1
|
Fu Y, Song YL, Liu ZG. Recent developments in immunotherapy approaches for allergic rhinitis. World J Clin Cases 2024; 12:6451-6461. [PMID: 39507117 PMCID: PMC11438689 DOI: 10.12998/wjcc.v12.i31.6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Allergic rhinitis (AR) poses a significant global health burden, with the potential to progress to asthma, thereby impacting patients' quality of life. Immunotherapy has demonstrated effectiveness in mitigating clinical symptoms by altering the underlying disease mechanisms of AR. This article provides a thorough review of the current state of immunotherapy for AR, encompassing various facets of immunotherapeutic strategies, elucidating their mechanisms and clinical implications. By presenting a nuanced understanding of the present landscape of immunotherapy for AR, this review aims to serve as a valuable reference for informing clinical treatment strategies. The subsequent analysis of diverse immunotherapeutic pathways offers a comprehensive understanding of their mechanisms and clinical implications. A meticulous examination is conducted on subcutaneous immunotherapy, sublingual immunotherapy, oral immunotherapy, intralymphatic immunotherapy, and innovative intravenous gold-induced autologous serum injection therapy. Each pathway is systematically elucidated, with its distinctive features and potential contributions to managing AR emphasized. In conclusion, synthesizing epidemiological insights, immunotherapeutic nuances, and pathway-specific analyses encapsulates a profound understanding of immunotherapy for AR.
Collapse
Affiliation(s)
- Yu Fu
- Drug Clinical Trial Unit, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi-Lai Song
- Drug Clinical Trial Unit, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zhong-Guo Liu
- Drug Clinical Trial Unit, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
2
|
Zhang HZ, Xie W, Zhou WC, Chen J, Wang Y, Zhu YY, Wen TH, Cheng L. Oral immunotherapy with enteric-coated capsules for allergic rhinitis caused by house dust mites. FRONTIERS IN ALLERGY 2024; 5:1345929. [PMID: 38774588 PMCID: PMC11106396 DOI: 10.3389/falgy.2024.1345929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Background Oral immunotherapy (OIT) is a promising allergen-specific approach in the management of food allergy; however, studies on OIT for allergic rhinitis (AR) have rarely been reported. The purpose of this study is to evaluate the efficacy and safety of OIT using enteric-coated capsules for AR induced by house dust mites. Methods A total of 49 patients with AR were enrolled, including 25 who received subcutaneous immunotherapy (SCIT) and 24 who received OIT. The clinical efficacy and safety in both groups were evaluated. Results After 1 year of treatment, both SCIT and OIT demonstrated significant therapeutic effects. OIT was found to be more effective than SCIT in reducing the total AR symptom score and improving the results of nasal provocation tests. Local and systemic adverse reactions were observed in the SCIT group, while none were reported in the OIT group. Conclusion OIT is an effective and safe treatment for mite-induced AR.
Collapse
Affiliation(s)
- Han-Zhong Zhang
- Department of Otorhinolaryngology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Wei Xie
- Department of Otorhinolaryngology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Wen-Cheng Zhou
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Chen
- Department of Otorhinolaryngology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Ying Wang
- Department of Otorhinolaryngology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Yuan-Yuan Zhu
- Department of Otorhinolaryngology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Ting-Huan Wen
- Mites Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Li S, Toriumi H, Takahashi D, Kamasaki T, Fujioka Y, Nagatoishi S, Li J, Liu Y, Hosokawa T, Tsumoto K, Ohba Y, Katayama Y, Murakami D, Hase K, Mori T. Safe and efficient oral allergy immunotherapy using one-pot-prepared mannan-coated allergen nanoparticles. Biomaterials 2023; 303:122381. [PMID: 37935073 DOI: 10.1016/j.biomaterials.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/16/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
Allergen immunotherapy (AIT) is the only curative treatment for allergic diseases. However, AIT has many disadvantages related to efficiency, safety, long-term duration, and patient compliance. Dendritic cells (DCs) have an important role in antigen-specific tolerance induction; thus, DC-targeting strategies to treat allergies such as glutaraldehyde crosslinked antigen to mannoprotein (MAN) have been established. However, glutaraldehyde crosslinking may reduce the antigen presentation efficiency of DCs. To overcome this, we developed a MAN-coated ovalbumin (OVA) nanoparticle (MDO), which uses intermolecular disulfide bond to crosslink OVA and MAN. MDO effectively targeted DCs resulting in tolerogenic DCs, and promoted higher antigen presentation efficiency by DCs compared with OVA or glutaraldehyde crosslinked nanoparticles. In vitro and in vivo experiments showed that DCs exposed to MDO induced Treg cells. Moreover, MDO had low reactivity with anti-OVA antibodies and did not induce anaphylaxis in allergic mice, demonstrating its high safety profile. In a mouse model of allergic asthma, MDO had significant preventative and therapeutic effects when administered orally or subcutaneously. Therefore, MDO represents a promising new approach for the efficient and safe treatment of allergies.
Collapse
Affiliation(s)
- Shunyi Li
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hiroki Toriumi
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Tomoko Kamasaki
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jinting Li
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yiwei Liu
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takanatsu Hosokawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan; Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan; International Research Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan; Centre for Advanced Medicine Innovation, Kyushu University, Fukuoka, 812-8582, Japan; Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, 32023, Taiwan.
| | - Daisuke Murakami
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan; The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan; International Research and Development Centre for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, 108-8639, Japan.
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan; Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Kapusi E, Stoger E. Molecular Farming in Seed Crops: Gene Transfer into Barley (Hordeum vulgare ) and Wheat (Triticum aestivum ). Methods Mol Biol 2022; 2480:49-60. [PMID: 35616856 DOI: 10.1007/978-1-0716-2241-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The production of recombinant proteins in seed crops has a long history and cereal grains are now one of the platforms in commercial use. Specific advantages include excellent storage properties, a well-developed endomembrane system with a high biosynthetic capacity and well-established cultivation procedures worldwide. However, the production of transgenic cereals is a time-consuming procedure and the lack of efficient transformation systems is still a significant bottleneck. Barley can be transformed at high efficiency but the protocols are genotype-dependent. Wheat is generally more challenging to transform, but considerable progress has been made in enhancing transformation efficiencies and in controlling transgene expression. In this chapter, we describe and discuss standard procedures for generating transgenic barley and wheat for the production of recombinant proteins.
Collapse
Affiliation(s)
- Eszter Kapusi
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
5
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
6
|
Takaiwa F. Next-Generation Allergen-Specific Immunotherapy for Japanese Cedar Pollinosis Using Molecular Approaches. Immunotargets Ther 2021; 10:213-224. [PMID: 34239843 PMCID: PMC8259616 DOI: 10.2147/itt.s276874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Japanese cedar (JC) pollinosis is the most major IgE-mediated type I allergic disease in Japan. Allergen-specific immunotherapy is the only curative treatment for allergic diseases. Subcutaneous immunotherapy and sublingual immunotherapy have been introduced in Japan for JC pollinosis, but do not avoid some adverse side effects, because the natural allergens used as tolerogens cross-link with specific IgE types on mast cells and basophils. To make immunotherapy for JC pollinosis safer, more effective and convenient, rice-based oral allergy vaccines using hybrid peptides composed of multiple T-cell epitopes or recombinant deconstructed hypoallergenic derivatives derived from major allergens — Cry j 1 and Cry j 2 — have been developed and their efficacy and safety evaluated by oral administration of transgenic rice seeds. Furthermore, recombinant modified JC allergens conjugated with various immunomodulatory molecules and DNA-based vaccines have been created and their efficacy assessed.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Soul Signal Institute, Kojyohama, Shiraoi, Hokkaido, 059-0641, Japan.,Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
7
|
Endo T, Asaka D, Nakayama T, Saito S, Kodama H, Mitsuyoshi R, Sugimoto N, Omae S, Takagi H, Wakasa Y, Ozawa K, Takano M, Takaiwa F, Kojima H, Saito S. Long-term oral administration of transgenic rice containing cedar pollen T-cell epitopes potentially improves medication- and allergy-related quality-of-life scores. Allergy Asthma Proc 2021; 42:293-300. [PMID: 34187621 DOI: 10.2500/aap.2021.42.210011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: We previously developed a transgenic rice that contains seven linked human predominant T-cell epitopes (7Crp) derived from Japanese cedar (JC) pollen allergens Cry j 1 and Cry j 2. Oral administration of 80 g of transgenic rice for 20 weeks suppressed allergen-specific T-cell proliferation in participants with JC pollinosis, but their clinical symptoms did not improve. Objective: We examined the clinical efficacy of low-dose (5 g and 20 g) intake of the transgenic rice administered for two successive seasons. Methods: In this randomized, double-blind, placebo controlled study, transgenic rice seeds (5 g or 20 g) were orally administered to the participants for 24 weeks in each of two successive JC pollen seasons. We analyzed T-cell proliferation and cytokine expression, and monitored symptom and medication scores during the pollen season. Quality of life (QOL) was evaluated by using the Japanese Allergic Rhinitis Quality of Life Standard Questionnaire (JRQLQ). Results: Specific T-cell proliferation after stimulation with 7Crp, Cry j 1, and Cry j 2 was significantly suppressed in the second JC pollen season. No significant differences were found among the three groups (5 g, 20 g, and placebo) with regard to clinical symptoms or medication scores in the first season. However, the medication scores and face scale for overall condition of JRQLQ improved in the 5-g transgenic rice group in the second season, although careful re-examination with a large sample size is necessary to confirm the results. Conclusion: Low-dose oral administration of transgenic rice that contains 7Crp significantly reduced allergen-specific T-cell responses and improved medication scores during the second season of administration. Thus, oral intake of the transgenic rice has the potential to induce immune tolerance to JC pollen allergens when administered for at least two successive seasons.
Collapse
Affiliation(s)
- Tomonori Endo
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Daiya Asaka
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Tsuguhisa Nakayama
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Shota Saito
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Hiroki Kodama
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Ryoto Mitsuyoshi
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Sugimoto
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Omae
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Hidenori Takagi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; and
| | - Yuhya Wakasa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; and
| | - Kenjirou Ozawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; and
| | - Makoto Takano
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; and
| | - Fumio Takaiwa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; and
| | - Hiromi Kojima
- From the Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Saburo Saito
- Division of Molecular Immunology, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Akama K, Shimajiri Y, Kainou K, Iwasaki R, Nakao R, Nikawa T, Nishikawa A. Functional rice with tandemly repeated Cbl-b ubiquitin ligase inhibitory pentapeptide prevents denervation-induced muscle atrophy in vivo. Biosci Biotechnol Biochem 2021; 85:1415-1421. [PMID: 33864463 DOI: 10.1093/bbb/zbab059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
Ubiquitin ligase Casitas B-lineage lymphoma-b (Cbl-b) play a critical role in nonloading-mediated skeletal muscle atrophy: Cbl-b ubiquitinates insulin receptor substrate-1 (IRS-1), leading to its degradation and a resulting loss in muscle mass. We reported that intramuscular injection of a pentapeptide, DGpYMP, which acts as a mimic of the phosphorylation site in IRS-1, significantly inhibited denervation-induced skeletal muscle loss. In order to explore the possibility of the prevention of muscle atrophy by diet therapy, we examined the effects of oral administration of transgenic rice containing Cblin (Cbl-b inhibitor) peptide (DGYMP) on denervation-induced muscle mass loss in frogs. We generated transgenic rice seeds in which 15 repeats of Cblin peptides with a WQ spacer were inserted into the rice storage protein glutelin. A diet of the transgenic rice seeds had significant inhibitory effects on denervation-induced atrophy of the leg skeletal muscles in frogs, compared with those receiving a diet of wild-type rice.
Collapse
Affiliation(s)
- Kazuhito Akama
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Yasuka Shimajiri
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan.,EditForce, Fukuoka, Japan
| | - Kumiko Kainou
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Ryota Iwasaki
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology and Functional Foods, Institute of Medical Nutrition, Tokushima University of Graduate School, Tokushima, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology and Functional Foods, Institute of Medical Nutrition, Tokushima University of Graduate School, Tokushima, Japan
| | - Akio Nishikawa
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
9
|
Irani C, Haczku A. Grains of Wisdom: Transgenic Rice for Oral Allergen Immunotherapy in Japanese Cedar Pollen-Allergic Patients. Int Arch Allergy Immunol 2020; 182:106-108. [PMID: 33321507 DOI: 10.1159/000513627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Carla Irani
- Internal Medicine and Clinical Immunology, Saint Joseph University, Beirut, Lebanon
| | - Angela Haczku
- Department of Internal Medicine, UC Davis Lung Center, University of California, Davis, California, USA,
| |
Collapse
|