1
|
Suban S, Yemini S, Shor A, Waldman Ben-Asher H, Yaron O, Karako-Lampert S, Sendersky E, Golden SS, Schwarz R. A cyanobacterial sigma factor F controls biofilm-promoting genes through intra- and intercellular pathways. Biofilm 2024; 8:100217. [PMID: 39188729 PMCID: PMC11345509 DOI: 10.1016/j.bioflm.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Cyanobacteria frequently constitute integral components of microbial communities known as phototrophic biofilms, which are widespread in various environments. Moreover, assemblages of these organisms, which serve as an expression platform, simplify harvesting the biomass, thereby holding significant industrial relevance. Previous studies of the model cyanobacterium Synechococcus elongatus PCC 7942 revealed that its planktonic growth habit results from a biofilm-suppression mechanism that depends on an extracellular inhibitor, an observation that opens the door to investigating cyanobacterial intercellular communication. Here, we demonstrate that the RNA polymerase sigma factor SigF1, is required for this biofilm-suppression mechanism whereas the S. elongatus paralog SigF2 is not involved in biofilm regulation. Comprehensive transcriptome analyses identified distinct regulons under the control of each of these sigma factors. sigF1 inactivation substantially lowers transcription of genes that code for the primary pilus subunit and consequently prevents pilus assembly. Moreover, additional data demonstrate absence of the biofilm inhibitor from conditioned medium of the sigF1 mutant, further validating involvement of the pilus assembly complex in secretion of the biofilm inhibitor. Consequently, expression is significantly upregulated for the ebfG-operon that encodes matrix components and the genes that encode the corresponding secretion system, which are repressed by the biofilm inhibitor in the wild type. Thus, this study uncovers a basic regulatory component of cyanobacterial intercellular communication, a field that is in its infancy. Elevated expression of biofilm-promoting genes in a sigF1 mutant supports an additional layer of regulation by SigF1 that operates via an intracellular mechanism.
Collapse
Affiliation(s)
- Shiran Suban
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sapir Yemini
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Anna Shor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orly Yaron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sarit Karako-Lampert
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Susan S. Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
2
|
Iungin O, Prekrasna-Kviatkovska Y, Kalinichenko O, Moshynets O, Potters G, Sidorenko M, Savchuk Y, Mickevičius S. Endophytic Bacterial Biofilm-Formers Associated with Antarctic Vascular Plants. Microorganisms 2024; 12:1938. [PMID: 39458248 PMCID: PMC11509575 DOI: 10.3390/microorganisms12101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Deschampsia antarctica and Colobantus quitensis are the only two vascular plants colonized on the Antarctic continent, which is usually exposed to extreme environments. Endophytic bacteria residing within plant tissues can exhibit diverse adaptations that contribute to their ecological success and potential benefits for their plant hosts. This study aimed to characterize 12 endophytic bacterial strains isolated from these plants, focusing on their ecological adaptations and functional roles like plant growth promotion, antifungal activities, tolerance to salt and low-carbon environments, wide temperature range, and biofilm formation. Using 16S rRNA sequencing, we identified several strains, including novel species like Hafnia and Agreia. Many strains exhibited nitrogen-fixing ability, phosphate solubilization, ammonia, and IAA production, potentially benefiting their hosts. Additionally, halotolerance and carbon oligotrophy were also shown by studied bacteria. While some Antarctic bacteria remain strictly psychrophilic, others demonstrate a remarkable ability to tolerate a wider range of temperatures, suggesting that they have acquired mechanisms to cope with fluctuations in environmental temperature and developed adaptations to survive in intermediate hosts like mammals and/or birds. Such adaptations and high plasticity of metabolism of Antarctic endophytic bacteria provide a foundation for research and development of new promising products or mechanisms for use in agriculture and technology.
Collapse
Affiliation(s)
- Olga Iungin
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine;
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
- Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania; (M.S.); (S.M.)
| | | | - Oleksandr Kalinichenko
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine;
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
| | - Geert Potters
- AMACORT, Nautical Faculty, Antwerp Maritime Academy, 2030 Antwerp, Belgium;
- Department of Bioscience Engineering, University of Antwerp, 2000 Antwerp, Belgium
| | - Marina Sidorenko
- Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania; (M.S.); (S.M.)
| | - Yaroslav Savchuk
- Department of Physiology and Systematics of Micromycetes, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
| | - Saulius Mickevičius
- Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania; (M.S.); (S.M.)
| |
Collapse
|
3
|
Garai S, Raizada A, Kumar V, Sopory SK, Pareek A, Singla-Pareek SL, Kaur C. In silico analysis of fungal prion-like proteins for elucidating their role in plant-fungi interactions. Arch Microbiol 2024; 206:308. [PMID: 38896139 DOI: 10.1007/s00203-024-04040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Avi Raizada
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Vijay Kumar
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
4
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Kryvokhyzha M, Litvinov S, Danchenko M, Khudolieieva L, Kutsokon N, Baráth P, Rashydov N. How does ionizing radiation affect amyloidogenesis in plants? Int J Radiat Biol 2024; 100:922-933. [PMID: 38530837 DOI: 10.1080/09553002.2024.2331126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Ionizing radiation is a harsh environmental factor that could induce plant senescence. We hypothesized that radiation-related senescence remodels proteome, particularly by triggering the accumulation of prion-like proteins in plant tissues. The object of this study, pea (Pisum sativum L.), is an agriculturally important legume. Research on the functional importance of amyloidogenic proteins was never performed on this species. MATERIALS AND METHODS Pea seeds were irradiated in the dose range 5-50 Gy of X-rays. Afterward, Fourier-transform infrared spectroscopy (FTIR) was used to investigate changes in the secondary structure of proteins in germinated 3-day-old seedlings. Specifically, we evaluated the ratio between the amide I and II peaks. Next, we performed protein staining with Congo red to compare the presence of amyloids in the samples. In parallel, we profiled the detergent-resistant proteome fraction by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS). Differentially accumulated proteins were functionally analyzed in MapMan software, and the PLAAC tool was used to predict putative prion-like proteins. RESULTS We showed a reduced germination rate but higher plant height and faster appearance of reproductive organs in the irradiated at dose of 50 Gy group compared with the control; furthermore, we demonstrated more β-sheets and amyloid aggregates in the roots of stressed plants. We detected 531 proteins in detergent-resistant fraction extracted from roots, and 45 were annotated as putative prion-like proteins. Notably, 29 proteins were significantly differentially abundant between the irradiated and the control groups. These proteins belong to several functional categories: amino acid metabolism, carbohydrate metabolism, cytoskeleton organization, regulatory processes, protein biosynthesis, and RNA processing. Thus, the discovery proteomics provided deep data on novel aspects of plant stress biology. CONCLUSION Our data hinted that protein accumulation stimulated seedlings' growth as well as accelerated ontogenesis and, eventually, senescence, primarily through translation and RNA processing. The increased abundance of primary metabolism-related proteins indicates more intensive metabolic processes triggered in germinating pea seeds upon X-ray exposure. The functional role of detected putative amyloidogenic proteins should be validated in overexpression or knockout follow-up studies.
Collapse
Affiliation(s)
- Maryna Kryvokhyzha
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Sergii Litvinov
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Lidiia Khudolieieva
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nataliia Kutsokon
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Peter Baráth
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Namik Rashydov
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
6
|
Frenkel A, Zecharia E, Gómez-Pérez D, Sendersky E, Yegorov Y, Jacob A, Benichou JIC, Stierhof YD, Parnasa R, Golden SS, Kemen E, Schwarz R. Cell specialization in cyanobacterial biofilm development revealed by expression of a cell-surface and extracellular matrix protein. NPJ Biofilms Microbiomes 2023; 9:10. [PMID: 36864092 PMCID: PMC9981879 DOI: 10.1038/s41522-023-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Cyanobacterial biofilms are ubiquitous and play important roles in diverse environments, yet, understanding of the processes underlying the development of these aggregates is just emerging. Here we report cell specialization in formation of Synechococcus elongatus PCC 7942 biofilms-a hitherto unknown characteristic of cyanobacterial social behavior. We show that only a quarter of the cell population expresses at high levels the four-gene ebfG-operon that is required for biofilm formation. Almost all cells, however, are assembled in the biofilm. Detailed characterization of EbfG4 encoded by this operon revealed cell-surface localization as well as its presence in the biofilm matrix. Moreover, EbfG1-3 were shown to form amyloid structures such as fibrils and are thus likely to contribute to the matrix structure. These data suggest a beneficial 'division of labor' during biofilm formation where only some of the cells allocate resources to produce matrix proteins-'public goods' that support robust biofilm development by the majority of the cells. In addition, previous studies revealed the operation of a self-suppression mechanism that depends on an extracellular inhibitor, which supresses transcription of the ebfG-operon. Here we revealed inhibitor activity at an early growth stage and its gradual accumulation along the exponential growth phase in correlation with cell density. Data, however, do not support a threshold-like phenomenon known for quorum-sensing in heterotrophs. Together, data presented here demonstrate cell specialization and imply density-dependent regulation thereby providing deep insights into cyanobacterial communal behavior.
Collapse
Affiliation(s)
- Alona Frenkel
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Eli Zecharia
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Daniel Gómez-Pérez
- grid.10392.390000 0001 2190 1447Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Eleonora Sendersky
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Yevgeni Yegorov
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Avi Jacob
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Jennifer I. C. Benichou
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - York-Dieter Stierhof
- grid.10392.390000 0001 2190 1447Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Rami Parnasa
- grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Susan S. Golden
- grid.266100.30000 0001 2107 4242Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Eric Kemen
- grid.10392.390000 0001 2190 1447Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
7
|
Gallo M, Luti S, Baroni F, Baccelli I, Cilli EM, Cicchi C, Leri M, Spisni A, Pertinhez TA, Pazzagli L. Plant Defense Elicitation by the Hydrophobin Cerato-Ulmin and Correlation with Its Structural Features. Int J Mol Sci 2023; 24:2251. [PMID: 36768573 PMCID: PMC9916430 DOI: 10.3390/ijms24032251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Cerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants (Arabidopsis) and exerts its eliciting capacity more efficiently when in its soluble monomeric form. We identified two hydrophobic clusters on the protein's loops endowed with dynamical and physical properties compatible with the possibility of reversibly interconverting between a disordered conformation and a β-strand-rich conformation when interacting with hydrophilic or hydrophobic surfaces. We propose that the plasticity of those loops may be part of the molecular mechanism that governs the protein defense elicitation capability.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Fabio Baroni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-901, Brazil
| | - Costanza Cicchi
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Manuela Leri
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | | | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| |
Collapse
|
8
|
Yarmola E, Ishkov IP, di Cologna NM, Menashe M, Whitener RL, Long JR, Abranches J, Hagen SJ, Brady LJ. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Microbiol Spectr 2022; 10:e0166122. [PMID: 35950854 PMCID: PMC9431626 DOI: 10.1128/spectrum.01661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross β-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.
Collapse
Affiliation(s)
- Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ivan P. Ishkov
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Megan Menashe
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert L. Whitener
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R. Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Stephen J. Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
10
|
Forchhammer K. Editorial for Article Collection on "Bacterial Survival Strategies". Microb Physiol 2021; 31:195-197. [PMID: 34198291 DOI: 10.1159/000517629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|