1
|
Hamani C, Davidson B, Rabin JS, Goubran M, Boone L, Hynynen K, De Schlichting E, Meng Y, Huang Y, Jones RM, Baskaran A, Marawi T, Richter MA, Levitt A, Nestor SM, Giacobbe P, Lipsman N. Long-Term Safety and Efficacy of Focused Ultrasound Capsulotomy for Obsessive-Compulsive Disorder and Major Depressive Disorder. Biol Psychiatry 2025; 97:698-706. [PMID: 39187171 DOI: 10.1016/j.biopsych.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound (MRgFUS) trials targeting the anterior limb of the internal capsule have shown promising results. We evaluated the long-term safety and efficacy of MRgFUS capsulotomy in patients with obsessive-compulsive disorder (OCD) and major depressive disorder (MDD). METHODS This phase 1, single-center, open-label study recruited patients with treatment-resistant OCD and MDD. Outcomes were measured 6 months, 12 months, and 18 to 24 months (long term) after MRgFUS capsulotomy. Neuropsychological testing and neuroimaging were conducted at baseline and 12 months postoperatively. The primary outcome was safety. The secondary outcome was clinical response, defined for OCD as a ≥35% improvement in Yale-Brown Obsessive Compulsive Scale scores and for MDD as a ≥50% reduction in Hamilton Depression Rating Scale scores compared with baseline. RESULTS No serious adverse effects were registered. In patients with OCD (n= 15), baseline Yale-Brown Obsessive Compulsive Scale scores (31.9 ± 1.2) were significantly reduced by 23% (p = .01) at 6 months and 35% (p < .0001) at 12 months. In patients with MDD (n = 12), a 26% and 25% nonsignificant reduction in Hamilton Depression Rating Scale scores (baseline 24.3 ± 1.2) was observed at 6 months and 12 months, respectively. Neuropsychological testing revealed no negative effects of capsulotomy. In the OCD and MDD cohorts, we found a correlation between clinical outcome and lesion laterality, with more medial left-placed lesions (OCD, p = .08) and more lateral right-placed lesions (MDD, p < .05) being respectively associated with a stronger response. In the MDD cohort, more ventral tracts appeared to be associated with a poorer response. CONCLUSIONS MRgFUS capsulotomy is safe in patients with OCD and MDD and particularly effective in the former population.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | - Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Maged Goubran
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Lyndon Boone
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Emmanuel De Schlichting
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yuexi Huang
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ryan M Jones
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Anusha Baskaran
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tulip Marawi
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Margaret Anne Richter
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anthony Levitt
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Armas-Salazar A, Fernandez-Gutiérrez LM, Jader A, Avecillas-Chasin JM, Aronson JP, Pacheco-Barrios N, Altamirano JM. Ventral capsule/ventral striatum deep brain stimulation versus anterior capsulotomy in treatment-resistant major depression: A systematic review and data analysis. Clin Neurol Neurosurg 2025; 249:108703. [PMID: 39994933 DOI: 10.1016/j.clineuro.2024.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/21/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Ventral capsule/ventral striatum deep brain stimulation (VC/VS-DBS) for treatment-resistant depression (TRD) has shown promising results. Despite its efficacy, DBS is costly and less accessible, while anterior capsulotomy (ACAPS), though permanent and non-adjustable, offers clinical advantages. METHODS A systematic review and data analysis were conducted to evaluate articles reporting on clinical outcomes and adverse effects of VC/VS-DBS and ACAPS for TRD. A quality assessment of the included studies was performed to determine homogeneity across reports. To assess the intervention's efficacy, changes in pre- and post-intervention scores on the Hamilton Depression Rating Scale (HRSD-17) were analyzed. RESULTS Seven studies with 138 TRD patients were analyzed. Among 75 ACAPS patients, mean pre-operative HRSD-17 scores decreased by 46 %, from 26.97 ± 3.12-14.53 ± 1.15, with an improvement of 11.87 points (95 % CI: 8.83-14.91). For 63 VC/VS-DBS patients, scores declined by 42 %, from 27.5 ± 4.13-15.93 ± 5.13, corresponding to an improvement of 9.68 points (95 % CI: 5.08-14.27). Adverse effects included suicidal ideation (7 %) and hypomania (3.6 %) with DBS, while ACAPS was associated with headaches and long-term effects like reduced motivation and weight gain in 15-20 % of patients. CONCLUSION Both VC/VS-DBS and ACAPS show efficacy in treating TRD, with ACAPS showing slightly better outcomes and no significant adverse effects reported. However, given study heterogeneity, a robust, well-powered randomized controlled trial is essential to more precisely compare these techniques and clarify their clinical impact on TRD.
Collapse
Affiliation(s)
| | | | - Arwa Jader
- Kufa University, Faculty of Medicine, Kufa, Iraq
| | | | - Joshua P Aronson
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Juan M Altamirano
- Hospital Angeles Clínica Londres, Department of Neurosurgery, Mexico City, Mexico.
| |
Collapse
|
3
|
Keat A, Li K, Hau T, Soga T. Comparative Side-Effects of Neurosurgical Treatment of Treatment-Resistant Depression. CNS Neurosci Ther 2024; 30:e70090. [PMID: 39467827 PMCID: PMC11518690 DOI: 10.1111/cns.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Treatment-resistant depression (TRD) is a condition in which patients suffering from depression no longer respond to common methods of treatment, such as anti-depressant medication. Neurosurgical procedures such as ablative surgery, deep brain stimulation, and vagus nerve stimulation have been used in efforts to overcome TRD. OBJECTIVES This review aims to provide an overview of the side effects of neurosurgery performed in clinical studies related to depression. METHODS A literature search was conducted through PubMed, MEDLINE, EMBASE, Ovid, and ClinicalTrials.gov databases. RESULTS This review selected 10 studies for ablative surgery, 12 for deep brain stimulation, and 10 for vagus nerve stimulation, analyzing their side effect profiles of neurosurgery for TRD. The major side effects of each type of neurosurgery were identified, such as incontinence and confusion for ablative surgery, headaches and increased suicide ideation for deep brain stimulation, and voice hoarseness and dyspnea for vagus nerve stimulation. CONCLUSION The review discusses the merits and demerits of neurosurgery as a treatment option for TRD. It also suggests new insights into decreasing the burden of these neurosurgical side effects so that they can be a viable, high-efficacy treatment method for TRD.
Collapse
Affiliation(s)
- Alexandre Lim Eng Keat
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Keith Tan Jian Li
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Teo Chuin Hau
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
4
|
Hurwitz T, Ching G, Bogod NM, Honey CR. Bilateral Anterior Capsulotomy for Treatment-Resistant Obsessive-Compulsive Disorder. Stereotact Funct Neurosurg 2024; 102:356-370. [PMID: 39182480 DOI: 10.1159/000540503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Ablative surgery is an intervention of last resort for treatment-resistant obsessive-compulsive disorder (TROCD). Our center has been using bilateral anterior capsulotomy (BAC) for the past 20 years for patients eligible for limbic surgery. This report details our experience with BAC for TROCD. METHOD Five patients with OCD met eligibility criteria for BAC. Entry protocols were complex and took around 6 months to complete. Stereotactic radiofrequency was used to produce the capsulotomies. Lesion length varied between 5.7 and 16.9 mm in the coronal plane. Patients were followed between 4 and 20 years. RESULTS All 5 patients (100%) were responders as defined by the widely accepted criteria of a reduction of ≥35% in Yale-Brown Obsessive Compulsive Scale (YBOCS) score at 18-month follow-up. Four patients remained responders at the 48 months. One patient was lost to follow-up. Responder status when viewed from the perspective of the YBOCS was sustained over the 4- to 20-year follow-up with one relapse 19 years postsurgery when medications were discontinued. Real-world psychiatric outcomes were different as other vulnerabilities surfaced illustrating the multifactorial determinants of mental health. No patient had any significant long-term neurocognitive or physical side effects. CONCLUSION BAC should remain an option of last resort for patients with severe OCD who remain unresponsive to all other interventions.
Collapse
Affiliation(s)
- Trevor Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Geoffrey Ching
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas Mark Bogod
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R Honey
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Adegoke T, Subramanian S, Daunis D, Bick S, Ward HB. A Case of Treatment-Resistant Depression Complicated by Traumatic Brain Injury and Seizure: Implications for Interventional Treatment and Psychiatric Training. Harv Rev Psychiatry 2024; 32:117-125. [PMID: 38728571 PMCID: PMC11525772 DOI: 10.1097/hrp.0000000000000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- Timothy Adegoke
- From Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN (Drs. Adegoke, Daunis, and Ward); Harvard Medical School, Departments of Psychiatry and Neurology, Beth Israel Deaconess Medical Center, Boston, MA (Dr. Subramanian); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN (Dr. Bick)
| | | | | | | | | |
Collapse
|
6
|
Hurwitz TA, Avecillas-Chasin JM, Bogod NM, Honey CR. Ventral targeted anterior capsulotomy for treatment-resistant depression and obsessive-compulsive disorder: A treatment method with cases. J Affect Disord 2024; 350:887-894. [PMID: 38272366 DOI: 10.1016/j.jad.2024.01.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Ablative surgery using bilateral anterior capsulotomy (BAC) is an option for treatment resistant depression (TRD) and obsessive-compulsive disorder (TROCD). The location and extent of the lesion within anterior limb of the internal capsule (ALIC) remains uncertain. Accumulating evidence has suggested that the lesion should be located ventrally while limiting the dorsal extent. Our center is now targeting specific fiber tracts within the lower half of the ALIC. METHOD Presurgical diffusion tensor Magnetic Resonance Imaging (MRI) was used to identify individual fibre tracts within the ventral aspect of the ALIC in the last two patients who underwent BAC at our center. One patient had TRD and the other had both TROCD and TRD. Radiofrequency-induced thermal lesions were created in the identified targets with lesion volumes between 20 and 229 mm3 (average 95 mm3). FINDINGS Both patients were responders with neither experiencing significant side effects including compromised executive functions. LIMITATIONS The generalizability of our findings is limited because the outcome is based on two subjects. CONCLUSION This work suggests that BAC can be individually tailored and more limited to the ventral aspect of the ALIC and is effective and safe for TRD and TROCD. Accumulating data also suggests that to be clinically effective the length of the capsulotomy should be about 10mm. BAC's use may increase with the growing utilization and mastery of magnetic resonance guided focused ultrasound.
Collapse
Affiliation(s)
- Trevor A Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| | | | - Nicholas M Bogod
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, BC, Canada.
| | - Christopher R Honey
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Kroneberg D, Al-Fatly B, Morkos C, Steiner LA, Schneider GH, Kühn A. Kinematic Effects of Combined Subthalamic and Dorsolateral Nigral Deep Brain Stimulation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:269-282. [PMID: 38363617 PMCID: PMC10977420 DOI: 10.3233/jpd-230181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Background Additional stimulation of the substantia nigra (SNr) has been proposed to target axial symptoms and gait impairment in patients with Parkinson's disease (PD). Objective This study aimed to characterize effects of combined deep brain stimulation (DBS) of the subthalamic nucleus (STN) and SNr on gait performance in PD and to map stimulation sites within the SNr. Methods In a double-blinded crossover design, 10 patients with PD and gait impairment underwent clinical examination and kinematic assessment with STN DBS, combined STN+SNr DBS and OFF DBS 30 minutes after reprogramming. To confirm stimulation within the SNr, electrodes, active contacts, and stimulation volumes were modeled in a common space and overlap with atlases of SNr was computed. Results Overlap of stimulation volumes with dorsolateral SNr was confirmed for all patients. UPDRS III, scoring of freezing during turning and transitioning, stride length, stride velocity, and range of motion of shank, knee, arm, and trunk as well as peak velocities during turning and transitions and turn duration were improved with STN DBS compared to OFF. On cohort level, no further improvement was observed with combined STN+SNr DBS but additive improvement of spatiotemporal gait parameters was observed in individual subjects. Conclusions Combined high frequency DBS of the STN and dorsolateral SNr did not consistently result in additional short-term kinematic or clinical benefit compared to STN DBS. Stimulation intervals, frequency, and patient selection for target symptoms as well as target region within the SNr need further refinement in future trials.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelia Morkos
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leon Amadeus Steiner
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A. Kühn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charite - Universitatsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Sanchez SM, Tsuchiyagaito A, Kuplicki R, Park H, Postolski I, Rohan M, Paulus MP, Guinjoan SM. Repetitive Negative Thinking-Specific and -Nonspecific White Matter Tracts Engaged by Historical Psychosurgical Targets for Depression. Biol Psychiatry 2023; 94:661-671. [PMID: 36965550 PMCID: PMC10517085 DOI: 10.1016/j.biopsych.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Repetitive negative thinking (RNT) is a frequent symptom of major depressive disorder (MDD) that is associated with poor outcomes and treatment resistance. While most studies on RNT have focused on structural and functional characteristics of gray matter, this study aimed to examine the association between white matter (WM) tracts and interindividual variability in RNT. METHODS A probabilistic tractography approach was used to characterize differences in the size and anatomical trajectory of WM fibers traversing psychosurgery targets historically useful in the treatment of MDD (anterior capsulotomy, anterior cingulotomy, and subcaudate tractotomy) in patients with MDD and low (n = 53) or high (n = 52) RNT, and healthy control subjects (n = 54). MDD samples were propensity matched on depression and anxiety severity and demographics. RESULTS WM tracts traversing left hemisphere targets and reaching the ventral anterior body of the corpus callosum (thus extending to contralateral regions) were larger in the high-RNT MDD group compared with low-RNT (effect size D = 0.27, p = .042) and healthy control (D = 0.23, p = .02) groups. MDD was associated with greater size of tracts that converge onto the right medial orbitofrontal cortex regardless of RNT intensity. Other RNT-nonspecific findings in MDD involved tracts reaching the left primary motor and right primary somatosensory cortices. CONCLUSIONS This study provides the first evidence to our knowledge that WM connectivity patterns, which could become targets of intervention, differ between high- and low-RNT participants with MDD. These WM differences extend to circuits that are not specific to RNT, possibly subserving reward mechanisms and psychomotor activity.
Collapse
Affiliation(s)
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | | | - Heekyeong Park
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, University of North Texas, Dallas, Texas
| | - Ivan Postolski
- Institute for Research in Computational Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires, Argentina
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry, Oklahoma University Health Sciences Center, Tulsa, Oklahoma.
| |
Collapse
|
9
|
Boëx C, Awadhi AA, Tyrand R, Corniola MV, Kibleur A, Fleury V, Burkhard PR, Momjian S. Validation of Lead-DBS β-Oscillation Localization with Directional Electrodes. Bioengineering (Basel) 2023; 10:898. [PMID: 37627782 PMCID: PMC10451384 DOI: 10.3390/bioengineering10080898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
In deep brain stimulation (DBS) studies in patients with Parkinson's disease, the Lead-DBS toolbox allows the reconstruction of the location of β-oscillations in the subthalamic nucleus (STN) using Vercise Cartesia directional electrodes (Boston Scientific). The objective was to compare these probabilistic locations with those of intraoperative monopolar β-oscillations computed from local field potentials (0.5-3 kHz) recorded by using shielded single wires and an extracranial shielded reference electrode. For each electrode contact, power spectral densities of the β-band (13-31 Hz) were compared with those of all eight electrode contacts on the directional electrodes. The DBS Intrinsic Template AtLas (DISTAL), electrophysiological, and DBS target atlases of the Lead-DBS toolbox were applied to the reconstructed electrodes from preoperative MRI and postoperative CT. Thirty-six electrodes (20 patients: 7 females, 13 males; both STN electrodes for 16 of 20 patients; one single STN electrode for 4 of 20 patients) were analyzed. Stimulation sites both dorsal and/or lateral to the sensorimotor STN were the most efficient. In 33 out of 36 electrodes, at least one contact was measured with stronger β-oscillations, including 23 electrodes running through or touching the ventral subpart of the β-oscillations' probabilistic volume, while 10 did not touch it but were adjacent to this volume; in 3 out of 36 electrodes, no contact was found with β-oscillations and all 3 were distant from this volume. Monopolar local field potentials confirmed the ventral subpart of the probabilistic β-oscillations.
Collapse
Affiliation(s)
- Colette Boëx
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Abdullah Al Awadhi
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
| | - Rémi Tyrand
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Marco V. Corniola
- Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France
| | - Astrid Kibleur
- Centre Hospitalier Universitaire Caen Normandie, F-14000 Caen, France
| | - Vanessa Fleury
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
- Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France
| | - Pierre R. Burkhard
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Shahan Momjian
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| |
Collapse
|
10
|
Shofty B, Gadot R, Provenza N, Storch EA, Goodman WK, Sheth SA. Neurosurgical Approaches for Treatment-Resistant Obsessive-Compulsive Disorder. Psychiatr Clin North Am 2023; 46:121-132. [PMID: 36740348 DOI: 10.1016/j.psc.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Treatment-resistant obsessive-compulsive disorder (trOCD) is a severely disabling, life-threatening psychiatric disorder affecting ∼0.5% of the US population. Following the failure of multiple medical and psychotherapeutic treatment lines, patients with trOCD, like others with functional disorders, may benefit from invasive neuromodulation. Cumulative evidence suggests that disrupting abnormal hyperdirect cortico-striato-thalamo-cortical (CSTC) pathway activity offers sustainable, robust symptomatic relief in most patients. Multiple surgical approaches allow for modulation of the CSTC pathway, including stereotactic lesions and electrical stimulation. This review aims to describe the modern neurosurgical approaches for trOCD, recent advances in our understanding of pathophysiology, and future therapeutic directions.
Collapse
Affiliation(s)
- Ben Shofty
- Department of Neurosurgery, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA
| | - Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge Street Suite 9A, Houston, TX 77030, USA
| | - Nicole Provenza
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge Street Suite 9A, Houston, TX 77030, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX 77030, USA
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge Street Suite 9A, Houston, TX 77030, USA; Department of Psychiatry, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Lead-DBS v3.0: Mapping deep brain stimulation effects to local anatomy and global networks. Neuroimage 2023; 268:119862. [PMID: 36610682 PMCID: PMC10144063 DOI: 10.1016/j.neuroimage.2023.119862] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.
Collapse
|
12
|
Avecillas-Chasin JM, Levinson S, Kuhn T, Omidbeigi M, Langevin JP, Pouratian N, Bari A. Connectivity-based parcellation of the amygdala and identification of its main white matter connections. Sci Rep 2023; 13:1305. [PMID: 36693904 PMCID: PMC9873600 DOI: 10.1038/s41598-023-28100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The amygdala plays a role in emotion, learning, and memory and has been implicated in behavioral disorders. Better understanding of the amygdala circuitry is crucial to develop new therapies for these disorders. We used data from 200 healthy-subjects from the human connectome project. Using probabilistic tractography, we created population statistical maps of amygdala connectivity to brain regions involved in limbic, associative, memory, and reward circuits. Based on the amygdala connectivity with these regions, we applied k-means clustering to parcellate the amygdala into three clusters. The resultant clusters were averaged across all subjects and the main white-matter pathways of the amygdala from each averaged cluster were generated. Amygdala parcellation into three clusters showed a medial-to-lateral pattern. The medial cluster corresponded with the centromedial and cortical nuclei, the basal cluster with the basal nuclei and the lateral cluster with the lateral nuclei. The connectivity analysis revealed different white-matter pathways consistent with the anatomy of the amygdala circuit. This in vivo connectivity-based parcellation of the amygdala delineates three clusters of the amygdala in a mediolateral pattern based on its connectivity with brain areas involved in cognition, memory, emotion, and reward. The human amygdala circuit presented in this work provides the first step for personalized amygdala circuit mapping for patients with behavioral disorders.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Department of Neurosurgery, University of Nebraska Medical Center, 988437 Nebraska Medical Center, Omaha, NE, 68198-8437, USA. .,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Simon Levinson
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Mahmoud Omidbeigi
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neurosurgery Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ausaf Bari
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Structural connectivity of the ANT region based on human ex-vivo and HCP data. Relevance for DBS in ANT for epilepsy. Neuroimage 2022; 262:119551. [DOI: 10.1016/j.neuroimage.2022.119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
|
14
|
Kholyavin AI, Polyakov YI. Stereotactic cingulotomy and capsulotomy for obsessive-compulsive disorders: Indications and comparative results. PROGRESS IN BRAIN RESEARCH 2022; 272:1-21. [PMID: 35667796 DOI: 10.1016/bs.pbr.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stereotactic cingulotomy and capsulotomy have been used to treat obsessive-compulsive disorders (OCD) and treatment-resistant depression since the 1950s-60s. To date, these surgical procedures have gained a number of advancements due to progress of neuroimaging and upgrading of stereotactic technique. The effectiveness of operations is related to the restoration of the normal level of limbic regulation in treated patients. In cases of OCD, capsulotomy is somewhat more effective, while cingulotomy has a more favorable safety profile. Moreover, clinical experience shows that these procedures may be efficient for management not only OCD itself, but for obsessive-compulsive symptoms in cases of other mental diseases, such as Tourette syndrome and schizophrenia, thus may be considered in carefully selected patients. An individualized treatment strategy, including staged stereotactic interventions, seems most promising for attainment of the best possible outcomes, and may allow to achieve socialization of 75% of the operated patients with minimal pharmacological support. Other potential stereotactic targets for management of OCD, which selection may depend on detail of clinical manifestation of disease, include thalamic nuclei, nucleus accumbens, globus pallidus, the amygdala, etc., and are currently under active evaluation, and their use is tremendously facilitated by the development of deep brain stimulation techniques. Nevertheless, cingulotomy and capsulotomy still remain highly relevant for treatment of patients with therapy-resistant mental disorders.
Collapse
Affiliation(s)
- Andrey I Kholyavin
- Laboratory of Stereotactic Methods, N.P. Bechtereva Institute of Human Brain of the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Yury I Polyakov
- Laboratory of Stereotactic Methods, N.P. Bechtereva Institute of Human Brain of the Russian Academy of Sciences, St. Petersburg, Russian Federation; Department of Psychiatry and Narcology, I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russian Federation; Department of Normal Physiology, I.P. Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| |
Collapse
|
15
|
Mustroph ML, Cosgrove GR, Williams ZM. The Evolution of Modern Ablative Surgery for the Treatment of Obsessive-Compulsive and Major Depression Disorders. Front Integr Neurosci 2022; 16:797533. [PMID: 35464603 PMCID: PMC9026193 DOI: 10.3389/fnint.2022.797533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
In this review, we describe the evolution of modern ablative surgery for intractable psychiatric disease, from the original image-guided cingulotomy procedure described by Ballantine, to the current bilateral anterior cingulotomy using MRI-guided stereotactic techniques. Extension of the single lesion bilateral cingulotomy to the extended bilateral cingulotomy and subsequent staged limbic leucotomy (LL) is also discussed. Other ablative surgeries for psychiatric disease including subcaudate tractotomy (SCT) and anterior capsulotomy (AC) using modern MRI-guided ablative techniques, as well as radiosurgical capsulotomy, are described. Finally, the potential emerging role of MR-guided focused ultrasound (MRgFUS) for treating conditions such as major depressive disorder (MDD) and obsessive-compulsive disorder (OCD) is discussed.
Collapse
Affiliation(s)
- Martina Laetitia Mustroph
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - G. Rees Cosgrove
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States
- Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Sato A, Tominaga K, Iwatani Y, Kato Y, Wataya-Kaneda M, Makita K, Nemoto K, Taniike M, Kagitani-Shimono K. Abnormal White Matter Microstructure in the Limbic System Is Associated With Tuberous Sclerosis Complex-Associated Neuropsychiatric Disorders. Front Neurol 2022; 13:782479. [PMID: 35359647 PMCID: PMC8963953 DOI: 10.3389/fneur.2022.782479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTuberous sclerosis complex (TSC) is a genetic disease that arises from TSC1 or TSC2 abnormalities and induces the overactivation of the mammalian/mechanistic target of rapamycin pathways. The neurological symptoms of TSC include epilepsy and tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Although TAND affects TSC patients' quality of life, the specific region in the brain associated with TAND remains unknown. We examined the association between white matter microstructural abnormalities and TAND, using diffusion tensor imaging (DTI).MethodsA total of 19 subjects with TSC and 24 age-matched control subjects were enrolled. Tract-based spatial statistics (TBSS) were performed to assess group differences in fractional anisotropy (FA) between the TSC and control groups. Atlas-based association analysis was performed to reveal TAND-related white matter in subjects with TSC. Multiple linear regression was performed to evaluate the association between TAND and the DTI parameters; FA and mean diffusivity in seven target regions and projection fibers.ResultsThe TBSS showed significantly reduced FA in the right hemisphere and particularly in the inferior frontal occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), and genu of corpus callosum (CC) in the TSC group relative to the control group. In the association analysis, intellectual disability was widely associated with all target regions. In contrast, behavioral problems and autistic features were associated with the limbic system white matter and anterior limb of the internal capsule (ALIC) and CC.ConclusionThe disruption of white matter integrity may induce underconnectivity between cortical and subcortical regions. These findings suggest that TANDs are not the result of an abnormality in a specific brain region, but rather caused by connectivity dysfunction as a network disorder. This study indicates that abnormal white matter connectivity including the limbic system is relevant to TAND. The analysis of brain and behavior relationship is a feasible approach to reveal TAND related white matter and neural networks. TAND should be carefully assessed and treated at an early stage.
Collapse
Affiliation(s)
- Akemi Sato
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Koji Tominaga
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Iwatani
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Kato
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Wataya-Kaneda
- Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Kiyotaka Nemoto
- Division of Clinical Medicine, Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- *Correspondence: Kuriko Kagitani-Shimono
| |
Collapse
|
17
|
Davidson B, Hamani C, Huang Y, Jones RM, Meng Y, Giacobbe P, Lipsman N. Magnetic Resonance-Guided Focused Ultrasound Capsulotomy for Treatment-Resistant Psychiatric Disorders. Oper Neurosurg (Hagerstown) 2021; 19:741-749. [PMID: 32735671 DOI: 10.1093/ons/opaa240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Psychiatric surgery is an important domain of functional neurosurgery and involves deep brain stimulation (DBS) or lesional procedures performed for treatment-resistant psychiatric illness. It has recently become possible to use magnetic-guided focused ultrasound (MRgFUS) to perform bilateral capsulotomy, a lesional technique commonly carried out with surgical radiofrequency ablation or stereotactic radiosurgery. MRgFUS offers several advantages, including improved safety and real-time imaging of the lesions. OBJECTIVE To describe the clinical and technical aspects of performing bilateral MRgFUS capsulotomy in patients with severe refractory depression and obsessive-compulsive disorder. METHODS We describe the clinical and technical considerations of performing MRgFUS capsulotomy. Topics discussed include patient selection, headframe application, targeting, sonication strategies, and follow-up procedures. RESULTS MRgFUS capsulotomy was performed in 16 patients without serious clinical or radiographic adverse events. CONCLUSION MRgFUS allows for a safe, less invasive technique for performing a well-studied psychiatric surgery procedure-the anterior capsulotomy.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Yuexi Huang
- Sunnybrook Research Institute, Toronto Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ryan M Jones
- Sunnybrook Research Institute, Toronto Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| |
Collapse
|
18
|
Avecillas-Chasin JM, Hurwitz TA, Bogod NM, Honey CR. Tractography-Guided Anterior Capsulotomy for Major Depression and Obsessive-Compulsive Disorder: Targeting the Emotion Network. Oper Neurosurg (Hagerstown) 2021; 20:406-412. [PMID: 33475697 DOI: 10.1093/ons/opaa420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Bilateral anterior capsulotomy (BAC) is an effective surgical option for patients with treatment-resistant major depression (TRMD) and treatment-resistant obsessive-compulsive disorder (TROCD). The size of the lesion and its precise dorsal-ventral location within the anterior limb of the internal capsule (ALIC) remain undefined. OBJECTIVE To present a method to identify the trajectories of the associative and limbic white matter pathways within the ALIC for targeting in BAC surgery. METHODS Using high-definition tractography, we prospectively tested the feasibility of this method in 2 patients with TRMD and TROCD to tailor the capsulotomy lesion to their limbic pathway. RESULTS The trajectories of the associative and limbic pathways were identified in the ALIC of both patients and we targeted the limbic pathways by defining the dorsal limit of the lesion in a way to minimize the damage to the associative pathways. The final lesions were smaller than those that have been previously published. This individualized procedure was associated with long-term benefit in both patients. CONCLUSION Tractography-guided capsulotomy is feasible and was associated with long-term benefit in patients with TRMD and TROCD.
Collapse
Affiliation(s)
| | - Trevor A Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas M Bogod
- Neurosciences Program, Vancouver General Hospital, Division of Neurology, UBC Department of Medicine, Vancouver, British Columbia, Canada
| | - Christopher R Honey
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Briggs RG, Allan PG, Poologaindran A, Dadario NB, Young IM, Ahsan SA, Teo C, Sughrue ME. The Frontal Aslant Tract and Supplementary Motor Area Syndrome: Moving towards a Connectomic Initiation Axis. Cancers (Basel) 2021; 13:cancers13051116. [PMID: 33807749 PMCID: PMC7961364 DOI: 10.3390/cancers13051116] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Connectomics enables us to map whole brain networks that can be applied to operative neurosurgery to improve neuro-oncological outcomes. Damage to the superior frontal gyrus during frontal lobe surgery is thought to induce supplementary motor area (SMA) syndrome in patients. However, network-based modeling may provide a more accurate cortical model of SMA syndrome, including the Frontal Aslant Tract (FAT). The aim of our study was to retrospectively assess if surgical tractography with diffusion tensor imaging (DTI) decreases the likelihood of SMA syndrome. Compared to patients who underwent surgery preserving the SFG (n = 23), patients who had their FAT and SMA networks mapped through DTI and subsequently preserved were less likely to experience transient SMA syndrome. Preserving the FAT and SMA improves functional outcomes in patients following medial frontal glioma surgery and demonstrates how network-based approaches can improve surgical outcomes. Abstract Connectomics is the use of big data to map the brain’s neural infrastructure; employing such technology to improve surgical planning may improve neuro-oncological outcomes. Supplementary motor area (SMA) syndrome is a well-known complication of medial frontal lobe surgery. The ‘localizationist’ view posits that damage to the posteromedial bank of the superior frontal gyrus (SFG) is the basis of SMA syndrome. However, surgical experience within the frontal lobe suggests that this is not entirely true. In a study on n = 45 patients undergoing frontal lobe glioma surgery, we sought to determine if a ‘connectomic’ or network-based approach can decrease the likelihood of SMA syndrome. The control group (n = 23) underwent surgery avoiding the posterior bank of the SFG while the treatment group (n = 22) underwent mapping of the SMA network and Frontal Aslant Tract (FAT) using network analysis and DTI tractography. Patient outcomes were assessed post operatively and in subsequent follow-ups. Fewer patients (8.3%) in the treatment group experienced transient SMA syndrome compared to the control group (47%) (p = 0.003). There was no statistically significant difference found between the occurrence of permanent SMA syndrome between control and treatment groups. We demonstrate how utilizing tractography and a network-based approach decreases the likelihood of transient SMA syndrome during medial frontal glioma surgery. We found that not transecting the FAT and the SMA system improved outcomes which may be important for functional outcomes and patient quality of life.
Collapse
Affiliation(s)
- Robert G. Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.B.); (P.G.A.)
| | - Parker G. Allan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.B.); (P.G.A.)
| | - Anujan Poologaindran
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, UK;
- Doctoral Program, The Alan Turing Institute, British Library, London NW1 2DB, UK
| | - Nicholas B. Dadario
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Isabella M. Young
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Syed A. Ahsan
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Charles Teo
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Michael E. Sughrue
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
- Correspondence:
| |
Collapse
|
20
|
Davidson B, Lipsman N, Meng Y, Rabin JS, Giacobbe P, Hamani C. The Use of Tractography-Based Targeting in Deep Brain Stimulation for Psychiatric Indications. Front Hum Neurosci 2020; 14:588423. [PMID: 33304258 PMCID: PMC7701283 DOI: 10.3389/fnhum.2020.588423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Deep Brain Stimulation (DBS) has been investigated as a treatment option for patients with refractory psychiatric illness. Over the past two decades, neuroimaging developments have helped to advance the field, particularly the use of diffusion tensor imaging (DTI) and tractographic reconstruction of white-matter pathways. In this article, we review translational considerations and how DTI and tractography have been used to improve targeting during DBS surgery for depression, obsessive compulsive disorder (OCD) and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ying Meng
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jennifer S. Rabin
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Davidson B, Hamani C, Meng Y, Baskaran A, Sharma S, Abrahao A, Richter MA, Levitt A, Giacobbe P, Lipsman N, Rabin JS. Examining cognitive change in magnetic resonance-guided focused ultrasound capsulotomy for psychiatric illness. Transl Psychiatry 2020; 10:397. [PMID: 33177508 PMCID: PMC7658970 DOI: 10.1038/s41398-020-01072-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) anterior capsulotomy is a novel treatment option for patients with refractory obsessive compulsive disorder (OCD) or major depressive disorder (MDD). However, there is concern that lesional psychiatric surgery procedures may have adverse effects on cognition. In this study, we examined whether MRgFUS capsulotomy causes cognitive decline in patients with psychiatric illness. Ten patients with refractory OCD (n = 5) or MDD (n = 5) underwent MRgFUS capsulotomy. Cognitive functioning was measured at baseline as well as 6 months and 12 months postoperatively, with a battery of neuropsychological tests assessing domains of executive function, memory, and processing speed. Scores were analyzed at the individual-level, and changes ≥2 standard deviations were considered clinically significant. We also examined whether changes in clinical symptoms were associated with changes in cognitive performance. At baseline intellectual functioning was in the average to high-average range for the group. Following MRgFUS capsulotomy, there were no deteriorations in cognition that reached ≥2 standard deviations at 6 or 12 months. Eight out of ten patients demonstrated a ≥2 standard deviation improvement in at least one cognitive score at 6 or 12 months postoperatively. Improvements in clinical symptoms correlated significantly with self-reported improvements in frontal lobe function (p < 0.05), but not with objective measures of cognitive functioning. To summarize, MRgFUS capsulotomy did not result in cognitive decline in this cohort of patients with refractory OCD or MDD, suggesting that this procedure can be offered to patients with a very low risk of cognitive side effects.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
- Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anusha Baskaran
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sachie Sharma
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Agessandro Abrahao
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Margaret Anne Richter
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Anthony Levitt
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada.
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Qi X, Arfanakis K. Regionconnect: Rapidly extracting standardized brain connectivity information in voxel-wise neuroimaging studies. Neuroimage 2020; 225:117462. [PMID: 33075560 PMCID: PMC7811895 DOI: 10.1016/j.neuroimage.2020.117462] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Reporting white matter findings in voxel-wise neuroimaging studies typically lacks specificity in terms of brain connectivity. Therefore, the purpose of this work was to develop an approach for rapidly extracting standardized brain connectivity information for white matter regions with significant findings in voxel-wise neuroimaging studies. The new approach was named regionconnect and is based on precalculated average healthy adult brain connectivity information stored in standard space in a fashion that allows fast retrieval and integration. Towards this goal, the present work first generated and evaluated the white matter connectome of the IIT Human Brain Atlas v.5.0. It was demonstrated that the edges of the atlas connectome are representative of those of individual participants of the Human Connectome Project in terms of the spatial organization of streamlines and spatial patterns of track-density. Next, the new white matter connectome was used to develop multi-layer, connectivity-based labels for each white matter voxel of the atlas, consistent with the fact that each voxel may contain axons from multiple connections. The regionconnect algorithm was then developed to rapidly integrate information contained in the multi-layer labels across voxels of a white matter region and to generate a list of the most probable connections traversing that region. Usage of regionconnect does not require high angular resolution diffusion MRI or any MRI data. The regionconnect algorithm as well as the white matter tractogram and connectome, multi-layer, connectivity-based labels, and associated resources developed for the IIT Human Brain Atlas v.5.0 in this work are available at www.nitrc.org/projects/iit. An interactive, online version of regionconnect is also available at www.iit.edu/~mri.
Collapse
Affiliation(s)
- Xiaoxiao Qi
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
23
|
Clark DL, Johnson KA, Butson CR, Lebel C, Gobbi D, Ramasubbu R, Kiss ZHT. Tract-based analysis of target engagement by subcallosal cingulate deep brain stimulation for treatment resistant depression. Brain Stimul 2020; 13:1094-1101. [PMID: 32417668 DOI: 10.1016/j.brs.2020.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of subcallosal cingulate cortex (SCC) is a promising investigational therapy for treatment-resistant depression (TRD). However, outcomes vary, likely due to suboptimal DBS placement. Ideal placement is proposed to stimulate 4 SCC white matter bundles; however, no quantitative data have linked activation of these target tracts to response. OBJECTIVE Here we used the volume of tissue activated (VTA) and probabilistic diffusion tensor imaging (DTI) to quantify tract activation relating to response. METHODS DTI was performed in 19 TRD patients who received SCC-DBS. We defined clinical response as >48% reduction from baseline in the Hamilton Depression Rating Scale. Bilateral VTAs were generated based on subject-specific stimulation parameters. Patient-specific tract maps emanating from the VTAs were calculated using whole-brain probabilistic DTI. The four target tracts were isolated using tract-specific quantification and examined for overlap with DBS activated tissue. RESULTS Medial frontal and temporal projections were stimulated in all responders at 6 and 12 months. Individual tract-based generalized linear mixed model analysis revealed a significant tract-by-response interaction at both 6 (F(1,135) = 3.828, p = 0.001) and 12 (F(1,135) = 5.688, p < 0.001) months, with post hoc tests revealing a response-related increase in cingulum activation at 6 months (t(135) = 2.418, p = 0.017) and decrease in forceps minor activation at 12 months (t(135) = -2.802, p = 0.006). CONCLUSIONS A wider profile of white matter tracts, particularly to the medial frontal, was associated with DBS response. Cingulum bundle stimulation may promote early response and excess stimulation of the forceps minor might be detrimental. Our work supports prospective patient-specific targeting to inform personalized DBS.
Collapse
Affiliation(s)
- Darren L Clark
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Departments of Neurology, Neurosurgery, and Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research Program, Alberta Children's Hosspital, Calgary, AB, Canada
| | - David Gobbi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Rajamannar Ramasubbu
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zelma H T Kiss
- Department of Clinical Neuroscience, University of Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|