1
|
Alzueta E, Baker FC. The Menstrual Cycle and Sleep. Sleep Med Clin 2023; 18:399-413. [PMID: 38501513 PMCID: PMC11562818 DOI: 10.1016/j.jsmc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Aspects of sleep change across the menstrual cycle in some women. Poorer sleep quality in the premenstrual phase and menstruation is common in women with premenstrual symptoms or painful menstrual cramps. Although objective sleep continuity remains unchanged across the regular, asymptomatic menstrual cycle, activity in the sleep electroencephalogram varies, with a prominent increase in sleep spindle activity in the postovulatory luteal phase, when progesterone is present, relative to the follicular phase. Menstrual cycle phase, reproductive stage, and menstrual-related disorders should be considered when assessing women's sleep complaints.
Collapse
Affiliation(s)
- Elisabet Alzueta
- Human Sleep Research Program, SRI International, Menlo Park, CA, USA
| | - Fiona C Baker
- Human Sleep Research Program, SRI International, Menlo Park, CA, USA; Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Huo P, Li M, Le J, Zhu C, Yao J, Zhang S. Resveratrol improves follicular development of PCOS rats via regulating glycolysis pathway and targeting SIRT1. Syst Biol Reprod Med 2022; 69:153-165. [PMID: 36268996 DOI: 10.1080/19396368.2022.2125855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a disease characterized by metabolic disorders. This study aimed to examine the effects of resveratrol treatment on ovulation in the PCOS rat model. Quantitative real-time PCR and immunohistochemistry were used to determine the mRNA and protein expression levels. TNUEL assay was used to evaluate cell apoptosis in ovary. The metabolites were evaluated by liquid chromatography with tandem mass spectrometry. Resveratrol alleviated disrupted estrous cycle and improved granular cell layers, and reversed the decreased proliferation and increased cell apoptosis of granulosa cells in the ovarian tissues of PCOS rats. Resveratrol restored the changes in the mRNA expression levels in the rate-limiting genes of glycolysis in the PCOS ovary. The expression of lactate dehydrogenase A (LDH-A), pyruvate kinase isozyme M2 (PKM2), and sirtuin 1 (SIRT1) was significantly downregulated in ovarian tissues of the PCOS rats; while the resveratrol treatment significantly increased the expression of LDH-A, PKM2, and SIRT1 in the ovarian tissues of PCOS rats. Collectively, the protective effects of resveratrol in the PCOS rats may be associated with the regulation of glycolysis-related mediators including PKM2, LDH-A, and SIRT1. Resveratrol may represent a good candidate in alleviating the development of PCOS.
Collapse
Affiliation(s)
- Peng Huo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, China
| | - Man Li
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chunjiang Zhu
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jun Yao
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
3
|
Lucien JN, Ortega MT, Shaw ND. Sleep and Puberty. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 17:1-7. [PMID: 35005296 PMCID: PMC8730357 DOI: 10.1016/j.coemr.2020.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the 1970's, Boyar and colleagues made the seminal observation that during the early stages of puberty, there is a sleep-specific augmentation of pulsatile luteinizing hormone (LH) secretion. Building on this tantalizing association between sleep and the re-awakening of the neuro-reproductive axis, a number of investigators have since mapped the dynamic relationship between sleep and reproductive hormones across the pubertal transition. In this review, we focus on the complex, reciprocal relationship between sleep and reproductive hormones during adolescence as well as the potential effects of melatonin and orexin on gonadotropin-releasing hormone (GnRH) activity in children with chronic insomnia and narcolepsy, respectively. Given the important interaction between the reproductive and somatotropic axes during puberty, we end with a discussion of sleep and growth hormone (GH) secretion in children.
Collapse
Affiliation(s)
- Janet N Lucien
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS/NIH), Research Triangle Park, NC 27709
| | - Madison T Ortega
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS/NIH), Research Triangle Park, NC 27709
| | - Natalie D Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS/NIH), Research Triangle Park, NC 27709
| |
Collapse
|
4
|
Ding H, Zhang J, Zhang F, Zhang S, Chen X, Liang W, Xie Q. Resistance to the Insulin and Elevated Level of Androgen: A Major Cause of Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:741764. [PMID: 34745009 PMCID: PMC8564180 DOI: 10.3389/fendo.2021.741764] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023] Open
Abstract
PCOS has a wide range of negative impacts on women's health and is one of the most frequent reproductive systemic endocrine disorders. PCOS has complex characteristics and symptom heterogeneity due to the several pathways that are involved in the infection and the absence of a comm14on cause. A recent study has shown that the main etiology and endocrine aspects of PCOS are the increased level of androgen, which is also known as "hyperandrogenemia (HA)" and secondly the "insulin resistance (IR)". The major underlying cause of the polycystic ovary is these two IR and HA, by initiating the disease and its severity or duration. As a consequence, study on Pathogenesis is crucial to understand the effect of "HA" and "IR" on the pathophysiology of numerous symptoms linked to PCOS. A deep understanding of the pattern of the growth in PCOS for HA and IR can help ameliorate the condition, along with adjustments in nutrition and life, as well as the discovery of new medicinal products. However, further research is required to clarify the mutual role of IR and HA on PCOS development.
Collapse
Affiliation(s)
- Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qiong Xie, ; Wenqing Liang,
| | - Qiong Xie
- Department of Gynecology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qiong Xie, ; Wenqing Liang,
| |
Collapse
|
5
|
Penix J, DeFazio RA, Dulka EA, Schnell S, Moenter SM. Firing patterns of gonadotropin-releasing hormone neurons are sculpted by their biologic state. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201040. [PMID: 32968535 PMCID: PMC7481724 DOI: 10.1098/rsos.201040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons form the final pathway for the central neuronal control of fertility. GnRH is released in pulses that vary in frequency in females, helping drive hormonal changes of the reproductive cycle. In the common fertility disorder polycystic ovary syndrome (PCOS), persistent high-frequency hormone release is associated with disrupted cycles. We investigated long- and short-term action potential patterns of GnRH neurons in brain slices before and after puberty in female control and prenatally androgenized (PNA) mice, which mimic aspects of PCOS. A Monte Carlo (MC) approach was used to randomize action potential interval order. Dataset distributions were analysed to assess (i) if organization persists in GnRH neuron activity in vitro, and (ii) to determine if any organization changes with development and/or PNA treatment. GnRH neurons in adult control, but not PNA, mice produce long-term patterns different from MC distributions. Short-term patterns differ from MC distributions before puberty but become absorbed into the distributions with maturation, and the distributions narrow. These maturational changes are blunted by PNA treatment. Firing patterns of GnRH neurons in brain slices thus maintain organization dictated at least in part by the biologic status of the source and are disrupted in models of disease.
Collapse
Affiliation(s)
- Jonathon Penix
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - R. Anthony DeFazio
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eden A. Dulka
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santiago Schnell
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne M. Moenter
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Abstract
Although the fundamental symptoms of polycystic ovary syndrome (PCOS) relate most directly to ovarian dysfunction, central neuroendocrine systems play a prominent role in its pathophysiology. Gonadotropin-releasing hormone (GnRH) pulse generator resistance to negative feedback contributes to rapid GnRH pulse secretion, which promotes gonadotropin abnormalities that foster ovarian hyperandrogenemia and ovulatory dysfunction. The causes of GnRH neuron dysfunction, however, have remained enigmatic. In this review, we highlight a number of recent preclinical and clinical studies pertinent to the neuroendocrine abnormalities of PCOS, including those that have provided important insights into the relevance of animal models with PCOS-like features, the potential roles of kisspeptin and γ-aminobutyric acid (GABA)-ergic neurons, and the potential role of anti-Müllerian hormone.
Collapse
|
7
|
Lee DS, Kim SW, Sohn DW. Association between Nocturnal Frequency and Erectile Function in Eugonadal Men with Benign Prostatic Obstruction: A Cross Sectional Study. World J Mens Health 2020; 39:338-345. [PMID: 32202080 PMCID: PMC7994652 DOI: 10.5534/wjmh.190146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/29/2019] [Indexed: 01/04/2023] Open
Abstract
Purpose We aimed to evaluate the association between nocturnal frequency and erectile dysfunction in patients with benign prostatic obstruction. Materials and Methods To evaluate the association, we simultaneous evaluated urodynamic study, prostate ultrasound, nocturnal tumescence test (nocturnal penile tumescence) for sleep-related erection (SRE) and two questionnaires, international prostate symptom score (IPSS) and 5-item version of the international index of erectile function (IIEF-5). Patients with hypogonadism or nocturnal polyuria were excluded. Results Forty-six patients were registered over 4 years. The mean age, prostate size, IPSS score, and IIEF-5 score were 67.65±5.51 years, 65.10±22.12 mL, 24.67±7.89, and 9.50±7.01, respectively. Among the IPSS subscores, nocturia was most significantly related to the total IIEF-5 score (p<0.001). More severe nocturia was associated with less frequent SRE (p=0.003) and shorter total duration of SRE (p=0.002), which in turn elucidated that nocturia was significantly related to the total amount of rigidity signals (rigidity activity unit, RAU) or tumescence signals (tumescence activity unit, TAU). Among objective urodynamic parameters, bladder compliance also correlated to RAU and TAU. Individual subjective erectile function (IIEF-5) was significantly related to both RAU and TAU. Conclusions Sleep fragmentation due to benign prostate obstruction related nocturnal frequency caused by reduced bladder compliance could decrease the frequency and duration of SRE, which decreases the total amount of SRE and reflects the patient's relevant erectile function.
Collapse
Affiliation(s)
- Dong Sup Lee
- Department of Urology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sae Woong Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Wan Sohn
- Department of Urology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea.
| |
Collapse
|
8
|
Wang J, Wu D, Guo H, Li M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci 2019; 236:116940. [PMID: 31604107 DOI: 10.1016/j.lfs.2019.116940] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common systemic reproductive endocrine diseases, which has a variety of effects on a woman's health. Because of the involvement of multiple pathways and the lack of common clues, PCOS demonstrates multifactorial properties and heterogeneity of symptoms. Recent studies have demonstrated that the core etiology and primary endocrine characteristics of PCOS are hyperandrogenemia (HA) and insulin resistance (IR). HA and IR are the main causes of PCOS and they can interplay each other in the occurrence and development of PCOS. Just because of this, the study about the effects of HA and IR on pathophysiology of various related symptoms of PCOS is very important to understand the pathogenesis of PCOS. This paper reviews the main symptoms of PCOS, including neuroendocrine disorders, reproductive processes, dyslipidemia, obesity, hypertension, nonalcoholic fatty liver disease (NAFLD), and sleep disordered breathing, which seriously affect the physical and mental health of PCOS women. The increasing knowledge of the development pattern of HA and IR in PCOS suggests that changes in diet and lifestyle, and the discovery of potential therapeutic agents may improve PCOS. However, further studies are needed to clarify the mutual influence and relation of HA and IR in development of PCOS. This review provides an overview of the current knowledge about the effects of HA and IR on PCOS.
Collapse
Affiliation(s)
- Juan Wang
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Hui Guo
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China.
| |
Collapse
|
9
|
Sun BZ, Kangarloo T, Adams JM, Sluss P, Chandler DW, Zava DT, McGrath JA, Umbach DM, Shaw ND. The Relationship Between Progesterone, Sleep, and LH and FSH Secretory Dynamics in Early Postmenarchal Girls. J Clin Endocrinol Metab 2019; 104:2184-2194. [PMID: 30649404 PMCID: PMC6482022 DOI: 10.1210/jc.2018-02400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
Abstract
CONTEXT During puberty, LH pulse frequency increases during sleep; in women, LH pulse frequency slows during sleep in the early/middle follicular phase (FP) of the menstrual cycle. The origin and significance of this developmental transition are unknown. OBJECTIVE To determine the relationship between progesterone (P4) exposure, sleep-related slowing of LH pulses in the FP, and the intercycle FSH rise, which promotes folliculogenesis, in early postmenarchal girls. METHODS 23 girls (gynecologic age 0.4 to 3.5 years) underwent hormone measurements and pelvic ultrasounds during two consecutive cycles and one frequent blood sampling study with concurrent polysomnography during the FP. RESULTS Subjects demonstrated one of four patterns during cycle 1 that represent a continuum of P4 exposure: ovulatory cycles with normal or short luteal phase lengths or anovulatory cycles ± follicle luteinization. Peak serum P4 and urine pregnanediol (Pd) in cycle 1 were inversely correlated with LH pulse frequency during sleep in the FP of cycle 2 (r = -0.5; P = 0.02 for both). The intercycle FSH rise and folliculogenesis in cycle 2 were maintained after anovulatory cycles without P4 or Pd exposure or nocturnal slowing of LH pulse frequency in the FP. CONCLUSIONS During late puberty, rising P4 levels from follicle luteinization and ovulation may promote a slower LH pulse frequency during sleep in the FP. However, a normal FSH rise and follicle growth can occur in the absence of P4-associated slowing. These studies therefore suggest that an immature LH secretory pattern during sleep is unlikely to contribute to menstrual irregularity in the early postmenarchal years.
Collapse
Affiliation(s)
- Bob Z Sun
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Tairmae Kangarloo
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Judith M Adams
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Patrick Sluss
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | - John A McGrath
- Social & Scientific Systems, Inc., Durham, North Carolina
| | - David M Umbach
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Natalie D Shaw
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|