1
|
Expert Panel on Musculoskeletal Imaging, Ahlawat S, Lenchik L, Baker JC, Allen H, Banks J, Florou V, Garner HW, Hammer MR, Hiniker SM, Kamel SI, Lu Y, Peairs KS, Scott JA, Wessell DE. ACR Appropriateness Criteria® Suspected Primary Bone Tumors: 2024 Update. J Am Coll Radiol 2025; 22:S440-S454. [PMID: 40409893 DOI: 10.1016/j.jacr.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 05/25/2025]
Abstract
Despite the rarity of primary bone tumors, appropriate imaging evaluation is essential for diagnosis and management. Radiographs are the most appropriate initial imaging study for detection and characterization of the majority of primary bone tumors. Radiographs often provide sufficient information for the diagnosis of primary bone tumors, however, for radiographically occult primary bone tumors, MRI and/or CT can be performed. For indeterminate or aggressive bone tumors on radiographs, MRI or CT are typically the most appropriate next step for the evaluation of anatomic extent, assessment of viability and biopsy or surgical planning. This document focuses on five common variants to guide diagnosis and management of primary bone tumors. In addition to conventional radiographs, appropriate use of MRI, CT, PET/CT, bone scan, image-guided biopsy and ultrasound are discussed. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | - Shivani Ahlawat
- Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Leon Lenchik
- Panel Chair, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Jonathan C Baker
- Panel Vice-Chair, Mallinckrodt Institute of Radiology Washington University School of Medicine, Saint Louis, Missouri
| | | | - James Banks
- Nova Southeastern University, Fort Lauderdale, Florida
| | - Vaia Florou
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; American Society of Clinical Oncology
| | | | | | - Susan M Hiniker
- Stanford University School of Medicine, Stanford, California; Commission on Radiation Oncology
| | - Sarah I Kamel
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Yi Lu
- Brigham & Women's Hospital & Harvard Medical School, Boston, Massachusetts; American Association of Neurological Surgeons/Congress of Neurological Surgeons
| | - Kimberly S Peairs
- Johns Hopkins University School of Medicine, Baltimore, Maryland, Primary care physician
| | - Jinel A Scott
- SUNY Downstate Health Sciences University and NYC Health and Hospitals, Brooklyn, New York
| | | |
Collapse
|
2
|
Guja KE, Ganjoo KN, Iagaru A. Molecular Imaging in Soft-tissue Sarcoma: Evolving Role of FDG PET. Semin Nucl Med 2024; 54:332-339. [PMID: 38433024 DOI: 10.1053/j.semnuclmed.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Soft tissue sarcomas are a rare and heterogenous group of tumors that account for 2% of all cancer-related deaths. Molecular imaging with FDG PET can offer valuable metabolic information to help inform clinical management of soft tissue sarcomas that is unique and complementary to conventional diagnostic imaging techniques. FDG PET imaging often correlates with tumor grade, can help guide biopsy, and frequently detects additional sites of disease compared to conventional imaging in patients being considered for definitive or salvage therapy. Traditional size-based evaluation of treatment response is often inadequate in soft tissue sarcoma and changes in metabolic activity can add significant value to interim and end of treatment imaging for high-grade sarcomas. FDG PET can be used for detection of recurrence or malignant transformation and thus play a vital role in surveillance. This article reviews the evolving role of FDG PET in initial diagnosis, staging, treatment response assessment, and restaging. Further studies on the use of FDG PET in soft sarcoma are needed, particularly for rare histopathologic subtypes.
Collapse
Affiliation(s)
- Kip E Guja
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA
| | - Kristen N Ganjoo
- Division of Oncology, Department of Medicine, Stanford University, 900 Blake Wilbur Drive, Stanford CA
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA.
| |
Collapse
|
3
|
Broski SM. Positron Emission Tomography/Computed Tomography Transformation of Oncology: Musculoskeletal Cancers. PET Clin 2024; 19:217-229. [PMID: 38184453 DOI: 10.1016/j.cpet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The past 25 years have seen significant growth in the role of positron emission tomography/computed tomography (PET/CT) in musculoskeletal oncology. Substantiative advances in technical capability and image quality have been paralleled by increasingly widespread clinical adoption and implementation. It is now recognized that PET/CT is useful in diagnosis, staging, prognostication, response assessment, and surveillance of bone and soft tissue sarcomas, often providing critical information in addition to conventional imaging assessment. As individualized, precision medicine continues to evolve for patients with sarcoma, PET/CT is uniquely positioned to offer additional insight into the biology and management of these tumors.
Collapse
Affiliation(s)
- Stephen M Broski
- Department of Radiology, Mayo Clinic, Mayo Building, 2nd Floor, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Salehi MA, Mohammadi S, Harandi H, Zakavi SS, Jahanshahi A, Shahrabi Farahani M, Wu JS. Diagnostic Performance of Artificial Intelligence in Detection of Primary Malignant Bone Tumors: a Meta-Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:766-777. [PMID: 38343243 PMCID: PMC11031503 DOI: 10.1007/s10278-023-00945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 04/20/2024]
Abstract
We aim to conduct a meta-analysis on studies that evaluated the diagnostic performance of artificial intelligence (AI) algorithms in the detection of primary bone tumors, distinguishing them from other bone lesions, and comparing them with clinician assessment. A systematic search was conducted using a combination of keywords related to bone tumors and AI. After extracting contingency tables from all included studies, we performed a meta-analysis using random-effects model to determine the pooled sensitivity and specificity, accompanied by their respective 95% confidence intervals (CI). Quality assessment was evaluated using a modified version of Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST). The pooled sensitivities for AI algorithms and clinicians on internal validation test sets for detecting bone neoplasms were 84% (95% CI: 79.88) and 76% (95% CI: 64.85), and pooled specificities were 86% (95% CI: 81.90) and 64% (95% CI: 55.72), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 84% (95% CI: 75.90) and 91% (95% CI: 83.96), respectively. The same numbers for clinicians were 85% (95% CI: 73.92) and 94% (95% CI: 89.97), respectively. The sensitivity and specificity for clinicians with AI assistance were 95% (95% CI: 86.98) and 57% (95% CI: 48.66). Caution is needed when interpreting findings due to potential limitations. Further research is needed to bridge this gap in scientific understanding and promote effective implementation for medical practice advancement.
Collapse
Affiliation(s)
- Mohammad Amin Salehi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran.
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151, Iran
| | - Seyed Sina Zakavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jahanshahi
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Jim S Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Puranik AD, Choudhury S, Ghosh S, Dev ID, Ramchandani V, Uppal A, Bhosale V, Palsapure A, Rungta R, Pandey R, Khatri S, George G, Satamwar Y, Maske R, Agrawal A, Shah S, Purandare NC, Rangarajan V. Tata Memorial Centre Evidence Based Use of Nuclear medicine diagnostic and treatment modalities in cancer. Indian J Cancer 2024; 61:S1-S28. [PMID: 38424680 DOI: 10.4103/ijc.ijc_52_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT PET/CT and radioisotope therapy are diagnostic and therapeutic arms of Nuclear Medicine, respectively. With the emergence of better technology, PET/CT has become an accessible modality. Diagnostic tracers exploring disease-specific targets has led the clinicians to look beyond FDG PET. Moreover, with the emergence of theranostic pairs of radiopharmaceuticals, radioisotope therapy is gradually making it's way into treatment algorithm of common cancers in India. We therefore would like to discuss in detail the updates in PET/CT imaging and radionuclide therapy and generate a consensus-driven evidence based document which would guide the practitioners of Oncology.
Collapse
Affiliation(s)
- Ameya D Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital and Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yadgarov MY, Kireeva ED, Kailash ., Dunaikin MM, Likar YN. The diagnostic roles of fused <sup>18</sup>F-fluorodeoxyglucose positron emission tomography/computed tomography and bone scintigraphy in children and young adults with bone sarcomas: a systematic review and meta-analysis. PEDIATRIC HEMATOLOGY/ONCOLOGY AND IMMUNOPATHOLOGY 2023; 22:158-169. [DOI: 10.24287/1726-1708-2023-22-4-158-169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Osteosarcoma and Ewing sarcoma are the most common primary malignant bone diseases in children. An accurate diagnosis and staging of these tumors play a pivotal role in choosing the optimal treatment and predicting outcomes. In recent years, fused 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) has been increasingly used in the diagnosis of bone sarcomas. It is frequently applied in conjunction with, or as a replacement for bone scintigraphy (BS), in order to determine the extent of the disease. However, the questions on the diagnostic significance of these methods and the choice of the most effective approach to the management of children with bone sarcomas still remain unanswered. We conducted a systematic review and meta-analysis to compare the diagnostic roles of 18F-FDG PET/CT and BS in staging and restaging of bone sarcomas in children and young adults. The study was carried out in accordance with the Cochrane PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Two independent researchers looked for prospective and retrospective studies evaluating the sensitivity and specificity of 18F-FDG PET/CT and BS in staging and restaging of bone sarcomas in children and young adults, published over the last 15 years. The quality of the included studies was assessed using the QUADAS-2 tool. Summary Receiver Operating Characteristic curves were calculated using STATA 17 software packages and the RevMan 5.3 tool to evaluate the overall diagnostic value of PET/CT and BS. The certainty of evidence was evaluated using the GRADE system. This systematic review and meta-analysis included 8 studies (530 patients with bone sarcomas). These studies used 11 patient cohorts (osteosarcoma: 5 cohorts, 305 patients; Ewing sarcoma: 6 cohorts, 225 patients). We discovered that 18F-FDG PET/CT had high sensitivity in staging and restaging of bone sarcomas (94% (95% confidence interval (CI) 89–97)). On the other hand, BS demonstrated lower sensitivity (69% (95% CI 58–79), the mean difference being 25% (95% CI 18.89–31.00), p < 0.001). At the same time, the specificity of 18F-FDG PET/CT and the specificity of BS were found to be comparable (96% (95% CI 83–99) and 92% (95% CI 82–97) respectively, p = 0.15). All the results were confirmed in a subgroup analysis of patients with osteosarcoma and Ewing sarcoma. The results of our systematic review and meta-analysis lead us to conclude that 18F-FDG PET/CT is a more sensitive method for staging and restaging of bone sarcomas in children and young adults, compared to BS. However, both methods have high specificity. Considering our findings, future clinical research in children with bone sarcomas should be aimed at further data collection to clarify the diagnostic roles of 18F-FDG PET/CT and BS both in children with osteosarcoma and in children with Ewing sarcoma, in order to identify clear indications and choose the best imaging method for detecting metastatic bone lesions, with the aim of developing an optimal diagnostic strategy.
Collapse
Affiliation(s)
- M. Ya. Yadgarov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
| | - E. D. Kireeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
| | - . Kailash
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
| | - M. M. Dunaikin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
| | - Yu. N. Likar
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
| |
Collapse
|
7
|
Huang W, Chao F, Zhang Y, Li L, Gao Y, Qiu Y, Gao J, Kang L. Primary renal myxoid liposarcoma with pancreatic invasion on 18F-FDG PET/CT: first case report and literature review. Front Med (Lausanne) 2023; 10:1235843. [PMID: 37575998 PMCID: PMC10413121 DOI: 10.3389/fmed.2023.1235843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background Myxoid liposarcoma (MLS) is a rare malignant soft tissue sarcoma that predominantly manifests in the deep soft tissues of the extremities, particularly within the musculature of the thigh. Unlike other types of liposarcoma, MLS demonstrates a propensity for metastasis to atypical sites, including the lung parenchyma, soft tissues, retroperitoneum, mediastinum, breast, liver, thymus, lymph nodes, and bones. The definitive diagnosis primarily relies on histology with HE staining. Imaging modalities such as ultrasound, CT, MRI, and 18F-FDG PET/CT scans serve as valuable tools for tumor identification. Case report A 57-year-old man presented with symptoms of abdominal distention and vomiting 1 month ago. Contrast-enhancement CT revealed a heterogeneous hypodense mass in the upper-middle part of the left kidney, displaying irregular morphology and protrusion towards the exterior of the kidney, with abundant blood supply and had a maximum dimension of approximately 10.7 cm × 9.0 cm. Additionally, a rounded soft tissue density was identified in the pancreatic body. Multiplanar reconstruction demonstrated a connection between the pancreatic lesion and the kidney mass. 18F-FDG PET/CT was conducted for staging, revealing significant growth of the lesion in the upper-middle part of the left kidney, extending beyond the kidney and infiltrating the pancreatic body. The lesion demonstrated remarkably high 18F-FDG uptake (SUVmax = 10.2, MTV = 136.13 cm3, TLG = 484.62). The postoperative pathological examination confirmed the diagnosis of MLS. On the 10th day post-surgery, the patient presented with tumor recurrence and underwent another surgical resection. Unfortunately, during the operation, the patient experienced a sudden cardiac arrest and died. Conclusion Renal MLS with invasion into the pancreas is very rare in clinical practice. Due to the limited research on the utilization of 18F-FDG PET/CT in this particular context, given the rarity and low incidence of MLS, its role remains largely unexplored. As PET/CT imaging becomes increasingly prevalent, thorough imaging of disease sites becomes indispensable for the development of treatment protocols and the monitoring of treatment response.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Fangfang Chao
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Liming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Gao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Cederberg KB, Iyer RS, Chaturvedi A, McCarville MB, McDaniel JD, Sandberg JK, Shammas A, Sharp SE, Nadel HR. Imaging of pediatric bone tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e30000. [PMID: 36250990 PMCID: PMC10661611 DOI: 10.1002/pbc.30000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Malignant primary bone tumors are uncommon in the pediatric population, accounting for 3%-5% of all pediatric malignancies. Osteosarcoma and Ewing sarcoma comprise 90% of malignant primary bone tumors in children and adolescents. This paper provides consensus-based recommendations for imaging in children with osteosarcoma and Ewing sarcoma at diagnosis, during therapy, and after therapy.
Collapse
Affiliation(s)
- Kevin B. Cederberg
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ramesh S. Iyer
- Department of Radiology, Seattle Children’s Hospital, Seattle, WA
| | - Apeksha Chaturvedi
- Division of Pediatric Radiology, Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| | - MB McCarville
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, TN
| | - Janice D. McDaniel
- Department of Pediatric Interventional Radiology, Akron Children’s Hospital, Akron, OH and Department of Radiology, Northeast Ohio Medical University, Rootstown, OH
| | - Jesse K. Sandberg
- Department of Pediatric Radiology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA
| | - Amer Shammas
- Division of Nuclear Medicine, Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, OH, Canada
| | - Susan E. Sharp
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Helen R. Nadel
- Department of Pediatric Radiology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA
| |
Collapse
|
9
|
Zhang Y, Zhao H, Liu Y, Zeng M, Zhang J, Hao D. Diagnostic Performance of Dynamic Contrast-Enhanced MRI and 18F-FDG PET/CT for Evaluation of Soft Tissue Tumors and Correlation with Pathology Parameters. Acad Radiol 2022; 29:1842-1851. [PMID: 35396157 DOI: 10.1016/j.acra.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 01/26/2023]
Abstract
RATIONALE AND OBJECTIVES To assess the diagnostic performance of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and fluorine-18-fluorodeoxyglucose (18F-FDG) positron-emission tomography/computed tomography (PET/CT) parameters in evaluating the biological behavior of soft tissue tumors. MATERIALS AND METHODS We retrospectively analyzed DCE-MRI and 18F-FDG PET/CT parameters in 78 patients with pathology-confirmed soft tissue tumors. A total of 78 patients had undergone DCE-MRI examination, while 24 patients with malignant soft tissue tumor had undergone 18F-FDG PET/CT examination. Microvessel density (MVD) and the Ki-67 labeling index (LI) were detected using immunohistochemistry. Differences in parameters (Ktrans, Kep, Ve, MVD, and Ki-67 LI) between benign and malignant tumors were compared. Differences in parameters (Ktrans, Kep, Ve, MVD, and SUVmax) between high- and low-proliferation malignant tumors (grouped by Ki-67 LI) were compared. Correlation of the DCE-MRI and 18F-FDG PET/CT parameters with MVD and Ki-67 LI was analyzed. RESULTS Only the Ktrans, Kep, MVD, and Ki-67 LI differed significantly between the benign and malignant soft tissue tumors (all p < 0.001). Only Kep (p = 0.033) and SUVmax (p = 0.001) differed significantly between high- and low-proliferation malignant soft tissue tumors. Ktrans, Kep, and SUVmax correlated positively with MVD (r = 0.805, 0.778, 0.730, respectively; all p < 0.001), and with Ki-67 LI (r = 0.721, 0.685, 0.655, respectively; all p < 0.001). CONCLUSION DCE-MRI and 18F-FDG PET/CT parameters indicate soft tissue tumor biological behavior and can be used to differentiate between benign and malignant soft tissue tumors and between high- and low-proliferation malignant soft tissue tumors.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Haijing Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yayi Liu
- Department of Radiology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Manqin Zeng
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dapeng Hao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Popova E, Tkachev S, Reshetov I, Timashev P, Ulasov I. Imaging Hallmarks of Sarcoma Progression Via X-ray Computed Tomography: Beholding the Flower of Evil. Cancers (Basel) 2022; 14:cancers14205112. [PMID: 36291896 PMCID: PMC9600487 DOI: 10.3390/cancers14205112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Sarcomas represent the largest group of rare solid tumors that arise from mesenchymal stem cells and are a leading cause of cancer death in individuals younger than 20 years of age. There is an immediate need for the development of an algorithm for the early accurate diagnosis of sarcomas due to the high rate of diagnostic inaccuracy, which reaches up to 30%. X-ray computed tomography is a non-invasive imaging technique used to obtain detailed internal images of the human or animal body in clinical practice and preclinical studies. We summarized the main imaging features of soft tissue and bone sarcomas, and noted the development of new molecular markers to reach tumor type-specific imaging. Also, we demonstrated the possibility of the use X-ray computed microtomography for non-destructive 3D visualization of sarcoma progression in preclinical studies. Finding correlations between X-ray computed tomography modalities and the results of the histopathological specimen examination may significantly increase the accuracy of diagnostics, which leads to the initiation of appropriate management in a timely manner and, consequently, to improved outcomes. Abstract Sarcomas are a leading cause of cancer death in individuals younger than 20 years of age and represent the largest group of rare solid tumors. To date, more than 100 morphological subtypes of sarcomas have been described, among which epidemiology, clinical features, management, and prognosis differ significantly. Delays and errors in the diagnosis of sarcomas limit the number of effective therapeutic modalities and catastrophically worsen the prognosis. Therefore, the development of an algorithm for the early accurate diagnosis of sarcomas seems to be as important as the development of novel therapeutic advances. This literature review aims to summarize the results of recent investigations regarding the imaging of sarcoma progression based on the use of X-ray computed tomography (CT) in preclinical studies and in current clinical practice through the lens of cancer hallmarks. We attempted to summarize the main CT imaging features of soft-tissue and bone sarcomas. We noted the development of new molecular markers with high specificity to antibodies and chemokines, which are expressed in particular sarcoma subtypes to reach tumor type-specific imaging. We demonstrate the possibility of the use of X-ray computed microtomography (micro-CT) for non-destructive 3D visualization of solid tumors by increasing the visibility of soft tissues with X-ray scattering agents. Based on the results of recent studies, we hypothesize that micro-CT enables the visualization of neovascularization and stroma formation in sarcomas at high-resolution in vivo and ex vivo, including the novel techniques of whole-block and whole-tissue imaging. Finding correlations between CT, PET/CT, and micro-CT imaging features, the results of the histopathological specimen examination and clinical outcomes may significantly increase the accuracy of soft-tissue and bone tumor diagnostics, which leads to the initiation of appropriate histotype-specific management in a timely manner and, consequently, to improved outcomes.
Collapse
Affiliation(s)
- Elena Popova
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Sergey Tkachev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Igor Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-901-797-5406
| |
Collapse
|
11
|
Rodríguez-Alfonso B, Simó-Perdigó M, Orcajo Rincón J. Functional imaging in soft tissue sarcomas: Update of the indications for 18F-FDG-PET/CT. Rev Esp Med Nucl Imagen Mol 2020. [DOI: 10.1016/j.remnie.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Rodríguez-Alfonso B, Simó-Perdigó M, Orcajo Rincón J. Functional image in soft tissue sarcomas: An update of the indications of 18F-FDG-PET/CT. Rev Esp Med Nucl Imagen Mol 2020; 39:233-243. [PMID: 32616457 DOI: 10.1016/j.remn.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Soft tissue sarcomas (STS) are a rare and heterogeneous group of tumors. They account for 1% of solid malignant tumors in adults and 7% in children and are responsible for 2% of cancer mortality. They require a multidisciplinary approach in centers with experience. This collaboration aims to update the scientific evidence to strengthen, together with clinical experience, the bases for the use and limitations of 18F-FDG-PET/CT in STSs. The general recommendations for the use of PET/CT in STS at present are summarized as the initial evaluation of soft tissue tumours when conventional image does not establish benignity with certainty and this determines the approach; in biopsy guiding in selected cases; in the initial staging, as additional tool, for rhabdomyosarcoma and STS of extremities or superficial trunk and head and neck tumours; in the suspicion of local recurrence when the CT or MRI are inconclusive and in the presence of osteosynthesis or prosthetic material and in assessment of therapy response to local/systemic therapy in stages ii/iii. In addition, PET/CT has the added value of being a surrogate marker of the histopathological response and it provides prognostic information, both in the baseline study and after treatment.
Collapse
Affiliation(s)
- B Rodríguez-Alfonso
- Servicio de Medicina Nuclear, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, España.
| | - M Simó-Perdigó
- Servicio de Medicina Nuclear, Hospital Universitari Vall d'Hebron, Barcelona, España
| | - J Orcajo Rincón
- Servicio de Medicina Nuclear, Hospital General Universitario Gregorio Marañón, Madrid, España; Miembro del Grupo Español de Investigación en Sarcomas (GEIS)
| |
Collapse
|