1
|
Arango-Hurtado M, Turizo-Mejía S, Jaramillo-Mayo LM, Quintero-Lizcano K. A previously unreported RPGR gene variant in a female patient with X-linked retinitis pigmentosa. Digit J Ophthalmol 2025; 31:20-24. [PMID: 40206241 PMCID: PMC11977291 DOI: 10.5693/djo.02.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
We present the case of a 40-year-old woman with a history of high myopia and nyctalopia. Her best-corrected visual acuity was 20/80 in the right eye and 20/100 in the left eye. Fundus examination revealed generalized vascular attenuation, optic nerve pallor, and bone spicule pigmentation. Fundus autofluorescence in both eyes showed a Robson-Holder ring in the macula and multiple hypoautofluorescent lesions in the peripheral retina. Macular optical coherence tomography scans revealed a generalized thinning of retinal layers, with atrophy of the outer retinal layers. 10-2 visual fields revealed a small island of central vision in both eyes, and full field electroretinogram showed absence of scotopic and photopic responses. Genetic studies documented a rare variant in the RPGR gene (c.1991C>G p.(Ser664*)). Findings compatible with retinitis pigmentosa in our patient suggests that this mutation is pathogenic. Further study is required to confirm this hypothesis.
Collapse
|
2
|
Park H, Hwang S, Kim SJ. Severe Phenotypic Presentation of RPGR-associated X-linked Retinitis Pigmentosa in Female Carriers: Two Case Reports. KOREAN JOURNAL OF OPHTHALMOLOGY 2024; 38:164-166. [PMID: 38351481 PMCID: PMC11016683 DOI: 10.3341/kjo.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 01/04/2024] [Indexed: 04/16/2024] Open
Affiliation(s)
- Hansol Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sungsoon Hwang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul,
Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
3
|
Usman M, Jüschke C, Song F, Kastrati D, Owczarek-Lipska M, Eilers J, Pauleikhoff L, Lange C, Neidhardt J. Skewed X-inactivation is associated with retinal dystrophy in female carriers of RPGR mutations. Life Sci Alliance 2023; 6:e202201814. [PMID: 37541846 PMCID: PMC10403639 DOI: 10.26508/lsa.202201814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Progressive degeneration of rod and cone photoreceptors frequently is caused by mutations in the X-chromosomal gene Retinitis Pigmentosa GTPase Regulator (RPGR). Males hemizygous for a RPGR mutation often are affected by Retinitis Pigmentosa (RP), whereas female mutation carriers only occasionally present with severe RP phenotypes. The underlying pathomechanism leading to RP in female carriers is not well understood. Here, we analyzed a three-generation family in which two of three female carriers of a nonsense RPGR mutation presented with RP. Among two cell lines derived from the same female family members, differences were detected in RPGR transcript expression, in localization of RPGR along cilia, as well as in primary cilium length. Significantly, these differences correlated with alterations in X-chromosomal inactivation patterns found in the patient-derived cell lines from females. In summary, our data suggest that skewed X-chromosomal inactivation is an important factor that determines the disease manifestation of RP among female carriers of pathogenic sequence alterations in the RPGR gene.
Collapse
Affiliation(s)
- Muhammad Usman
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Fei Song
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Dennis Kastrati
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Junior Research Group, Genetics of Childhood Brain Malformations, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Jannis Eilers
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Laurenz Pauleikhoff
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - John Neidhardt
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Marques JP, Pinheiro R, Carvalho AL, Raimundo M, Soares M, Melo P, Murta J, Saraiva J, Silva R. Genetic spectrum, retinal phenotype, and peripapillary RNFL thickness in RPGR heterozygotes. Graefes Arch Clin Exp Ophthalmol 2023; 261:867-878. [PMID: 36050475 DOI: 10.1007/s00417-022-05809-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Phenotypic heterogeneity with variable severity has been reported in female carriers of retinitis pigmentosa GTPase regulator (RPGR) mutations, including a male-type phenotype. A phenomenon not fully understood is peripapillary retinal nerve fiber layer (pRNFL) thickening in male patients with RPGR-associated X-linked retinitis pigmentosa, especially in the temporal sector. We aim to describe the genetic spectrum, retinal phenotypes, and pRNFL thickness in a cohort of Caucasian RPGR-mutation heterozygotes. METHODS A cross-sectional study was conducted at an inherited retinal degeneration (IRD) reference center in Portugal. Female patients heterozygous for clinically significant RPGR variants were identified using the IRD-PT registry. A complete ophthalmologic examination was performed, complemented by macular and peripapillary spectral domain optical coherence tomography (SD-OCT), ultra-widefield color fundus photography (UW-CFP), and ultra-widefield fundus autofluorescence (UW-FAF). The retinal phenotypes were graded according to previously described classifications. The pRNFL thickness across the superior, inferior, nasal, and temporal quadrants was compared to the Spectralis® RNFL age-adjusted reference database. RESULTS Forty-eight eyes from 24 females (10 families) were included in the study. Genetic analysis yielded 8 distinct clinically significant frameshift variants in RPGR gene, 3 of which herein reported for the first time. No association was found between mutation location and best-corrected visual acuity (BCVA) or retinal phenotype. Age was associated with worse BCVA and more advanced phenotypes on SD-OCT, UW-CFP, and UW-FAF. Seven women (29.17%) presented a male-type phenotype on UW-FAF in at least one eye. An association was found between UW-FAF and pRNFL thickness in the temporal sector (p = 0.003), with the most advanced fundus autofluorescence phenotypes showing increased pRNFL thickness in this sector. CONCLUSION This study expands the genetic landscape of RPGR-associated disease by reporting 3 novel clinically significant variants. We have shown that clinically severe phenotypes are not uncommon among female carriers. Furthermore, we provide novel insights into pRNFL changes observed in RPGR heterozygotes that mimic what has been reported in male patients.
Collapse
Affiliation(s)
- João Pedro Marques
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal. .,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal. .,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal. .,Centro de Responsabilidade Integrado de Oftalmologia (CRIO), Centro Hospitalar e Universitário de Coimbra (CHUC), Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.
| | - Rosa Pinheiro
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,University Clinic of Medical Genetics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Miguel Raimundo
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Mário Soares
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Pedro Melo
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Joaquim Murta
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Jorge Saraiva
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Medical Genetics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.,University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rufino Silva
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| |
Collapse
|
5
|
Genetic characteristics of suspected retinitis pigmentosa in a cohort of Chinese patients. Gene 2023; 853:147087. [PMID: 36464167 DOI: 10.1016/j.gene.2022.147087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The study aimed to screen for the causative variants in Chinese patients with suspected retinitis pigmentosa (RP). A cohort of 75 unrelated Chinese patients with a clinical diagnosis of RP and their available family members were enrolled in this study. Genomic DNA of all subjects was extracted and whole-exome sequencing (WES) was applied. Candidate variants were identified, and minigene assays were conducted to evaluate the pathogenicity of novel splicing variants. Totally, the diagnostic yield was 44 % (33/75) and 16 novel variants that had not been reported previously were found. Among the genetically solved 33 cases, 31 patients were identified as carrying causative variants of RP and 2 patients carried pathogenic variants implicated in other retinal diseases. USH2A, CYP4V2, and RPGR were the most common causative genes, accounting for about half of the genetically solved cases. Moreover, minigene assays validated that the novel splicing variants were detrimental. Additionally, 9 patients carried a single deleterious heterozygous variant in 6 genes with autosomal recessive hereditary patterns, and no corresponding copy number variants (CNVs) was detected. The findings of this study revealed the genetic landscape of RP in China and provided guidance for clinicians.
Collapse
|
6
|
Roshandel D, Lamey TM, Charng J, Heath Jeffery RC, McLaren TL, Thompson JA, De Roach JN, McLenachan S, Mackey DA, Chen FK. Microperimetry and Adaptive Optics Imaging Reveal Localized Functional and Structural Changes in Asymptomatic RPGR Mutation Carriers. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 36607619 PMCID: PMC9836009 DOI: 10.1167/iovs.64.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Female carriers of RPGR mutations demonstrate no significant retinal dysfunction or structural change despite a characteristic tapetal-like reflex. In this study, we examined localized changes of pointwise sensitivity (PWS) and cone density (CD) using microperimetry (MP) and adaptive optics (AO) imaging in female carriers of RPGR mutations. Methods In this cross-sectional case-control study, MP (MAIA, 10-2 test grid) and AO imaging (rtx1) were performed in female carriers of RPGR mutations and unrelated age-matched healthy controls. PWS at 68 loci located 1 degree to 9 degrees away from the preferred retinal locus and CD at 12 loci located 1 degree to 3 degrees away from the foveal center were measured. Severity of defect was defined by standard deviation (SD) from age-matched healthy control means: normal (<1 SD from normal average), moderate defect (1-2 SD from normal average), and severe defect (>2 SD from normal average). Results Twelve patients from seven unrelated families were enrolled. Seven patients were asymptomatic, 5 of whom had visual acuity 20/20 or better in both eyes. PWS and CD were available in 12 and 8 patients, respectively. Severe PWS and CD defect in at least 1 test location was observed in 10 of 12 patients and 7 of 8 patients, respectively. Among the five asymptomatic patients who had normal visual acuity, severe PWS and CD defects were observed in three of five and four of five patients, respectively. Conclusions MP and AO imaging revealed early functional and structural changes in asymptomatic RPGR mutation carriers and should be considered in clinical assessment of these patients.
Collapse
Affiliation(s)
- Danial Roshandel
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Tina M. Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jason Charng
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Department of Optometry, School of Allied Health, University of Western Australia, Western Australia, Australia
| | - Rachael C. Heath Jeffery
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Terri L. McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - John N. De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia,Department of Optometry, School of Allied Health, University of Western Australia, Western Australia, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Mansouri V. X-Linked Retinitis Pigmentosa Gene Therapy: Preclinical Aspects. Ophthalmol Ther 2022; 12:7-34. [PMID: 36346573 PMCID: PMC9641696 DOI: 10.1007/s40123-022-00602-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
The most common inherited eye disease is retinitis pigmentosa (RP). X-linked RP (XLRP) is one of the most severe types of RP, with a considerable disease burden. Patients with XLRP experience a decrease in their vision and become blind in their 4th decade of life, causing much morbidity after starting a rather normal life. Treatment of XLRP remains challenging, and current treatments are not effective enough in restoring vision. Gene therapy of XLRP, capable of restoring the functional RPGR gene, showed promising results in preclinical studies and clinical trials; however, to date, no approved product has entered the market. The development of a gene therapy product needs through preliminary assessment of the drug in animal models before administration to humans. In this article, we reviewed the genetic pathology of XLRP, along with the preclinical aspects of the XLRP gene therapy, animal models, associated assessments, and future challenges and directions.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Liu X, Jia R, Meng X, Wang L, Yang L. Analysis of RPGR gene mutations in 41 Chinese families affected by X-linked inherited retinal dystrophy. Front Genet 2022; 13:999695. [PMID: 36276946 PMCID: PMC9582779 DOI: 10.3389/fgene.2022.999695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: This study analyzed the phenotypes and genotypes of 41 Chinese families with inherited retinal dystrophy (IRD) and RPGR gene mutations.Methods: This retrospective analysis evaluated a cohort of 41 patients who were subjected to a specific Hereditary Eye Disease Enrichment Panel (HEDEP) analysis. All (likely) pathogenic variants were determined by Sanger sequencing, and co-segregation analyses were performed on the available family members. All cases were subjected to Sanger sequencing for RPGR open reading frame 15 (ORF15) mutations.Results: A total of 41 probands from different families with a clinical diagnosis of retinitis pigmentosa (RP; 34 cases) and cone-rod dystrophy (CORD; 7 cases) were included in this cohort. According to clinical information, 2, 18, and 21 cases were first assigned as autosomal dominant (AD), sporadic, and X-linked (XL) inheritance, respectively. Several cases of affected females who presented with a male phenotype have been described, posing challenges at diagnosis related to the apparent family history of AD. Mutations were located in RPGR exons or introns 1–14 and in ORF15 of 12 of 41 (29.3%) and 29 of 41 (70.7%) subjects, respectively. Thirty-four (likely) pathogenic mutations were identified. Frameshifts were the most frequently observed variants, followed by nonsense, splice, and missense mutations. Herein, a detailed description of four RP patients carrying RPGR intronic mutations is reported, and in vitro splice assays were performed to confirm the pathogenicity of these intronic mutations.Conclusion: Our findings provide useful insights for the genetic and clinical counseling of patients with XL IRD, which will be useful for ongoing and future gene therapy trials.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Ruixuan Jia
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xiang Meng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Likun Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
- *Correspondence: Likun Wang, ; Liping Yang,
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- *Correspondence: Likun Wang, ; Liping Yang,
| |
Collapse
|
9
|
Buckley TM, Jolly JK, Josan AS, Wood LJ, Cehajic‐Kapetanovic J, MacLaren RE. Clinical applications of microperimetry in RPGR-related retinitis pigmentosa: a review. Acta Ophthalmol 2021; 99:819-825. [PMID: 33783139 DOI: 10.1111/aos.14816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 01/05/2023]
Abstract
Microperimetry, or fundus-tracked perimetry, is a precise static-automated perimetric technique to assess central retinal function. As visual acuity only deteriorates at a late disease stage in RPGR-related retinitis pigmentosa (RP), alternative markers for disease progression are of great utility. Microperimetry assessment has been of critical value as an outcome measure in a recently reported phase I/II gene therapy trial for RPGR-related RP, both in terms of detecting safety and efficacy signals. Here, we performed a review of the literature. We describe the principles of microperimetry before outlining specific parameters that may be useful as outcome measures in clinical trial settings. The current state of structure-function correlations between short-wavelength autofluorescence, optical coherence tomography and adaptive optics in RPGR-related retinitis pigmentosa are also summarized.
Collapse
Affiliation(s)
| | - Jasleen K. Jolly
- Oxford Eye Hospital Oxford University Hospitals NHS Trust Oxford UK
- Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences Oxford Biomedical Research Centre University of Oxford Oxford UK
| | - Amandeep Singh Josan
- Oxford Eye Hospital Oxford University Hospitals NHS Trust Oxford UK
- Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences Oxford Biomedical Research Centre University of Oxford Oxford UK
| | - Laura J. Wood
- Oxford Eye Hospital Oxford University Hospitals NHS Trust Oxford UK
- Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences Oxford Biomedical Research Centre University of Oxford Oxford UK
| | - Jasmina Cehajic‐Kapetanovic
- Oxford Eye Hospital Oxford University Hospitals NHS Trust Oxford UK
- Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences Oxford Biomedical Research Centre University of Oxford Oxford UK
| | - Robert E. MacLaren
- Oxford Eye Hospital Oxford University Hospitals NHS Trust Oxford UK
- Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences Oxford Biomedical Research Centre University of Oxford Oxford UK
| |
Collapse
|
10
|
Wei C, Li Y, Feng X, Hu Z, Paquet-Durand F, Jiao K. RNA Biological Characteristics at the Peak of Cell Death in Different Hereditary Retinal Degeneration Mutants. Front Genet 2021; 12:728791. [PMID: 34777465 PMCID: PMC8586524 DOI: 10.3389/fgene.2021.728791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The present work investigated changes in the gene expression, molecular mechanisms, and pathogenesis of inherited retinal degeneration (RD) in three different disease models, to identify predictive biomarkers for their varied phenotypes and to provide a better scientific basis for their diagnosis, treatment, and prevention. Methods: Differentially expressed genes (DEGs) between retinal tissue from RD mouse models obtained during the photoreceptor cell death peak period (Pde6b rd1 at post-natal (PN) day 13, Pde6b rd10 at PN23, Prph rd2 at PN29) and retinal tissue from C3H wild-type mice were identified using Illumina high-throughput RNA-sequencing. Co-expression gene modules were identified using a combination of GO and KEGG enrichment analyses and gene co-expression network analysis. CircRNA-miRNA-mRNA network interactions were studied by genome-wide circRNA screening. Results: Pde6b rd1 , Pde6b rd10 , and Prph rd2 mice had 1,926, 3,096, and 375 DEGs, respectively. Genes related to ion channels, stress, inflammatory processes, tumor necrosis factor (TNF) production, and microglial cell activation were up-regulated, while genes related to endoplasmic reticulum regulation, metabolism, and homeostasis were down-regulated. Differential expression of transcription factors and non-coding RNAs generally implicated in other human diseases was detected (e.g., glaucoma, diabetic retinopathy, and inherited retinal degeneration). CircRNA-miRNA-mRNA network analysis indicated that these factors may be involved in photoreceptor cell death. Moreover, excessive cGMP accumulation causes photoreceptor cell death, and cGMP-related genes were generally affected by different pathogenic gene mutations. Conclusion: We screened genes and pathways related to photoreceptor cell death. Additionally, up-stream regulatory factors, such as transcription factors and non-coding RNA and their interaction networks were analyzed. Furthermore, RNAs involved in RD were functionally annotated. Overall, this study lays a foundation for future studies on photoreceptor cell death mechanisms.
Collapse
Affiliation(s)
- Chunling Wei
- Kunming Medical University, Kunming, China.,Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yan Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - Xiaoxiao Feng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - Zhulin Hu
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Kangwei Jiao
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| |
Collapse
|
11
|
Yang J, Zhou L, Ouyang J, Xiao X, Sun W, Li S, Zhang Q. Genotype-Phenotype Analysis of RPGR Variations: Reporting of 62 Chinese Families and a Literature Review. Front Genet 2021; 12:600210. [PMID: 34745198 PMCID: PMC8565807 DOI: 10.3389/fgene.2021.600210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose RPGR is the most common cause of X-linked retinitis pigmentosa (RP), of which female carriers are also frequently affected. The aim of the current study was to explore the RPGR variation spectrum and associated phenotype based on the data from our lab and previous studies. Methods Variants in RPGR were selected from exome sequencing data of 7,092 probands with different eye conditions. The probands and their available family members underwent comprehensive ocular examinations. Similar data were collected from previous reports through searches in PubMed, Web of Science, and Google Scholar. Systematic analyses of genotypes, phenotypes and their correlations were performed. Results A total of 46 likely pathogenic variants, including nine missense and one in-frame variants in RCC1-like domain and 36 truncation variants, in RPGR were detected in 62 unrelated families in our in-house cohort. In addition, a total of 585 variants, including 491 (83.9%) truncation variants, were identified from the literature. Systematic analysis of variants from our in-house dataset, literature, and gnomAD suggested that most of the pathogenic variants of RPGR were truncation variants while pathogenic missense and in-frame variants were enriched in the RCC1-like domain. Phenotypic variations were present between males and female carriers, including more severe refractive error but better best corrected visual acuity (BCVA) in female carriers than those in males. The male patients showed a significant reduction of BCVA with increase of age and males with exon1-14 variants presented a better BCVA than those with ORF15 variants. For female carriers, the BCVA also showed significant reduction with increase of age, but BCVA in females with exon1-14 variants was not significant difference compared with those with ORF15 variants. Conclusion Most pathogenic variants of RPGR are truncations. Missense and in-frame variants located outside of the RCC1-like domain might be benign and the pathogenicity criteria for these variants should be considered with greater caution. The BCVA and refractive error are different between males and female carriers. Increase of age and location of variants in ORF15 contribute to the reduction of BCVA in males. These results are valuable for understanding genotypes and phenotypes of RPGR.
Collapse
Affiliation(s)
- Junxing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|