1
|
Iamjan SA, Veerasakul S, Reynolds GP, Thanoi S, Nudmamud-Thanoi S. Regional-specific changes in rat brain BDNF in a model of methamphetamine abuse. Neurosci Lett 2024; 836:137880. [PMID: 38885757 DOI: 10.1016/j.neulet.2024.137880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays key roles in neuronal protection and synaptic plasticity. Changes in BDNF are associated with various pathological conditions, including methamphetamine (meth) addiction, although the effects of meth on BDNF expression are not always consistent. We have previously demonstrated region-specific effects of a chronic meth regime on BDNF methylation and expression in the rat brain. This study aims to determine the effect of chronic meth administration on the expression of BDNF protein using immunohistochemistry in the rat frontal cortex and hippocampus. Novel object recognition (NOR) as a measure of cognitive function was also determined. Male Sprague Dawley rats were administered a chronic escalating dose (0.1-4 mg/kg over 14 days) (ED) of meth or vehicle; a subgroup of animals receiving meth were also given an acute "binge" (4x6mg) dose on the final day before NOR testing. The results showed that hippocampal CA1 BDNF protein was significantly increased by 72 % above control values in the ED-binge rats, while other hippocampal regions and frontal cortex were not significantly affected. Meth-administered animals also demonstrated deficits in NOR after 24 h delay. No significant effect of the additional binge dose on BDNF protein or NOR findings was apparent. This finding is consistent with our previous results of reduced DNA methylation and increased expression of the BDNF gene in this region. The hippocampal BDNF increase may reflect an initial increase in a protective factor produced in response to elevated glutamate release resulting in neurodegenerative excitotoxicity.
Collapse
Affiliation(s)
- Sri-Arun Iamjan
- Department of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Siriluk Veerasakul
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, UK
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
2
|
Valvassori SS, Possamai-Della T, Aguiar-Geraldo JM, Sant’Ana RG, Dal-Pont GC, Pescador B, Zugno AI, Quevedo J, Dal-Pizzol F. Sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model. Eur J Neurosci 2024; 59:1153-1168. [PMID: 37350331 PMCID: PMC10746835 DOI: 10.1111/ejn.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The present study aimed to evaluate if sepsis sensitizes behavioural and biochemical responses induced by m-amphetamine. For this, Wistar rats were submitted to the cecal ligation and puncture. After 30 days of cecal ligation and puncture procedure, the animals were submitted to a single intraperitoneal injection of saline or m-amphetamine (.25, .50, or 1.0 mg/kg). Locomotor behaviour was assessed 2 h after the administration. Interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, dopamine-cAMP-regulated phosphoprotein of 32,000 kDa (DARPP-32) and neuronal calcium sensor (NCS-1) levels were evaluated in the frontal cortex, hippocampus and striatum. Also, brain-derived neurotrophic factor (BDNF), neuronal growth factor and glial-derived neurotrophic factor levels were assessed in the hippocampus. M-amphetamine alone (.25 and 1.0 mg/kg) increased rats' locomotion and exploratory behaviour compared with the Sham + Sal. Animals from the cecal ligation and puncture + m-amphetamine (.5 and/or 1.0 mg/kg) group showed an increase in locomotion, exploratory and risk-like behaviour when compared with the Sham + Saline group and with its respective Sham groups. Cecal ligation and puncture increased interleukin levels compared with the Sham + Sal. However, cecal ligation and puncture animals that received m-amphetamine (1 mg/kg) increased even more, these inflammatory parameters compared with the Sham + Sal and the cecal ligation and puncture + saline group. M-amphetamine at lower doses increased neurotrophic factors, but higher doses decreased these parameters in the brain of cecal ligation and puncture rats. M-amphetamine dose-dependently increased DARPP-32 and NCS-1 levels in cecal ligation and puncture rats in some structures. In conclusion, these results demonstrate that sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model.
Collapse
Affiliation(s)
- Samira S. Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M. Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rômulo Goronci Sant’Ana
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C. Dal-Pont
- Translational Health Research Laboratory, Alto Vale do Rio do Peixe University, Caçador, Brazil
| | - Bruna Pescador
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Alexandra I. Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
3
|
Zhang W, Zhou J, Su H, Zhang X, Song W, Wang Z, Tang C, Uludağ K, Zhao M, Xiong ZQ, Zhai R, Jiang H. Repeated methamphetamine exposure decreases plasma brain-derived neurotrophic factor levels in rhesus monkeys. Gen Psychiatr 2023; 36:e101127. [PMID: 37920406 PMCID: PMC10618972 DOI: 10.1136/gpsych-2023-101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/03/2023] [Indexed: 11/04/2023] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) is known to prevent methamphetamine (METH)-induced neurotoxicity and plays a role in various stages of METH addiction. However, there is a lack of research with longitudinal design on changes in plasma BDNF levels in active METH-dependent individuals. Aims The aim of the study was to investigate changes in BDNF levels during METH self-administration in monkeys. Methods This study measured plasma BDNF levels in three male rhesus monkeys with continuous METH exposure and four male control rhesus monkeys without METH exposure. Changes in plasma BDNF levels were then assessed longitudinally during 40 sessions of METH self-administration in the three monkeys. Results Repeated METH exposure decreased plasma BDNF levels. Additionally, plasma BDNF decreased with long-term rather than short-term accumulation of METH during METH self-administration. Conclusions These findings may indicate that the changes in peripheral BDNF may reflect the quantity of accumulative METH intake during a frequent drug use period.
Collapse
Affiliation(s)
- Wenlei Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijing Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjie Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kadir Uludağ
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lingang Laboratory, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Zhi-Qi Xiong
- Lingang Laboratory, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| | | | - Haifeng Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| |
Collapse
|
4
|
Methamphetamine Induces Systemic Inflammation and Anxiety: The Role of the Gut–Immune–Brain Axis. Int J Mol Sci 2022; 23:ijms231911224. [PMID: 36232524 PMCID: PMC9569811 DOI: 10.3390/ijms231911224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive drug abused by millions of users worldwide, thus becoming a global health concern with limited management options. The inefficiency of existing treatment methods has driven research into understanding the mechanisms underlying METH-induced disorders and finding effective treatments. This study aims to understand the complex interactions of the gastrointestinal–immune–nervous systems following an acute METH dose administration as one of the potential underlying molecular mechanisms concentrating on the impact of METH abuse on gut permeability. Findings showed a decreased expression of tight junction proteins ZO-1 and EpCAm in intestinal tissue and the presence of FABP-1 in sera of METH treated mice suggests intestinal wall disruption. The increased presence of CD45+ immune cells in the intestinal wall further confirms gut wall inflammation/disruption. In the brain, the expression of inflammatory markers Ccl2, Cxcl1, IL-1β, TMEM119, and the presence of albumin were higher in METH mice compared to shams, suggesting METH-induced blood–brain barrier disruption. In the spleen, cellular and gene changes are also noted. In addition, mice treated with an acute dose of METH showed anxious behavior in dark and light, open field, and elevated maze tests compared to sham controls. The findings on METH-induced inflammation and anxiety may provide opportunities to develop effective treatments for METH addiction in the future.
Collapse
|
5
|
Tomášková A, Šlamberová R, Černá M. Influence of Prenatal Methamphetamine Abuse on the Brain. EPIGENOMES 2020; 4:14. [PMID: 34968287 PMCID: PMC8594709 DOI: 10.3390/epigenomes4030014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
Methamphetamine (MA), a psychostimulant, has become a serious problem in recent years. It is one of the most widely abused psychostimulants in the world. In the Czech Republic, ecstasy is the most commonly used non-cannabis drug, followed by hallucinogenic fungi, LSD, MA, cocaine, and finally heroin. The prevalence of the usage of all addictive substances is highest in the age category of 15-34. Approximately 17.2% of registered drug addicts, both male and female, in the Czech Republic use MA as their first-choice drug. This group consists mostly of women who are unemployed and addicted to MA (85%). Almost half of the addicted women switched to MA from other drugs in the course of pregnancy. Psychostimulants such as amphetamine and its synthetic derivate MA induce feelings of calm and happiness by suppressing anxiety and depression. When MA is abused for longer periods, it mimics symptoms of mania and can lead to the development of psychosis. MA is often abused for its anorectic effect, its simple preparation, and compared to heroin and cocaine, its low price. There are significant differences in the susceptibility of users to the stimulant, with reactions to MA fluctuating from person to person. Molecular mechanisms related to the variable response among users might represent an explanation for increased addiction-associated bipolar disorder and psychosis. Currently, there is limited information regarding genetic mechanisms linked to these disorders and the transmission of drug addiction. As such, animal models of drug addiction represent significant sources of information and assets in the research of these issues. The aim of this review is to summarize the mechanism of action of methamphetamine and its effect on pregnant addicted women and their children, including a detailed description of the anatomical structures involved.
Collapse
Affiliation(s)
- Anežka Tomášková
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| |
Collapse
|
6
|
Moreira da Silva Santos A, Gorman AM, Kelly JP, Doyle KM. Time and region-dependent manner of increased brain derived neurotrophic factor and TrkB in rat brain after binge-like methamphetamine exposure. Neurosci Lett 2020; 715:134606. [PMID: 31693929 DOI: 10.1016/j.neulet.2019.134606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/06/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Methamphetamine (MA), a synthetic derivate of amphetamine, has become a major drug of abuse worldwide. This study investigated the effect of binge-like MA dosing (4 x 4 mg/kg, s.c., 2 h (h) apart) at a range of different time points (from 2 h to 7 days after treatment) on brain-derived neurotrophic factor (BDNF) levels and its receptors, TrkB and p75NTR. BDNF levels were significantly increased in the frontal cortex from 2 to 36 h after treatment, returning to normal within 48 h after treatment. In the striatum, BDNF expression was increased at 12 and 24 h after binge-like MA treatment and had returned to normal at 36 h. Increased expression of the TrkB receptor was observed in the frontal cortex at 2, 24 and 48 h after MA treatment and in the striatum at 24 and 48 h after the MA regimen. A significant increase in the p75NTR receptor was also noted in the striatum but not the frontal cortex, and it was less pronounced than the effect on TrkB receptor expression. These findings show that the binge-like regimen of MA affects expression of BDNF and its receptors, particularly the TrkB receptor, in a time and region dependent manner, and highlights the importance of the frontal cortex and the striatum in the response following MA binge-like dosing.
Collapse
Affiliation(s)
- Andreia Moreira da Silva Santos
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Centro Universitário Unievangélica, Anápolis - GO CEP: 75083-515, Brazil
| | - Adrienne M Gorman
- School of Natural Sciences and Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | - John P Kelly
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Karen M Doyle
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019; 69:409-419. [PMID: 30680641 PMCID: PMC10717877 DOI: 10.1007/s12576-019-00660-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH) is a psychostimulant. The precise mechanisms of its effects remain unknown and current relapse treatments have low efficacy. However, brain-derived neurotrophic factor (BDNF) and neuronal plasticity are essential contributors, despite paradoxical reports and a lack of comprehensive studies. Therefore, we investigated the effects of different doses of METH on long-term potentiation (LTP), BDNF expression and neuronal apoptosis in the hippocampus of reinstated rats. Rats were injected intraperitoneally with METH (1, 5, or 10 mg/kg) or saline, and trained in a conditioned place preference paradigm. Following implementation of the reinstatement model, electrophysiology, western blotting and TUNEL assay were performed to assess behavior, LTP components, BDNF expression, and neuronal apoptosis, respectively. The results demonstrated that the preference scores, population spike amplitude and BDNF expression markedly decreased in the METH (10 mg/kg) group compared with the other groups. In contrast, METH (5 mg/kg) significantly increased these factors more than the control group. There was no change in variables between METH (1 mg/kg) and the control group. Also, apoptosis of the hippocampus was increased in the METH (10 mg/kg) group compared with the METH (5 mg/kg) group. These results suggest that alterations in synaptic plasticity, expression of BDNF and neuronal apoptosis in the hippocampus has a vital role in the context-induced reinstatement of METH seeking.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|