1
|
Kamato D, Ilyas I, Xu S, Little PJ. Non-Mouse Models of Atherosclerosis: Approaches to Exploring the Translational Potential of New Therapies. Int J Mol Sci 2022; 23:12964. [PMID: 36361754 PMCID: PMC9656683 DOI: 10.3390/ijms232112964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 09/26/2023] Open
Abstract
Cardiovascular disease is the largest single cause of disease-related mortality worldwide and the major underlying pathology is atherosclerosis. Atherosclerosis develops as a complex process of vascular lipid deposition and retention by modified proteoglycans, endothelial dysfunction and unresolved chronic inflammation. There are a multitude of current therapeutic agents, most based on lowering plasma lipid levels, but, overall, they have a lower than optimum level of efficacy and many deaths continue to arise from cardiovascular disease world-wide. To identify and evaluate potential novel cardiovascular drugs, suitable animal models that reproduce human atherosclerosis with a high degree of fidelity are required as essential pre-clinical research tools. Commonly used animal models of atherosclerosis include mice (ApoE-/-, LDLR-/- mice and others), rabbits (WHHL rabbits and others), rats, pigs, hamster, zebrafish and non-human primates. Models based on various wild-type and genetically modified mice have been extensively reviewed but mice may not always be appropriate. Thus, here, we provide an overview of the advantages and shortcomings of various non-mouse animal models of atherosclerotic plaque formation, and plaque rupture, as well as commonly used interventional strategies. Taken together, the combinatorial selection of suitable animal models readily facilitates reproducible and rigorous translational research in discovering and validating novel anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Iqra Ilyas
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Suowen Xu
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| |
Collapse
|
2
|
Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11020232. [PMID: 35204115 PMCID: PMC8868303 DOI: 10.3390/antiox11020232] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.
Collapse
|
3
|
Tang X, Niimi M, Zhou H, Chen L, Chen Y, Yan H, Shiomi M, Fan J. Pathological Investigations of Intracranial Atherosclerosis Using Multiple Hypercholesterolemic Rabbit Models. Front Endocrinol (Lausanne) 2022; 13:834207. [PMID: 35712258 PMCID: PMC9196249 DOI: 10.3389/fendo.2022.834207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/29/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Intracranial atherosclerosis (ICAS) is one of the most common causes of ischemic stroke, but there are few animal models that can recapitulate its pathological features. In this study, we examined ICAS pathological features and anatomic distributions using three types of hyperlipidemic rabbit models. We also investigated the effect of different lipoprotein profiles and hypertension on ICAS. MATERIALS AND METHODS We examined Watanabe heritable hyperlipidemic (WHHL) rabbits, apoE knockout (KO) rabbits and wild-type rabbits (WT) fed a cholesterol diet, in addition to WT rabbits fed a standard diet as a control. The whole brain was dissected and embedded in paraffin. Serial sections were stained with either hematoxylin/eosin or elastica van Gieson, or immunohistochemically stained with monoclonal antibodies against macrophages and smooth muscle cells. We investigated (1) the presence of cerebral atherosclerosis; (2) the lesion locations in the cerebral arteries; (3) the degree of lumen stenosis; (4) pathological features and cellular components of the lesions in these rabbits; and (5) whether hypertension affects ICAS. RESULTS ICAS was detected in apoE and WHHL rabbits, but not in WT rabbits. Compared with apoE KO rabbits, WHHL rabbits had greater ICAS. The lesions of cerebral atherosclerosis were mainly distributed at the bifurcations of the posterior cerebral artery, basilar artery and vertebral artery, and they were basically characterized by smooth muscle cells and extracellular matrix with few macrophages. The extent of the ICAS in WHHL rabbits was significantly increased by hypertension. CONCLUSIONS ICAS was detected in WHHL and apoE KO rabbits, and occurred in specific locations in the cerebral arteries. Hypertension promotes the development of ICAS in the setting of hypercholesterolemia.
Collapse
Affiliation(s)
- Xiangming Tang
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Huanjin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Lu Chen
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yajie Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Haizhao Yan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Masashi Shiomi
- Institute for Experimental Animals, Kobe University School of Medicine, Kobe, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- *Correspondence: Jianglin Fan,
| |
Collapse
|
4
|
Sorop O, van de Wouw J, Chandler S, Ohanyan V, Tune JD, Chilian WM, Merkus D, Bender SB, Duncker DJ. Experimental animal models of coronary microvascular dysfunction. Cardiovasc Res 2020; 116:756-770. [PMID: 31926020 PMCID: PMC7061277 DOI: 10.1093/cvr/cvaa002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for enhancing our understanding of the pathophysiology of CMD and for investigating novel therapies. This article presents an overview of currently available experimental models of CMD-with an emphasis on metabolic derangements as risk factors-in dogs, swine, rabbits, rats, and mice. In all available animal models, metabolic derangements are most often induced by a high-fat diet (HFD) and/or diabetes mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as well as transgenic animal models which develop metabolic derangements. Depending on the number, severity, and duration of exposure to risk factors-all these animal models show perturbations in coronary microvascular (endothelial) function and structure, similar to what has been observed in patients with INOCA and comorbid conditions. The use of these animal models will be instrumental in identifying novel therapeutic targets and for the subsequent development and testing of novel therapeutic interventions to combat ischaemic heart disease, the number one cause of death worldwide.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Johnathan D Tune
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr. 27, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|