1
|
Elumalai S, Somasundaram A, Ramasamy P. A comprehensive review on nanochitosan and its diverse applications in various industries. Int J Biol Macromol 2025; 305:141150. [PMID: 39961557 DOI: 10.1016/j.ijbiomac.2025.141150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/21/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Nanochitosan, a nanostructured form of chitosan produced from chitin, has become a widely used material with a wide range of applications in a variety of industries. This review summarizes the study on nanochitosan, including its synthesis techniques, distinct physicochemical characteristics, and uses in medicine, agriculture, cosmetics, and cleaning up the environment. The review also emphasizes the impact of synthesis methods such as nanoprecipitation, electrospinning, and chemical modifications on the material's properties and applications. In agriculture, nanochitosan can be used as a long-lasting biopolymer to support crop growth and health. Because it is mucoadhesive and compatible with living things, it can also enhance the effectiveness of medication. The potential of nanochitosan to enhance skin permeability and encapsulate active chemicals in cosmetics presents exciting opportunities for innovation. Furthermore, nanochitosan effectiveness as a biosorbent and antibacterial agent in wastewater treatment highlights its potential to tackle environmental issues. The present study offers valuable perspectives on the present status of nanochitosan research, highlights significant obstacles, and suggests future avenues for optimizing its industrial applications.
Collapse
Affiliation(s)
- Saranya Elumalai
- Department of Biotechnology, Vinayaka Missions Kirupananda Variyar Engineering College, Salem 636308, Tamil Nadu, India
| | - Ambiga Somasundaram
- Department of Biochemistry, School of Arts and Science, PonnaiyahRamajayam Institute of Science and Technology PRIST), Thanjavur, Tamil Nadu 613403, India
| | - Pasiyappazham Ramasamy
- Polymer Research Laboratory (PR Lab), Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India; Department of Prosthodontics and Implantology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Liu Y, Shang J, Chen Y, Feng X. Potential Applications of Chitosan in Seborrheic Dermatitis and Other Skin Diseases: A Comprehensive Review. Clin Cosmet Investig Dermatol 2025; 18:533-542. [PMID: 40071198 PMCID: PMC11894430 DOI: 10.2147/ccid.s504778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
This review article explores the potential applications of chitosan, a natural polysaccharide derived from crustacean shells, in the treatment of seborrheic dermatitis (SD) and other skin diseases. SD is a common chronic inflammatory skin condition characterized by erythema, scaling, itching, and an oily appearance, predominantly affecting areas rich in sebaceous glands. Current treatments, including antifungal agents, corticosteroids, and calcineurin inhibitors, offer symptomatic relief but have limitations in long-term use due to side effects and resistance issues. Chitosan exhibits excellent biocompatibility, biodegradability, and broad-spectrum antibacterial properties, making it a promising candidate for SD treatment. This review highlights chitosan's multifunctional properties such as antimicrobial, anti-inflammatory, sebum-regulating, and barrier-enhancing effects, which are closely related to the pathogenesis of SD. Additionally, the article summarizes the applications of chitosan in other skin conditions, including wound healing, infectious skin diseases, and atopic dermatitis, demonstrating its broad therapeutic potential. Through this comprehensive evaluation, the review aims to provide a theoretical foundation for clinical research on chitosan in SD and support the development of new, safer, and more effective treatment options for various skin conditions.
Collapse
Affiliation(s)
- Youting Liu
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| | - Jianli Shang
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
| | - Yong Chen
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| | - Xiaoyue Feng
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Nirmal N, Demir D, Ceylan S, Ahmad S, Goksen G, Koirala P, Bono G. Polysaccharides from shell waste of shellfish and their applications in the cosmeceutical industry: A review. Int J Biol Macromol 2024; 265:131119. [PMID: 38522682 DOI: 10.1016/j.ijbiomac.2024.131119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Shell waste from shellfish processing contains valuable natural polysaccharides, including sulfated polysaccharides, acidic polysaccharides, glycosaminoglycans, chitin and their derivatives. These shellfish waste-derived polysaccharides have numerous functional and biological properties that can be applied in various industries, including the cosmeceutical industry. In keeping with global sustainability and green industry trends, the cosmeceuticals industry is transitioning from petrochemical-based ingredients to natural substitutes. In this context, shell waste-derived polysaccharides and their derivatives can play a major role as natural substitutes for petroleum-based components in various cosmeceutical skincare, hair care, oral care and body care products. This review focuses on the presence of polysaccharides and their derivatives in shell waste and discusses their various cosmeceutical applications in skin care, hair care, sun care, oral care and body care products. This indicates that shell waste utilization will help create a circular economy in which extracted polysaccharides are used to produce green cosmeceutical products.
Collapse
Affiliation(s)
- Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Türkiye
| | - Sameer Ahmad
- Food Technology Department, Jamia Hamdard, G782+55X, Mehrauli - Badarpur Rd, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via L. Vaccara 61, 91026 Mazara del Vallo, TP, Italy; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Di Palermo, Palermo, Italy
| |
Collapse
|
4
|
El-Araby A, Janati W, Ullah R, Ercisli S, Errachidi F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front Chem 2024; 11:1327426. [PMID: 38239928 PMCID: PMC10794439 DOI: 10.3389/fchem.2023.1327426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
For many years, chitosan has been widely regarded as a promising eco-friendly polymer thanks to its renewability, biocompatibility, biodegradability, non-toxicity, and ease of modification, giving it enormous potential for future development. As a cationic polysaccharide, chitosan exhibits specific physicochemical, biological, and mechanical properties that depend on factors such as its molecular weight and degree of deacetylation. Recently, there has been renewed interest surrounding chitosan derivatives and chitosan-based nanocomposites. This heightened attention is driven by the pursuit of enhancing efficiency and expanding the spectrum of chitosan applications. Chitosan's adaptability and unique properties make it a game-changer, promising significant contributions to industries ranging from healthcare to environmental remediation. This review presents an up-to-date overview of chitosan production sources and extraction methods, focusing on chitosan's physicochemical properties, including molecular weight, degree of deacetylation and solubility, as well as its antibacterial, antifungal and antioxidant activities. In addition, we highlight the advantages of chitosan derivatives and biopolymer modification methods, with recent advances in the preparation of chitosan-based nanocomposites. Finally, the versatile applications of chitosan, whether in its native state, derived or incorporated into nanocomposites in various fields, such as the food industry, agriculture, the cosmetics industry, the pharmaceutical industry, medicine, and wastewater treatment, were discussed.
Collapse
Affiliation(s)
- Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Faouzi Errachidi
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
5
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
6
|
Chitosan: A Promising Multifunctional Cosmetic Ingredient for Skin and Hair Care. COSMETICS 2022. [DOI: 10.3390/cosmetics9050099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cosmetic industry has an undeniable need to design and develop new ecosustainable products to respond to the demands of consumers and international regulations. This requires substituting some traditional ingredients derived from petrochemical sources with new ones with more ecofriendly profiles. However, this transition towards the use of green ingredients in the cosmetic industry cannot compromise the effectiveness of the obtained products. Emerging ingredients in this new direction of the cosmetic industry are chitosan and its derivatives, which combine many interesting physicochemical and biological properties for the fabrication of cosmetic products. Thus, the use of chitosan opens a promising future path to the design of cosmetic formulations. In particular, chitosan’s ability for interacting electrostatically with negatively charged substrates (e.g., skin or damaged hair), resulting in the formation of polymeric films which contribute to the conditioning and moisturizing of cosmetic substrates, makes this polymer an excellent candidate for the design of skin and hair care formulations. This review tries to provide an updated perspective on the potential interest of chitosan and its derivatives as ingredients of cosmetics for skin and hair care.
Collapse
|
7
|
Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers (Basel) 2022; 14:polym14193989. [PMID: 36235937 PMCID: PMC9571330 DOI: 10.3390/polym14193989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Crustacean shells are a sustainable source of chitin. Extracting chitin from crustacean shells is ongoing research, much of which is devoted to devising a sustainable process that yields high-quality chitin with minimal waste. Chemical and biological methods have been used extensively for this purpose; more recently, methods based on ionic liquids and deep eutectic solvents have been explored. Extracted chitin can be converted into chitosan or nanochitin. Once chitin is obtained and modified into the desired form, it can be used in a wide array of applications, including as a filler material, in adsorbents, and as a component in biomaterials, among others. Describing the extraction of chitin, synthesis of chitosan and nanochitin, and applications of these materials is the aim of this review. The first section of this review summarizes and compares common chitin extraction methods, highlighting the benefits and shortcomings of each, followed by descriptions of methods to convert chitin into chitosan and nanochitin. The second section of this review discusses some of the wide range of applications of chitin and its derivatives.
Collapse
|