1
|
Olito C, Abbott JK. The evolution of suppressed recombination between sex chromosomes and the lengths of evolutionary strata. Evolution 2025:qpaf045. [PMID: 40324791 DOI: 10.1093/evolut/qpaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 05/07/2025]
Abstract
The idea that sex-differences in selection drive the evolution of suppressed recombination between sex chromosomes is well-developed in population genetics. Yet, despite a now classic body of theory, empirical evidence that sexually antagonistic (SA) selection drives the evolution of recombination arrest remains equivocal and alternative hypotheses underdeveloped. Here, we investigate whether the length of "evolutionary strata" formed by chromosomal inversions (or other large-effect recombination modifiers) expanding the nonrecombining sex-linked region (SLR) on sex chromosomes can be informative of how selection influenced their fixation. We develop population genetic models to show how the length of an SLR-expanding inversion and the presence of partially recessive deleterious mutational variation affect the fixation probability of three different classes of inversions: (i) intrinsically neutral, (ii) directly beneficial (i.e., due to breakpoint or positional effects), and (iii) those capturing SA loci. Our models indicate that inversions capturing an SA locus initially in linkage disequilibrium with the ancestral SLR exhibit a strong fixation bias toward small inversions, while neutral, beneficial, and inversions capturing a genetically unlinked SA locus tend to favor larger inversions and exhibit similar distributions of fixed inversion lengths. The footprint of evolutionary stratum size left behind by different selection regimes is strongly influenced by parameters affecting the deleterious mutation load, the physical position of the ancestral SLR, and the distribution of new inversion lengths.
Collapse
Affiliation(s)
- Colin Olito
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Jessica K Abbott
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Miura I, Shams F, Ezaz T, Ogata M. One-Step Leaping Evolution from an Autosomal Pair to the Heteromorphic Sex Chromosomes. Sex Dev 2024:1-9. [PMID: 39522502 DOI: 10.1159/000542537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sex chromosomes evolve from an autosomal pair after the acquisition of a sex-determining gene. The primary sex chromosomes are homomorphic in both sexes and often undergo heteromorphism in either sex (XY in males or ZW in females) in association with chromosome rearrangements such as inversion, which creates a non-recombining region, called a stratum. Then, multiple strata may form by sequential inversions and extend the non-recombining region, where gene divergence accelerates, and degeneration of the Y or W chromosome progressively occurs. SUMMARY In contrast to the conventional theory, we propose a shortcut in heteromorphic sex chromosome evolution, where an autosomal pair directly evolves into a heteromorphic sex chromosome pair. We illustrate this with two frog cases where Y chromosome or autosome, which is morphologically inverted, was introgressed from another species through interspecific hybridization, instantly forming a new heteromorphic sex chromosome pair. This event resulted in a distinct non-recombining region immediately after hybridization. KEY MESSAGES The introduction of an inverted chromosome from a different species may be associated with benefits in morphology, breeding behavior, hybrid viability, sex determination, and recovery of the sex ratio of the hybrids. We discuss the molecular mechanisms driving preferential mutations in the introduced, inverted chromosome through interspecific hybridization.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Foyez Shams
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Mitsuaki Ogata
- Breeding Center and Institute, City of Yokohama, Yokohama, Japan
| |
Collapse
|
3
|
Miura I, Shams F, Ohki J, Tagami M, Fujita H, Kuwana C, Nanba C, Matsuo T, Ogata M, Mawaribuchi S, Shimizu N, Ezaz T. Multiple Transitions between Y Chromosome and Autosome in Tago's Brown Frog Species Complex. Genes (Basel) 2024; 15:300. [PMID: 38540359 PMCID: PMC10969965 DOI: 10.3390/genes15030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Sex chromosome turnover is the transition between sex chromosomes and autosomes. Although many cases have been reported in poikilothermic vertebrates, their evolutionary causes and genetic mechanisms remain unclear. In this study, we report multiple transitions between the Y chromosome and autosome in the Japanese Tago's brown frog complex. Using chromosome banding and molecular analyses (sex-linked and autosomal single nucleotide polymorphisms, SNPs, from the nuclear genome), we investigated the frogs of geographic populations ranging from northern to southern Japan of two species, Rana tagoi and Rana sakuraii (2n = 26). Particularly, the Chiba populations of East Japan and Akita populations of North Japan in R. tagoi have been, for the first time, investigated here. As a result, we identified three different sex chromosomes, namely chromosomes 3, 7, and 13, in the populations of the two species. Furthermore, we found that the transition between the Y chromosome (chromosome 7) and autosome was repeated through hybridization between two or three different populations belonging to the two species, followed by restricted chromosome introgression. These dynamic sex chromosome turnovers represent the first such findings in vertebrates and imply that speciation associated with inter- or intraspecific hybridization plays an important role in sex chromosome turnover in frogs.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Foyez Shams
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Jun’ichi Ohki
- Natural History Museum and Institute, Chiba 260-8682, Japan;
| | - Masataka Tagami
- Gifu World Freshwater Aquarium, Kakamigahara, Gifu 501-6021, Japan;
| | - Hiroyuki Fujita
- Saitama Museum of Rivers, Yorii-Machi, Oosato-Gun, Saitama 369-1217, Japan;
| | - Chiao Kuwana
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Chiyo Nanba
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Takanori Matsuo
- Department of Preschool Education, Nagasaki Women’s Junior College, Nagasaki 850-0823, Japan;
| | - Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, Yokohama 241-0804, Japan;
| | - Shuuji Mawaribuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan;
| | - Norio Shimizu
- Hiroshima University Museum, Higashi-Hiroshima 739-8524, Japan;
| | - Tariq Ezaz
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| |
Collapse
|
4
|
Olito C, Abbott JK. The evolution of suppressed recombination between sex chromosomes and the lengths of evolutionary strata. Evolution 2023; 77:1077-1090. [PMID: 36794986 DOI: 10.1093/evolut/qpad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The idea that sex differences in selection drive the evolution of suppressed recombination between sex chromosomes is well developed in population genetics. Yet, despite a now classic body of theory, empirical evidence that sexually antagonistic selection drives the evolution of recombination arrest remains equivocal and alternative hypotheses underdeveloped. Here, we investigate whether the length of "evolutionary strata" formed by chromosomal inversions (or other large-effect recombination modifiers) expanding the non-recombining sex-linked region (SLR) on sex chromosomes can be informative of how selection influenced their fixation. We develop population genetic models to show how the length of an SLR-expanding inversion, and the presence of partially recessive deleterious mutational variation, affect the fixation probability of three different classes of inversions: (1) intrinsically neutral, (2) directly beneficial (i.e., due to breakpoint or positional effects), and (3) those capturing sexually antagonistic (SA) loci. Our models indicate that neutral inversions, and those capturing an SA locus in linkage disequilibrium with the ancestral SLR, will exhibit a strong fixation bias toward small inversions; while unconditionally beneficial inversions, and those capturing a genetically unlinked SA locus, will favor fixation of larger inversions. The footprint of evolutionary stratum size left behind by different selection regimes is strongly influenced by parameters affecting the deleterious mutation load, the physical position of the ancestral SLR, and the distribution of new inversion lengths.
Collapse
Affiliation(s)
- Colin Olito
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| | - Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Katsumi T, Shams F, Yanagi H, Ohnishi T, Toda M, Lin S, Mawaribuchi S, Shimizu N, Ezaz T, Miura I. Highly rapid and diverse sex chromosome evolution in the Odorrana frog species complex. Dev Growth Differ 2022; 64:279-289. [PMID: 35881001 PMCID: PMC11520967 DOI: 10.1111/dgd.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Sex chromosomes in poikilothermal vertebrates are characterized by rapid and diverse evolution at the species or population level. Our previous study revealed that the Taiwanese frog Odorrana swinhoana (2n = 26) has a unique system of multiple sex chromosomes created by three sequential translocations among chromosomes 1, 3, and 7. To reveal the evolutionary history of sex chromosomes in the Odorrana species complex, we first identified the original, homomorphic sex chromosomes, prior to the occurrence of translocations, in the ancestral-type population of O. swinhoana. Then, we extended the investigation to a closely related Japanese species, Odorrana utsunomiyaorum, which is distributed on two small islands. We used a high-throughput nuclear genomic approach to analyze single-nucleotide polymorphisms and identify the sex-linked markers. Those isolated from the O. swinhoana ancestral-type population were found to be aligned to chromosome 1 and showed male heterogamety. In contrast, almost all the sex-linked markers isolated from O. utsunomiyaorum were heterozygous in females and homozygous in males and were aligned to chromosome 9. Morphologically, we confirmed chromosome 9 to be heteromorphic in females, showing a ZZ-ZW sex determination system, in which the W chromosomes were heterochromatinized in a stripe pattern along the chromosome axis. These results indicated that after divergence of the two species, the ancestral homomorphic sex chromosome 1 underwent highly rapid and diverse evolution, i.e., sequential translocations with two autosomes in O. swinhoana, and turnover to chromosome 9 in O. utsunomiyaorum, with a transition from XY to ZW heterogamety and change to heteromorphy.
Collapse
Affiliation(s)
- Taito Katsumi
- School of ScienceHiroshima UniversityHigashi‐HiroshimaJapan
| | - Foyez Shams
- Institute for Applied EcologyUniversity of CanberraCanberraAustralia
| | - Hiroaki Yanagi
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| | | | - Mamoru Toda
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| | - Si‐Min Lin
- School of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Shuuji Mawaribuchi
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | | | - Tariq Ezaz
- Institute for Applied EcologyUniversity of CanberraCanberraAustralia
| | - Ikuo Miura
- Institute for Applied EcologyUniversity of CanberraCanberraAustralia
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
6
|
Miura I, Shams F, Jeffries DL, Katsura Y, Mawaribuchi S, Perrin N, Ito M, Ogata M, Ezaz T. Identification of ancestral sex chromosomes in the frog Glandirana rugosa bearing XX-XY and ZZ-ZW sex-determining systems. Mol Ecol 2022; 31:3859-3870. [PMID: 35691011 DOI: 10.1111/mec.16551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sex chromosomes constantly exist in a dynamic state of evolution: rapid turnover and change of heterogametic sex during homomorphic state, and often stepping out to a heteromorphic state followed by chromosomal decaying. However, the forces driving these different trajectories of sex chromosome evolution are still unclear. The Japanese frog Glandirana rugosa is one taxon well suited to the study on these driving forces. The species has two different heteromorphic sex chromosome systems, XX-XY and ZZ-ZW, which are separated in different geographic populations. Both XX-XY and ZZ-ZW sex chromosomes are represented by chromosome 7 (2n = 26). Phylogenetically, these two systems arose via hybridization between two ancestral lineages of West Japan and East Japan populations, of which sex chromosomes are homomorphic in both sexes and to date have not yet been identified. Identification of the sex chromosomes will give us important insight into the mechanisms of sex chromosome evolution in this species. Here, we used a high-throughput genomic approach to identify the homomorphic XX-XY sex chromosomes in both ancestral populations. Sex-linked DNA markers of West Japan were aligned to chromosome 1, whereas those of East Japan were aligned to chromosome 3. These results reveal that at least two turnovers across three different sex chromosomes 1, 3 and 7 occurred during evolution of this species. This finding raises the possibility that cohabitation of the two different sex chromosomes from ancestral lineages induced turnover to another new one in their hybrids, involving transition of heterogametic sex and evolution from homomorphy to heteromorphy.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan.,Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Foyez Shams
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Daniel Lee Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Yukako Katsura
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shuuji Mawaribuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michihiko Ito
- School of Science, Kitasato University, Sagamihara, Japan
| | - Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, Yokohama, Japan
| | - Tariq Ezaz
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan.,Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|