1
|
Li Y, Minic Z, Hüttmann N, Khraibah A, Storey KB, Berezovski MV. Proteomic analysis of Rana sylvatica reveals differentially expressed proteins in liver in response to anoxia, dehydration or freezing stress. Sci Rep 2024; 14:15388. [PMID: 38965296 PMCID: PMC11224343 DOI: 10.1038/s41598-024-65417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Ectothermic animals that live in seasonally cold regions must adapt to seasonal variation and specific environmental conditions. During the winter, some amphibians hibernate on land and encounter limited environmental water, deficient oxygen, and extremely low temperatures that can cause the whole body freezing. These stresses trigger physiological and biochemical adaptations in amphibians that allow them to survive. Rana sylvatica, commonly known as the wood frog, shows excellent freeze tolerance. They can slow their metabolic activity to a near halt and endure freezing of 65-70% of their total body water as extracellular ice during hibernation, returning to normal when the temperatures rise again. To investigate the molecular adaptations of freeze-tolerant wood frogs, a comprehensive proteomic analysis was performed on frog liver tissue after anoxia, dehydration, or freezing exposures using a label-free LC-MS/MS proteomic approach. Quantitative proteomic analysis revealed that 87, 118, and 86 proteins were significantly upregulated in dehydrated, anoxic, and frozen groups, suggesting potential protective functions. The presence of three upregulated enzymes, glutathione S-transferase (GST), aldolase (ALDOA), and sorbitol dehydrogenase (SORD), was also validated. For all enzymes, the specific enzymatic activity was significantly higher in the livers of frozen and anoxic groups than in the controls. This study reveals that GST, ALDOA, and SORD might participate in the freeze tolerance mechanism by contributing to regulating cellular detoxification and energy metabolism.
Collapse
Affiliation(s)
- Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Abdullah Khraibah
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Cerrato CP, Langel Ü. An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2022; 19:133-146. [PMID: 35086398 DOI: 10.1080/17425247.2022.2034784] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cell-penetrating peptide (CPP) technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat most diseases. AREAS COVERED This updated review article provides an overview of current intracellular organelle targeting by CPP. The targeting strategies of CPP and CPP/cargo complexes to specific cells or intracellular organelles are summarized, and the review provides an update on the current data for their pharmacological and therapeutical applications. EXPERT OPINION Targeted drug delivery is moving from the level of tissue or specific pathogenic cell to the level of specific organelle that is the target of the drug, an important aspect in drug design and development. Organelle-targeted drug delivery results in improved efficacy, ability to control mode of action, reduction of undesired toxicities and side effects, and possibility to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Verheij M, Zeerleder S, Voermans C. Heme oxygenase-1: Equally important in allogeneic hematopoietic stem cell transplantation and organ transplantation? Transpl Immunol 2021; 68:101419. [PMID: 34089821 DOI: 10.1016/j.trim.2021.101419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
The intracellular enzyme heme oxygenase-1 (HO-1) is responsible for the degradation of cell-free (cf) heme. Cfheme, released upon cell damage and cell death from hemoglobin, mitochondria and myoglobin, functions as a powerful damage-associated molecular pattern (DAMP). Indeed, cfheme plays a role in a myriad of diseases characterized by (systemic) inflammation, and its rapid degradation by HO-1 is pivotal to maintain homeostasis. In the past decade, HO-1 has been extensively studied for its potential protective role in different transplantation settings, including allogeneic hematopoietic stem cell transplantation (HSCT), solid organ transplantation and pancreatic islet transplantation. These studies have shown that HO-1 can be induced by a wide range of molecules, and that induction of HO-1 has the potential to significantly reduce the incidence and severity of transplantation-related complications such as graft-versus-host disease (GvHD) and ischemia/reperfusion injury (IRI). As such, further investigation into the use of HO-1-inducing agents in human transplantation settings to facilitate the potential use of these agents in the clinic is warranted. In this review, we summarize the literature of the past 10 years on the role of HO-1 in allogeneic HSCT, solid organ transplantation (focusing on kidney and liver) and pancreatic islet transplantation. Furthermore, we provide a hypothesis about the way that HO-1 is able to provide protection against acute GvHD after allogeneic HSCT. A total of 48 research articles and 17 review articles were included in this review.
Collapse
Affiliation(s)
- Myrddin Verheij
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Department for Biomedical Research, University of Bern, Switzerland
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Kang JY, Kim S, Kim J, Kang NG, Yang CS, Min SJ, Kim JW. Cell-penetrating peptide-conjugated lipid/polymer hybrid nanovesicles for endoplasmic reticulum-targeting intracellular delivery. J Mater Chem B 2021; 9:464-470. [DOI: 10.1039/d0tb01940b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An ER-targeting, intracellular delivery approach that utilizes cell-penetrating peptide-conjugated lipid/polymer hybrid nanovehicles is proposed.
Collapse
Affiliation(s)
- Jeong Yi Kang
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Juhyeon Kim
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| | - Nae-Gyu Kang
- R&D Campus
- LG Household & Health Care
- Seoul 07795
- Republic of Korea
| | - Chul-Su Yang
- Department of Molecular & Life Science
- Hanyang University
- Ansan 15588
- Republic of Korea
| | - Sun-Joon Min
- Department of Chemical & Molecular Engineering/Applied Chemistry, Center for Bionano Intelligence Education and Research
- Hanyang University
- Ansan 15588
- Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| |
Collapse
|
5
|
Lu TF, Yang TH, Zhong CP, Shen C, Lin WW, Gu GX, Xia Q, Xu N. Dual Effect of Hepatic Macrophages on Liver Ischemia and Reperfusion Injury during Liver Transplantation. Immune Netw 2018; 18:e24. [PMID: 29984042 PMCID: PMC6026692 DOI: 10.4110/in.2018.18.e24] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major complication in liver transplantation (LT) and it is closely related to the recovery of grafts' function. Researches has verified that both innate and adaptive immune system are involved in the development of IRI and Kupffer cell (KC), the resident macrophages in the liver, play a pivotal role both in triggering and sustaining the sterile inflammation. Damage-associated molecular patterns (DAMPs), released by the initial dead cell because of the ischemia insult, firstly activate the KC through pattern recognition receptors (PRRs) such as toll-like receptors. Activated KCs is the dominant players in the IRI as it can secret various pro-inflammatory cytokines to exacerbate the injury and recruit other types of immune cells from the circulation. On the other hand, KCs can also serve in a contrary way to ameliorate IRI by upregulating the anti-inflammatory factors. Moreover, new standpoint has been put forward that KCs and macrophages from the circulation may function in different way to influence the inflammation. Managements towards KCs are expected to be the effective way to improve the IRI.
Collapse
Affiliation(s)
- Tian-Fei Lu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Tai-Hua Yang
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medicine School, Hannover 30625, Germany
| | - Cheng-Peng Zhong
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chuan Shen
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei-Wei Lin
- Department of Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guang-Xiang Gu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ning Xu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
6
|
|