1
|
Khongthaw B, Dulta K, Chauhan PK, Kumar V, Ighalo JO. Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID- 19). Inflammopharmacology 2022; 30:1955-1976. [PMID: 36050507 PMCID: PMC9436159 DOI: 10.1007/s10787-022-01061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Lycopene is a group of phytochemicals found in nature, primarily in fruits and vegetables. Lycopene is thought to protect against a variety of diseases attributed to its antioxidant capabilities. Lycopene has anti-inflammatory, anti-cancer, and immunity-boosting qualities, among other biological and pharmacological benefits. COVID-19 (coronavirus disease 19) is an infectious disease caused by the SARS-CoV-2 virus, which has recently emerged as one of the world's leading causes of death. Patients may be asymptomatic or show signs of respiratory, cytokine release syndrome, gastrointestinal, or even multiple organ failure, all of which can lead to death. In COVID-19, inflammation, and cytokine storm are the key pathogenic mechanisms, according to SARS-CoV-2 infection symptoms. ARDS develops in some vulnerable hosts, which is accompanied by an inflammatory "cytokine syndrome" that causes lung damage. Immunological and inflammatory markers were linked to disease severity in mild and severe COVID-19 cases, implying that inflammatory markers, including IL-6, CRP, ESR, and PCT were significantly linked with COVID-19 severity. Patients with severe illness have reduced levels of several immune subsets, including CD4 + T, NK, and CD8 + cells. As a result, lycopene can be commended for bolstering physiological defenses against COVID-19 infections.
Collapse
Affiliation(s)
- Banlambhabok Khongthaw
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Kumar Chauhan
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
2
|
Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9309327. [PMID: 36246396 PMCID: PMC9568330 DOI: 10.1155/2022/9309327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Tissue and organ ischemia can lead to cell trauma, tissue necrosis, irreversible damage, and death. While intended to reverse ischemia, reperfusion can further aggravate an ischemic injury (ischemia-reperfusion injury, I/R injury) through a range of pathologic processes. An I/R injury to one organ can also harm other organs, leading to systemic multiorgan failure. A type of carotenoid, lycopene, has been shown to treat and prevent many diseases (e.g., rheumatoid arthritis, cancer, diabetes, osteoporosis, male infertility, neurodegenerative diseases, and cardiovascular disease), making it a hot research topic in health care. Some recent researches have suggested that lycopene can evidently ameliorate ischemic and I/R injuries to many organs, but few clinical studies are available. Therefore, it is essential to review the effects of lycopene on ischemic and I/R injuries to different organs, which may help further research into its potential clinical applications.
Collapse
|
3
|
Guo L, Wang D, Alexander HY, Ren X, Ma H. Long non-coding RNA H19 contributes to spinal cord ischemia/reperfusion injury through increasing neuronal pyroptosis by miR-181a-5p/HMGB1 axis. Aging (Albany NY) 2022; 14:5449-5463. [PMID: 35793244 PMCID: PMC9320554 DOI: 10.18632/aging.204160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/18/2022] [Indexed: 12/23/2022]
Abstract
Pyroptosis, a programmed inflammatory necrotizing cell death, is likely involved in spinal cord ischemia-reperfusion (SCI/R) injury, but the mechanisms initiating driving neuronal pyroptosis must be further revealed. The aim of this study is to unravel the mechanism of long non-coding RNA (lncRNA) H19 during SCI/R. SCI/R model was induced in C57BL/6 mice by blocking the aortic arch in vivo, and oxygen-glucose deprivation/reperfusion (OGD/R) injury model of PC12 cells was established in vitro. Our results showed that H19 and HMGB1 expression was upregulated, while miR-181a-5p was downregulated in the SCI/R mice and OGD/R-treated PC12 cells. SCI/R induced pathological damage, pyroptosis and inflammation compared with the sham group. H19 acted as a molecular sponge to suppress miR-181a-5p, and HMGB1 was identified as a direct target of miR-181a-5p. MiR-181a-5p overexpression inhibited the increase of IL-1β, IL-18 and TNF-α production and NLRP3, ASC, and Cleaved-caspase-1 expression in OGD/R-treated PC12 cells; while miR-181a-5p silencing exerted opposite effects. HMGB1 overexpression reversed H19 knockdown-mediated the inhibition of pyroptosis and inflammation in OGD/R-treated PC12 cells. In vivo, H19 knockdown promoted the hind limb motor function recovery and alleviated the pathological damage, pyroptosis and inflammation induced by SCI/R. LncRNA H19/miR-181a-5p/HMGB1 pathway contributes to pyroptosis via activating caspase1 signaling during SCI/R, suggesting that this axis may be a potent therapeutic target in SCI/R.
Collapse
Affiliation(s)
- Lili Guo
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hildrich Yasmal Alexander
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiaoyan Ren
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hong Ma
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
4
|
Magne TM, da Silva de Barros AO, de Almeida Fechine PB, Alencar LMR, Ricci-Junior E, Santos-Oliveira R. Lycopene as a Multifunctional Platform for the Treatment of Cancer and Inflammation. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022. [DOI: 10.1007/s43450-022-00250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Pietrasik S, Cichon N, Bijak M, Gorniak L, Saluk-Bijak J. Carotenoids from Marine Sources as a New Approach in Neuroplasticity Enhancement. Int J Mol Sci 2022; 23:ijms23041990. [PMID: 35216103 PMCID: PMC8877331 DOI: 10.3390/ijms23041990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people experience disorders related to the central nervous system (CNS). Thus, new forms of therapy, which may be helpful in repairing processes' enhancement and restoring declined brain functions, are constantly being sought. One of the most relevant physiological processes occurring in the brain for its entire life is neuroplasticity. It has tremendous significance concerning CNS disorders since neurological recovery mainly depends on restoring its structural and functional organization. The main factors contributing to nerve tissue damage are oxidative stress and inflammation. Hence, marine carotenoids, abundantly occurring in the aquatic environment, being potent antioxidant compounds, may play a pivotal role in nerve cell protection. Furthermore, recent results revealed another valuable characteristic of these compounds in CNS therapy. By inhibiting oxidative stress and neuroinflammation, carotenoids promote synaptogenesis and neurogenesis, consequently presenting neuroprotective activity. Therefore, this paper focuses on the carotenoids obtained from marine sources and their impact on neuroplasticity enhancement.
Collapse
Affiliation(s)
- Sylwia Pietrasik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
- Correspondence:
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| |
Collapse
|
6
|
Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021; 14:5713-5737. [PMID: 34764668 PMCID: PMC8576359 DOI: 10.2147/jir.s329864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic injury of the central nervous system, characterized by neurological dysfunction and locomotor disability. Although the underlying pathological mechanism of SCI is complex and remains unclear, the important role of neuroinflammation has been gradually unveiled in recent years. The inflammation process after SCI involves disruption of the blood–spinal cord barrier (BSCB), activation of gliocytes, infiltration of peripheral macrophages, and feedback loops between different cells. Thus, our first aim is to illustrate pathogenesis, related cells and factors of neuroinflammation after SCI in this review. Due to the good bioactivity of natural products derived from plants and medicinal herbs, these widely exist as food, health-care products and drugs in our lives. In the inflammation after SCI, multiple natural products exert satisfactory effects. Therefore, the second aim of this review is to sum up the effects and mechanisms of 25 natural compounds and 7 extracts derived from plants or medicinal herbs on neuroinflammation after SCI. Clarification of the SCI inflammation mechanism and a summary of the related natural products is helpful for in-depth research and drug development.
Collapse
Affiliation(s)
- Xue Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| |
Collapse
|
7
|
Bal E, Hanalioğlu Ş, Apaydın AS, Bal C, Şenat A, Öcal BG, Bahadır B, Türkoğlu ÖF. Anti-inflammatory and antioxidative effects of genistein in a model of spinal cord injury in rats. ASIAN BIOMED 2021; 15:233-243. [PMID: 37551326 PMCID: PMC10388775 DOI: 10.2478/abm-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Neurological damage from spinal cord injury (SCI) is a result of primary mechanical injury and secondary damage from oxidative stress and neuroinflammation. Although genistein has been shown to have potent antioxidant and anti-inflammatory effects in studies of brain injury, its effect on secondary damage in SCI has remained unknown. Objective To determine effects of genistein in a model of SCI in rats. Methods We divided 21 rats evenly into 3 groups, a control group, in which only a laminectomy was performed; a trauma group in which SCI was induced; and a genistein group in which genistein was administered subcutaneously after SCI. The rats were assessed using a Basso-Beattie and Bresnahan functional score at the 12th hour and on the 1st, 3rd, 5th, and 7th days. Biochemical analyses were conducted at the same time points to determine the serum levels of catalase, ischemia-modified albumin (IMA), disulfide (SS), total thiol (TT), native thiol (NT), disulfide/total thiol (SS/TT), and native thiol/total thiol (NT/TT). Total oxidant and antioxidant capacity, and oxidative stress index were determined in spinal cord tissue obtained on the 7th day together with immunohistochemistry for cyclooxygenase-2 levels. Result Catalase activity on the 7th day was significantly (P = 0.001) higher in the genistein-treated rats than in other groups, and IMA levels became stable earlier (3rd day) in the genistein group. SS values were significantly (P = 0.004) lower in the genistein group. NT/TT ratio were significantly (P = 0.049) higher in the genistein-treated rats on the 7th day. Conclusion Genistein has antioxidant, anti-inflammatory, and protective effects in a model of SCI in rats and warrants further study.
Collapse
Affiliation(s)
- Ercan Bal
- Department of Neurosurgery, Ankara Yıldırım Beyazıt University, School of Medicine, Ankara06760, Turkey
- Department of Neurosurgery, Ankara City Hospital, Ankara06800, Turkey
| | - Şahin Hanalioğlu
- Department of Neurosurgery, Ankara Hacettepei, University, School of Medicine, Ankara06230, Turkey
| | | | - Ceylan Bal
- Department of Neurosurgery, Ankara Yıldırım Beyazıt University, School of Medicine, Ankara06760, Turkey
| | - Almila Şenat
- Department of Neurosurgery, Ankara Yıldırım Beyazıt University, School of Medicine, Ankara06760, Turkey
| | - Berrak Gümüşkaya Öcal
- Department of Pathology, Ankara Yıldırım Beyazıt University, School of Medicine, Ankara06760, Turkey
| | - Burak Bahadır
- Department of Neurosurgery, Ankara City Hospital, Ankara06800, Turkey
| | | |
Collapse
|
8
|
Khalil A, Tazeddinova D, Aljoumaa K, Kazhmukhanbetkyzy ZA, Orazov A, Toshev AD. Carotenoids: Therapeutic Strategy in the Battle against Viral Emerging Diseases, COVID-19: An Overview. Prev Nutr Food Sci 2021; 26:241-261. [PMID: 34737985 PMCID: PMC8531419 DOI: 10.3746/pnf.2021.26.3.241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Carotenoids, a group of phytochemicals, are naturally found in the Plant kingdom, particularly in fruits, vegetables, and algae. There are more than 600 types of carotenoids, some of which are thought to prevent disease, mainly through their antioxidant properties. Carotenoids exhibit several biological and pharmaceutical benefits, such as anti-inflammatory, anti-cancer, and immunity booster properties, particularly as some carotenoids can be converted into vitamin A in the body. However, humans cannot synthesize carotenoids and need to obtain them from their diets or via supplementation. The emerging zoonotic virus severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19), originated in bats, and was transmitted to humans. COVID-19 continues to cause devastating international health problems worldwide. Therefore, natural preventive therapeutic strategies from bioactive compounds, such as carotenoids, should be appraised for strengthening physiological functions against emerging viruses. This review summarizes the most important carotenoids for human health and enhancing immunity, and their potential role in COVID-19 and its related symptoms. In conclusion, promising roles of carotenoids as treatments against emerging disease and related symptoms are highlighted, most of which have been heavily premeditated in studies conducted on several viral infections, including COVID-19. Further in vitro and in vivo research is required before carotenoids can be considered as potent drugs against such emerging diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Diana Tazeddinova
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Khaled Aljoumaa
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | | | - Ayan Orazov
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan University, Uralsk 090009, The Republic of Kazakhstan
| | | |
Collapse
|
9
|
Huang H, Kuang X, Zhu X, Cheng H, Zou Y, Du H, Tang H, Zhou L, Zeng J, Liu H, Yan J, Long C, Shen H. Maintaining blood retinal barrier homeostasis to attenuate retinal ischemia-reperfusion injury by targeting the KEAP1/NRF2/ARE pathway with lycopene. Cell Signal 2021; 88:110153. [PMID: 34571190 DOI: 10.1016/j.cellsig.2021.110153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Retinal ischemia-reperfusion (I/R) often results in intractable visual impairments, where blood retinal barrier (BRB) homeostasis mediated by retinal pigment epithelium (RPE) and retinal microvascular endothelium (RME) is crucial. However, strategies targeting the BRB are limited. Thus, we investigated the inconclusive effect of lycopene (LYC) in retinal protection under I/R. LYC elevated cellular viability and reversed oxidative stress in aRPE-19 cells/hRME cells under I/R conditions based on oxygen-glucose deprivation (OGD) in vitro. Molecular analysis showed that LYC promoted NRF2 expression and enhanced the downstream factors of the KEAP1/NRF2/ARE pathway: LYC increased the activities of antioxidants, including SOD and CAT, whereas it enhanced the mRNA expression of HO-1 (ho-1) and NQO-1 (nqo-1). The activation resulted in restrained ROS and MDA. On the other hand, LYC ameliorated the damage to retinal function and morphology in a mouse I/R model, which was established by unilateral ligation of the left pterygopalatine artery/external carotid artery and reperfusion. LYC promoted the expression of NRF2 in both the neural retina and the RPE choroid in vivo. This evidence revealed the potential of LYC in retinal protection under I/R, uncovering the pharmacological effect of the KEAP1/NRF2/ARE pathway in BRB targeting. The study generates new insights into scientific practices in retinal research.
Collapse
Affiliation(s)
- Hao Huang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xielan Kuang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaobo Zhu
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hao Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuxiu Zou
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Han Du
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Han Tang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Linbin Zhou
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jingshu Zeng
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijun Liu
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jianhua Yan
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chongde Long
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Huangxuan Shen
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
10
|
Zhao Y, Bao RK, Zhu SY, Talukder M, Cui JG, Zhang H, Li XN, Li JL. Lycopene prevents DEHP-induced hepatic oxidative stress damage by crosstalk between AHR-Nrf2 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117080. [PMID: 33965855 DOI: 10.1016/j.envpol.2021.117080] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 05/20/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widespread plasticizer that persists in the environment and can significantly contribute to serious health hazards of liver especially oxidative stress injury. Lycopene (LYC) as a carotenoid has recently gained widespread attention because of antioxidant activity. However, the potential mechanism of DEHP-induced hepatotoxicity and antagonism effect of LYC on it are still unclear. To explore the underlying mechanisms of this hypothesis, the mice were given by gavage with LYC (5 mg/kg) and DEHP (500 or 1000 mg/kg). The data suggested that DEHP caused liver enlargement, reduction of antioxidant activity markers, increase of oxidative stress indicators and disorder of cytochrome P450 enzymes system (CYP450s) homeostasis. DEHP-induced reactive oxygen species (ROS) activated the NF-E2-relatedfactor2 (Nrf2) and nuclear xenobiotic receptors (NXRs) system including Aryl hydrocarbon receptor (AHR), Pregnane X receptor (PXR) and Constitutive androstane receptor (CAR). Interestingly, these disorders and injuries were prevented after LYC treatment. Taken together, DEHP administration resulted in hepatotoxicity including oxidative stress injury and disordered CYP450 system, but these alterations might be ameliorated by LYC via crosstalk between AHR-Nrf2 pathway.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rong-Kun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
11
|
Kim W, Kwon HJ, Jung HY, Hahn KR, Moon SM, Yoon YS, Hwang IK, Choi SY, Kim DW. Tat-p27 Ameliorates Neuronal Damage Reducing α-Synuclein and Inflammatory Responses in Motor Neurons After Spinal Cord Ischemia. Neurochem Res 2021; 46:3123-3134. [PMID: 34403064 DOI: 10.1007/s11064-021-03392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022]
Abstract
p27Kip1 (p27) regulates the cell cycle by inhibiting G1 progression in cells. Several studies have shown conflicting results on the effects of p27 against cell death in various insults. In the present study, we examined the neuroprotective effects of p27 against H2O2-induced oxidative stress in NSC34 cells and against spinal cord ischemia-induced neuronal damage in rabbits. To promote delivery into NSC34 cells and motor neurons in the spinal cord, Tat-p27 fusion protein and its control protein (Control-p27) were synthesized with or without Tat peptide, respectively. Tat-p27, but not Control-27, was efficiently introduced into NSC34 cells in a concentration- and time-dependent manner, and the protein was detected in the cytoplasm. Tat-p27 showed neuroprotective effects against oxidative stress induced by H2O2 treatment and reduced the formation of reactive oxygen species, DNA fragmentation, and lipid peroxidation in NSC34 cells. Tat-p27, but not Control-p27, ameliorated ischemia-induced neurological deficits and cell damage in the rabbit spinal cord. In addition, Tat-p27 treatment reduced the expression of α-synuclein, activation of microglia, and release of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α in the spinal cord. Taken together, these results suggest that Tat-p27 inhibits neuronal damage by decreasing oxidative stress, α-synuclein expression, and inflammatory responses after ischemia.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 18450, South Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
12
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
13
|
Fedullo AL, Ciccotti M, Giannotta P, Alviti F, Bernardi M, Raguzzini A, Toti E, Sciarra T, Peluso I. Hormetic Effects of Bioactive Compounds from Foods, Beverages, and Food Dressing: The Potential Role in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6615752. [PMID: 33747346 PMCID: PMC7943269 DOI: 10.1155/2021/6615752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is a damage or trauma to the spinal cord resulting in a total or partial loss of motor and sensory function. SCI is characterized by a disequilibrium between the production of reactive oxygen species and the levels of antioxidant defences, causing oxidative stress and neuroinflammation. This review is aimed at highlighting the hormetic effects of some compounds from foods, beverages, and food dressing that are able to reduce oxidative stress in patients with SCI. Although curcumin, ginseng, and green tea have been proposed for SCI management, low levels of antioxidant vitamins have been reported in individuals with SCI. Mediterranean diet includes food rich in vitamins and antioxidants. Moreover, food dressing, including spices, herbs, and extra virgin olive oil (EVOO), contains multiple components with hormetic effects. The latter involves the activation of the nuclear factor erythroid-derived 2, consequently increasing the antioxidant enzymes and decreasing inflammation. Furthermore, EVOO improves the bioavailability of carotenoids and could be a delivery system for bioactive compounds. In conclusion, Mediterranean dressing in addition to plant foods can have an important effect on redox balance in individuals with SCI.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | | | | | - Federica Alviti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Board of Physical Medicine and Rehabilitation, Sapienza University of Rome, Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome 00185, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| |
Collapse
|
14
|
Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochem Int 2020; 140:104823. [DOI: 10.1016/j.neuint.2020.104823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
|
15
|
Kirisci M, Guneri B, Seyithanoglu M, Kazanci U. Lycopene hampers lung injury due to skeletal muscle ischemia-reperfusion in rat model. INT J VITAM NUTR RES 2020; 92:240-247. [PMID: 32856544 DOI: 10.1024/0300-9831/a000678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigates lycopene's preventive efficacy in skeletal muscle ischemia-reperfusion (I/R) induced lung injury. Thirty-two rats were randomly assigned to control group, lycopene group, I/R group and I/R + lycopene group. In the lycopene and I/R + lycopene groups, the rats initially received 10 mg/kg/day lycopene orally for 15 days. Then, dissection around the abdominal aorta was performed in all rats under general anesthesia. The aorta was clamped at the infrarenal level in the I/R group and I/R + lycopene group for two hours before two hours of reperfusion. The mean serum levels of malondialdehyde (53.0 ± 20.14 nmol/mL) and superoxide dismutase (1.03 ± 0.16 U/mL) were higher and lower in the I/R group than the other three groups, respectively (p < 0.001). The mean serum IMA level of I/R + lycopene group (0.42 ± 0.04 abs/u) was lower than the I/R group (0.47 ± 0.04 abs/u) (p = 0.015). The mean tissue malondialdehyde levels of I/R group (69.10 ± 11.55 nmol/mL) and I/R + lycopene group (68.36 ± 21.17 nmol/mL) were high compared to the control group (49.87 ± 6.52 nmol/mL) and lycopene group (47.82 ± 4.44 nmol/mL) (p = 0.002). The mean tissue glutathione peroxidase (p < 0.001) and superoxide dismutase (p = 0.001) levels of I/R group (121.81 ± 43.59 nmol/mL and 25.17 ± 8.69 U/mL) were low compared to the control group (236.12 ± 18.01 nmol/mL and 46.30 ± 5.17 U/mL), lycopene group (227.52 ± 16.92 nmol/mL and 45.82 ± 4.02 U/mL), and I/R + lycopene group (176.02 ± 24.27 nmol/mL and 35.20 ± 4.85 U/mL). The histopathological analyses of I/R + lycopene group indicated less significant changes than the control group. Tissue damage in the I/R + lycopene group was less prominent than the I/R group. These findings suggest oral lycopene supplementation as a promising prevention against skeletal muscle I/R caused lung injury.
Collapse
Affiliation(s)
- Mehmet Kirisci
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Cardiovascular Surgery, Kahramanmaras, Turkey
| | - Bulent Guneri
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Orthopedics and Traumatology, Kahramanmaras, Turkey
| | - Muhammed Seyithanoglu
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Medical Biochemistry, Kahramanmaras, Turkey
| | - Ulku Kazanci
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Medical Pathology, Kahramanmaras, Turkey
| |
Collapse
|
16
|
Marine Biocompounds for Neuroprotection-A Review. Mar Drugs 2020; 18:md18060290. [PMID: 32486409 PMCID: PMC7344849 DOI: 10.3390/md18060290] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
While terrestrial organisms are the primary source of natural products, recent years have witnessed a considerable shift towards marine-sourced biocompounds. They have achieved a great scientific interest due to the plethora of compounds with structural and chemical properties generally not found in terrestrial products, exhibiting significant bioactivity ten times higher than terrestrial-sourced molecules. In addition to the antioxidant, anti-thrombotic, anti-coagulant, anti-inflammatory, anti-proliferative, anti-hypertensive, anti-diabetic, and cardio-protection properties, marine-sourced biocompounds have been investigated for their neuroprotective potential. Thus, this review aims to describe the recent findings regarding the neuroprotective effects of the significant marine-sourced biocompounds.
Collapse
|
17
|
Li R, Zhao K, Ruan Q, Meng C, Yin F. The transcription factor Foxd3 induces spinal cord ischemia-reperfusion injury by potentiating microRNA-214-dependent inhibition of Kcnk2. Exp Mol Med 2020; 52:118-129. [PMID: 31959866 PMCID: PMC7000395 DOI: 10.1038/s12276-019-0370-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 11/14/2022] Open
Abstract
Spinal cord injury after surgical repair of the thoracic or thoracoabdominal aorta is a devastating complication that is associated with pathological changes, including inflammation, edema, and nerve cell damage. Recently, microRNA (miRNA)-modulated control of spinal cord injury has been actively investigated. This study aims to clarify the regulatory effect of miR-214-mediated inhibition of Kcnk2 following spinal cord ischemia-reperfusion injury (SCII) and the possible underlying mechanisms. SCII was induced in rats by occluding the aortic arch followed by reperfusion. Gain-of-function and loss-of-function experiments were conducted to explore the modulatory effects of Foxd3, miR-214 and Kcnk2 on PC12 cells under hypoxia/reoxygenation (H/R) conditions. MiR-214 and Kcnk2 were poorly expressed, while Foxd3 was highly expressed in the rat spinal cord tissues and H/R-treated PC12 cells. Kcnk2 overexpression enhanced the viability and inhibited the apoptosis of the H/R-treated PC12 cells. Notably, Foxd3 activated miR-214, and miR-214 targeted Kcnk2. In addition, upregulation of Kcnk2 or knockdown of Foxd3 promoted the cell viability and reduced the apoptosis of the H/R-treated PC12 cells. Overall, our study identified a novel mechanism of Foxd3/miR-214/Kcnk2 involving SCII, suggesting that either Foxd3 or miR-214 may be a novel target for the treatment of SCII.
Collapse
Affiliation(s)
- Ran Li
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China
| | - Kunchi Zhao
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China
| | - Qing Ruan
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China.
| |
Collapse
|
18
|
Teleanu RI, Chircov C, Grumezescu AM, Volceanov A, Teleanu DM. Antioxidant Therapies for Neuroprotection-A Review. J Clin Med 2019; 8:E1659. [PMID: 31614572 PMCID: PMC6832623 DOI: 10.3390/jcm8101659] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Although moderate concentrations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are crucial for various physiological processes within the human body, their overproduction leads to oxidative stress, defined as the imbalance between the production and accumulation of ROS and the ability of the body to neutralize and eliminate them. In the brain, oxidative stress exhibits significant effects, due to its increased metabolical activity and limited cellular regeneration. Thus, oxidative stress is a major factor in the progressive loss of neurons structures and functions, leading to the development of severe neurodegenerative disorders. In this context, recent years have witnessed tremendous advancements in the field of antioxidant therapies, with a special emphasis for neuroprotection. The aim of this paper is to provide an overview of the oxidative stress and antioxidant defense mechanisms and to present the most recent studies on antioxidant therapies for neuroprotection.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|