosis in the mPFC on P10 and P90 were altered due to BPA and/or HFD exposure with rare interactive effects. BPA resulted in an increase in the gene expression of Esr1 in the mPFC of females on both P10 and P90. Epigenetic analysis on P90 did not show a change in methylation or in the levels of pre-mRNA or microRNA. Thus, perinatal BPA and HFD have separate effects but rarely interact.
Collapse
Affiliation(s)
- Leslie M. Wise
- Department of Psychology, 603 E Daniel St, University of Illinois, Champaign, IL, USA 61820
| | - Diego Hernández-Saavedra
- Division of Nutritional Sciences, 906 S Goodwin Ave, University of Illinois, Urbana, IL, USA, 61801
| | - Stephanie M. Boas
- Department of Psychology, 603 E Daniel St, University of Illinois, Champaign, IL, USA 61820
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, 906 S Goodwin Ave, University of Illinois, Urbana, IL, USA, 61801
- Department of Food Science and Human Nutrition, 906 S Goodwin Ave, University of Illinois, Urbana, IL, USA, 61801
- Illinois Informatics Institute, 906 S Goodwin Ave, University of Illinois, Urbana, IL, USA, 61801
| | - Janice M. Juraska
- Department of Psychology, 603 E Daniel St, University of Illinois, Champaign, IL, USA 61820
- Neuroscience Program, 603 E Daniel St, University of Illinois, Champaign, IL, USA 61820
| |
Collapse
|
8
|
Papilloud A, Guillot de Suduiraut I, Zanoletti O, Grosse J, Sandi C. Peripubertal stress increases play fighting at adolescence and modulates nucleus accumbens CB1 receptor expression and mitochondrial function in the amygdala. Transl Psychiatry 2018; 8:156. [PMID: 30111823 PMCID: PMC6093900 DOI: 10.1038/s41398-018-0215-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/09/2018] [Accepted: 07/14/2018] [Indexed: 12/22/2022] Open
Abstract
Play fighting is a highly rewarding behavior that helps individuals to develop social skills. Early-life stress has been shown to alter play fighting in rats and hamsters as well as to increase aggressive behaviors at adulthood. However, it is not known whether individual differences in stress-induced play fighting are related to differential developmental trajectories towards adult aggression. To address this question, we used a rat model of peripubertal stress (PPS)-induced psychopathology that involves increased aggression at adulthood. We report that, indeed, PPS leads to enhanced play fighting at adolescence. Using a stratification approach, we identify individuals with heightened levels of play fighting as the ones that show abnormal forms of aggression at adulthood. These animals showed as well a rapid habituation of their corticosterone responsiveness to repeated stressor exposure at peripuberty. They also showed a striking increase in mitochondrial function in the amygdala-but not nucleus accumbens-when tested ex vivo. Conversely, low, but not high players, displayed increased expression of the CB1 cannabinoid receptor in the nucleus accumbens shell. Our results highlight adolescence as a potential critical period in which aberrant play fighting is linked to the emergence of adult aggression. They also point at brain energy metabolism during adolescence as a possible target to prevent adult aggression.
Collapse
Affiliation(s)
- Aurélie Papilloud
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Kougias DG, Cortes LR, Moody L, Rhoads S, Pan YX, Juraska JM. Effects of Perinatal Exposure to Phthalates and a High-Fat Diet on Maternal Behavior and Pup Development and Social Play. Endocrinology 2018; 159:1088-1105. [PMID: 29300916 PMCID: PMC5793791 DOI: 10.1210/en.2017-03047] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/21/2017] [Indexed: 01/28/2023]
Abstract
Humans are ubiquitously exposed to many phthalates, a class of endocrine-disrupting chemicals commonly used in many consumer goods, and diet, especially fatty food, is presumed to be a major source of exposure. Here, we use a rat model of human prenatal exposure to investigate the potential interactive effects of an environmentally relevant mixture of phthalates and a maternal high-fat diet (HFD). From gestation through postnatal day (P)10, dams consumed the mixture of phthalates (0, 200, or 1000 μg/kg/d) and were fed a control diet or HFD. In males, perinatal exposure to the mixture of phthalates decreased prepubertal body weight and, in a dose-specific manner, periadolescent social play behavior. A dose-specific effect from phthalates with HFD was also seen in increased time alone in females during social play. HFD resulted in dams consuming more calories, having greater gestational weight gain, and licking and nursing their pups more, such that an early postnatal HFD generally increased pup body weight. There also was a tendency for increased oxidative stress markers at P10 within the medial prefrontal cortex of males exposed to the relatively high dose of phthalates and HFD. Effects on gene expression were inconsistent at P10 and P90 in both the medial prefrontal cortex and hypothalamus. Overall, this study demonstrates that phthalates and a maternal HFD only rarely interacted, except in oxidative stress markers in males. Additionally, perinatal exposure to an environmentally relevant mixture of phthalates can have a modest, but lasting, impact on social behaviors in both males and females.
Collapse
Affiliation(s)
- Daniel G. Kougias
- Neuroscience Program, University of Illinois, Champaign, Illinois 61820
| | - Laura R. Cortes
- Department of Psychology, University of Illinois, Champaign, Illinois 61820
| | - Laura Moody
- Division of Nutritional Sciences, University of Illinois, Champaign, Illinois 61820
| | - Steven Rhoads
- Department of Psychology, University of Illinois, Champaign, Illinois 61820
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois, Champaign, Illinois 61820
- Department of Food Science and Human Nutrition, University of Illinois, Champaign, Illinois 61820
| | - Janice M. Juraska
- Neuroscience Program, University of Illinois, Champaign, Illinois 61820
- Department of Psychology, University of Illinois, Champaign, Illinois 61820
| |
Collapse
|
10
|
Mychasiuk R, Metz GAS. Epigenetic and gene expression changes in the adolescent brain: What have we learned from animal models? Neurosci Biobehav Rev 2016; 70:189-197. [PMID: 27426956 DOI: 10.1016/j.neubiorev.2016.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
Adolescence is defined as the gradual period of transition between childhood and adulthood that is characterized by significant brain maturation, growth spurts, sexual maturation, and heightened social interaction. Although originally believed to be a uniquely human aspect of development, rodent and non-human primates demonstrate maturational patterns that distinctly support an adolescent stage. As epigenetic processes are essential for development and differentiation, but also transpire in mature cells in response to environmental influences, they are an important aspect of adolescent brain maturation. The purpose of this review article was to examine epigenetic programming in animal models of brain maturation during adolescence. The discussion focuses on animal models to examine three main concepts; epigenetic processes involved in normal adolescent brain maturation, the influence of fetal programming on adolescent brain development and the epigenome, and finally, postnatal experiences such as exercise and drugs that modify epigenetic processes important for adolescent brain maturation. This corollary emphasizes the utility of animal models to further our understanding of complex processes such as epigenetic regulation and brain development.
Collapse
Affiliation(s)
- Richelle Mychasiuk
- Alberta Children's Hospital Research Institute, University of Calgary, Department of Psychology, AD030 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|