1
|
Yadav V, Jena MK, Parashar G, Parashar NC, Joshi H, Ramniwas S, Tuli HS. Emerging role of microRNAs as regulators of protein kinase C substrate MARCKS and MARCKSL1 in cancer. Exp Cell Res 2024; 434:113891. [PMID: 38104645 DOI: 10.1016/j.yexcr.2023.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have emerged as pivotal regulators of gene expression, playing essential roles in diverse cellular processes, including the development and progression of cancer. Among the numerous proteins influenced by miRNAs, the MARCKS/MARCKSL1 protein, a key regulator of cellular cytoskeletal dynamics and membrane-cytosol communication, has garnered significant attention due to its multifaceted involvement in various cancer-related processes, including cell migration, invasion, metastasis, and drug resistance. Motivated by the encouraging early clinical success of peptides targeting MARCKS in several pathological conditions, this review article delves into the intricate interplay between miRNAs and the MARCKS protein in cancer. Herein, we have highlighted the latest findings on specific miRNAs that modulate MARCKS/MARCKSL1 expression, providing a comprehensive overview of their roles in different cancer types. We have underscored the need for in-depth investigations into the therapeutic feasibility of targeting the miRNA-MARCKS axis in cancer, taking cues from the successes witnessed in related fields. Unlocking the full potential of miRNA-mediated MARCKS regulation could pave the way for innovative and effective therapeutic interventions against various cancer types.
Collapse
Affiliation(s)
- Vikas Yadav
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, 4000, Liège, Belgium; Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE 20213, Malmö, Sweden.
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Parashar
- Division of Biomedical & Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biosciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Hardeep Singh Tuli
- Department of Biosciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
2
|
Li J, Zhang Z, Hu Y, Wei Q, Shao X. Circ_0039569 contributes to the paclitaxel resistance of endometrial cancer via targeting miR-1271-5p/PHF6 pathway. Anticancer Drugs 2022; 33:883-892. [PMID: 36136988 DOI: 10.1097/cad.0000000000001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Circular RNA (circRNA) has been confirmed to be involved in the chemoresistance process of cancers. However, whether circ_0039569 mediates the chemoresistance of endometrial cancer (EC) remains unclear. Quantitative real-time PCR was performed to analyze circ_0039569, microRNA (miR)-1271-5p and PHD finger protein 6 (PHF6) expression. Cell counting kit-8 assay was used to assess the paclitaxel (PTX) resistance of cells. Cell proliferation, apoptosis and invasion were determined using EdU assay, colony formation assay, flow cytometry and transwell assay. Protein expression was examined by western blot analysis. RNA interaction was verified by dual-luciferase reporter assay and RNA pull-down assay. Xenograft tumor models were constructed to explore the effect of circ_0039569 knockdown on the PTX sensitivity of EC tumors. Circ_0039569 was upregulated in PTX-resistant EC tissues and cells. Knockdown of circ_0039569 enhanced the PTX sensitivity of EC cells by inhibiting cell growth and invasion. MiR-1271-5p could be sponged by circ_0039569, and its inhibitor abolished the regulation of circ_0039569 knockdown on the PTX sensitivity of EC cells. PHF6 was targeted by miR-1271-5p, and its overexpression eliminated the promotion effect of miR-1271-5p on the PTX sensitivity of EC cells. Also, interference of circ_0036569 enhanced the PTX sensitivity of EC tumors by regulating the miR-1271-5p/PHF6 pathway. Collectively, circ_0039569 might contribute to the PTX resistance of EC through the regulation of the miR-1271-5p/PHF6 axis.
Collapse
Affiliation(s)
- Jia Li
- The Third Central Clinical College of Tianjin Medical University, Tianjin China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin Central Hospital of Gynecology and Obstetrics.,The Third Central Hospital of Tianjin, Tianjin, China
| | - Zhidong Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yuanjing Hu
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin Central Hospital of Gynecology and Obstetrics.,The Third Central Hospital of Tianjin, Tianjin, China
| | - Qing Wei
- The Third Central Hospital of Tianjin, Tianjin, China
| | - Xuecheng Shao
- The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|