1
|
Goto H, Ohtsu T, Ito M, Sagisaka M, Naruto T, Nagai JI, Kitagawa N, Tanaka M, Yanagimachi M, Hiroshima Y, Miyagi Y. A short-term three dimensional culture-based drug sensitivity test is feasible for malignant bone tumors. Hum Cell 2023; 36:2152-2161. [PMID: 37707773 DOI: 10.1007/s13577-023-00982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
The feasibility of a short-term, three-dimensional (3D) culture-based drug sensitivity test (DST) for surgically resected malignant bone tumors, including osteosarcoma (OS), was evaluated utilizing two OS cell line (KCS8 or KCS9)-derived xenograft (CDX) models. Twenty-three (KCS8) or 39 (KCS9) of 60 tested drugs were likely effective in OS cells derived from a cell line before xenografting. Fewer drugs (19: KCS8, 26: KCS9) were selected as effective drugs in cells derived from a CDX tumor, although the drug sensitivities of 60 drugs significantly correlated between both types of samples. The drug sensitivity of a CDX tumor was not significantly altered after the depletion of non-tumorous components in the sample. In a surgically resected metastatic tumor obtained from a patient with OS, for whom a cancer genome profiling test detected a pathogenic PIK3CA mutation, DST identified mTOR and AKT inhibitors as effective drugs. Of two CDX and six clinical samples of OS and Ewing's sarcoma, DST identified proteasome inhibitors (bortezomib, carfilzomib) and CEP-701 as potentially effective drugs in common. This unique method of in vitro drug testing using 3D-cell cultures is feasible in surgically resected tissues of metastatic malignant bone tumors.
Collapse
Affiliation(s)
- Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, 232-8555, Japan.
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan.
| | - Takashi Ohtsu
- Division of Advanced Cancer Therapeutics, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Mieko Ito
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Maiko Sagisaka
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Jun-Ichi Nagai
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Norihiko Kitagawa
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, 232-8555, Japan
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukihiko Hiroshima
- Division of Advanced Cancer Therapeutics, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| |
Collapse
|
2
|
YM155 and chrysin cooperatively suppress survivin expression in SMARCB1/INI1-deficient tumor cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:234. [PMID: 36175806 DOI: 10.1007/s12032-022-01843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
SMARCB1/INI1 deficiency is seen in several malignant tumors including malignant rhabdoid tumor (MRT), a highly aggressive pediatric malignancy. Loss of SMARCB1/INI1 function alters diverse oncogenic cellular signals, making it difficult to discover effective targeting therapy. By utilizing an in vitro drug screening system, effective therapeutic agents against SMARCB1/INI1-deficient tumors were explored in this study. In the in vitro drug sensitivity test, 80 agents with various actions were screened for their cytotoxicity in a panel of five SMARCB1/INI1-deficient tumor cell lines. The combination effect was screened based on the Bliss independent model. The growth-inhibitory effect was determined in both the conventional two-dimensional culture and the collagen-embedded three-dimensional culture system. Survivin expression after agent exposure was determined by Western blot analysis. All five cell lines were found to be sensitive to YM155, a selective survivin inhibitor. In the drug combination screening, YM155 showed additive to synergistic effects with various agents including chrysin. Chrysin enhanced YM155-induced apoptosis, but not mitochondrial depolarization upon exposure of SMARCB1/INI1-deficient tumor cells to the two agents for 6 h. YM155 and chrysin synergistically suppressed survivin expression, especially in TTN45 cells in which such suppression was observed as early as 6 h after exposure to the two agents. Survivin is suggested to be a therapeutic target in MRT and other SMARCB1/INI1-deficient tumors. Chrysin, a flavone that is widely distributed in plants, cooperatively suppressed survivin expression and enhanced the cytotoxicity of YM155.
Collapse
|
3
|
V B, Femina T A, Iyengar D, K A, Ravi M. Approaches for Head and Neck Cancer Research - Current Status and the Way Forward. Cancer Invest 2021; 40:151-172. [PMID: 34806936 DOI: 10.1080/07357907.2021.2009850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Head and neck cancers (HNCs) are seeing an increasing trend in their prevalence among both genders and are the seventh most common cancer type occurring at the global level. Studies addressing both the cancer cell physiology and individual differences in response to a specific treatment modality should be understood for arriving at effective treatment and management of the HNCs. In this article, we discuss the trends in HNC research and their various approaches starting from 2D in vitro models, which are the traditional experimental materials to recently established Cancer-Tissue Originated Spheroids (CTOS) distinctly contributing towards personalized or precision medicine.
Collapse
Affiliation(s)
- Barghavi V
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arokia Femina T
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - DivyaSowrirajan Iyengar
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Archana K
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|