1
|
Min C, Galons JP, Lynch RM, Steyn LV, Price ND, Weegman BP, Taylor MJ, Pandey A, Harland R, Martin D, Besselsen D, Putnam CW, Papas KK. Antegrade persufflation of porcine kidneys improves renal function after warm ischemia. FRONTIERS IN TRANSPLANTATION 2024; 3:1420693. [PMID: 39239359 PMCID: PMC11375613 DOI: 10.3389/frtra.2024.1420693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Introduction Transplantation of kidneys from expanded criteria donors (ECD), including after circulatory death (DCD), is associated with a higher risk of adverse events compared to kidneys from standard criteria donors. In previous studies, improvements in renal transplant outcomes have been seen when kidneys were perfused with gaseous oxygen during preservation (persufflation, PSF). In the present study, we assessed ex-vivo renal function from a Diffusion Contrast Enhanced (DCE)-MRI estimation of glomerular filtration rate (eGFR); and metabolic sufficiency from whole-organ oxygen consumption (WOOCR) and lactate production rates. Methods Using a porcine model of DCD, we assigned one kidney to antegrade PSF, and the contralateral kidney to static cold storage (SCS), both maintained for 24 h at 4°C. Post-preservation organ quality assessments, including eGFR, WOOCR and lactate production, were measured under cold perfusion conditions, and biopsies were subsequently taken for histopathological analysis. Results A significantly higher eGFR (36.6 ± 12.1 vs. 11.8 ± 4.3 ml/min, p < 0.05), WOOCR (182 ± 33 vs. 132 ± 21 nmol/min*g, p < 0.05), and lower rates of lactate production were observed in persufflated kidneys. No overt morphological differences were observed between the two preservation methods. Conclusion These data suggest that antegrade PSF is more effective in preserving renal function than conventional SCS. Further studies in large animal models of transplantation are required to investigate whether integration with PSF of WOOCR, eGFR or lactate production measurements before transplantation are predictive of post-transplantation renal function and clinical outcomes.
Collapse
Affiliation(s)
- Catherine Min
- Department of Physiology, University of Arizona, Tucson, AZ, United States
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | | | - Ronald M Lynch
- Department of Physiology, University of Arizona, Tucson, AZ, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Nicholas D Price
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Brad P Weegman
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech, Inc., North Charleston, SC, United States
| | - Michael J Taylor
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Sylvatica Biotech, Inc., North Charleston, SC, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Abhishek Pandey
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States
| | - Robert Harland
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Diego Martin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States
| | - David Besselsen
- University Animal Care, University of Arizona, Tucson, AZ, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Persufflation—Current State of Play. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the ever-increasing disparity between the number of patients waiting for organ transplants and the number organs available, some patients are unable to receive life-saving transplantation in time. The present, widely-used form of preservation is proving to be incapable of maintaining organ quality during long periods of preservation and meeting the needs of an ever-changing legislative and transplantation landscape. This has led to the need for improved preservation techniques. One such technique that has been extensively researched is gaseous oxygen perfusion or Persufflation (PSF). This method discovered in the early 20th century has shown promise in providing both longer term preservation and organ reconditioning capabilities for multiple organs including the liver, kidneys, and pancreas. PSF utilises the organs own vascular network to provide oxygen to the organ tissue and maintain metabolism during preservation to avoid hypoxic damage. This review delves into the history of this technique, its multiple different approaches and uses, as well as in-depth discussion of work published in the past 15 years. Finally, we discuss exciting commercial developments which may help unlock the potential for this technique to be applied at scale.
Collapse
|
3
|
Organ preservation solutions: linking pharmacology to survival for the donor organ pathway. Curr Opin Organ Transplant 2019; 23:361-368. [PMID: 29697461 DOI: 10.1097/mot.0000000000000525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To provide an understanding of the scientific principles, which underpinned the development of organ preservation solutions, and to bring into context new strategies and challenges for solution development against the background of changing preservation technologies and expanded criteria donor access. RECENT FINDINGS Improvements in organ preservation solutions continue to be made with new pharmacological approaches. New solutions have been developed for dynamic perfusion preservation and are now in clinical application. Principles defining organ preservation solution pharmacology are being applied for cold chain logistics in tissue engineering and regenerative medicine. SUMMARY Organ preservation solutions support the donor organ pathway. The solution compositions allow additives and pharmacological agents to be delivered direct to the target organ to mitigate preservation injury. Changing preservation strategies provide further challenges and opportunities to improve organ preservation solutions.
Collapse
|