1
|
Ting Z, Wu Z, Yang C, Li Z, Huang H, Gan J, Li N, Li X, Lyu J, Wu Y, Qin S. lncRNA CERS6-AS1 upregulates the expression of ANLN by sponging miR-424-5p to promote the progression and drug resistance of lung adenocarcinoma. Noncoding RNA Res 2024; 9:221-235. [PMID: 38094657 PMCID: PMC10716711 DOI: 10.1016/j.ncrna.2023.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 10/17/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in tumor generation and progression. However, the exact functional significance and underlying molecular mechanism by which lncRNA CERS6-AS1 operates in the context of lung adenocarcinoma (LUAD) remain unknown. We aimed to evaluate the potential role of the CERS6-AS1/miR-424-5p/ANLN axis in the progression of LUAD through bioinformatics and cytobehavioral experiments, and to provide a new insight into the combined treatment of LUAD. Based on the TCGA database, the expression of CERS6-AS1 in pan-cancer was evaluated, and its prognostic performance in LUAD was evaluated by ROC curve, survival curve and COX analysis. In addition, quantification of CERS6-AS1 expression levels in LUAD patients and lung cancer cells using quantitative real-time polymerase chain reaction (RT-qPCR), and further validate the functional significance of CERS6-AS1 in promoting the proliferation, migration, and invasion abilities of lung cancer cells. The competitive endogenous RNA (ceRNA) network was constructed, and miR-424-5p inhibitors were applied to CERS6-AS1 knockdown cells. The potential downstream genes associated with the regulatory axis of CERS6-AS1/miR-424-5p were analyzed by PPI network and gene enrichment analysis (KEGG). Finally, we evaluated the prognostic value of high expression of ANLN in LUAD and its effects on immune cell infiltration, tumor mutation burden, chemotherapy response, and immunotherapy. CERS6-AS1 expression was significantly elevated in both LUAD patients and lung cancer cells. In the CERS6-AS1 knockdown assay, the proliferation, invasion, migration and epithelial-mesenchymal transformation (EMT) of cancer cells were significantly inhibited. Notably, there was a prominent upregulation of miR-424-5p expression in cells where CERS6-AS1 was knocked down. Co-transfection of siRNA and miR-424-5p inhibitors into lung cancer cells restored the restriction on lung cancer cells. Anillin (ANLN) has been identified as a potential target gene for miR-424-5p and as a prognostic and immune biomarker associated with immune cell infiltration and tumor mutational burden in LUAD. Additionally, ANLN impacts the efficacy of chemotherapy and immunotherapy in LUAD patients. This study reveals a novel regulatory mechanism in which CERS6-AS1 may contribute to the progression of LUAD by influencing the expression of ANLN as a competitive sponge for miR-424-5p.
Collapse
Affiliation(s)
- Zhuo Ting
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zuotao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chuyi Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zihao Li
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hongyu Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinyan Gan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Nijiao Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaohong Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jueqi Lyu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yanbin Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shouming Qin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
2
|
Liu Y, Luo X, Chen W, Dong Z, Cheng T, Chen L, Ju L, Cai W, Bian Z. Hsa_circ_0079875 functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Cell Cycle 2024; 23:519-536. [PMID: 38684479 PMCID: PMC11135875 DOI: 10.1080/15384101.2024.2345469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/05/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Circular RNA (circRNA) can influence the development of hepatocellular carcinoma (HCC) as a competitive endogenous RNA (ceRNA). However, there are still many circRNAs whose functions are unknown. Our research explores the role of a novel circRNA, hsa_circ_0079875, in HCC. The expression of hsa_circ_0079875 in HCC was verified by next-generation sequencing, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and fluorescence in situ hybridization (FISH). The distribution of hsa_circ_0079875 in HCC cells was investigated by RNA subcellular isolation and FISH assays. The functional effects on HCC proliferation, invasion, migration, cell cycle, and apoptosis were verified by overexpression and knockdown of hsa_circ_0079875. Moreover, xenograft mouse models and immunohistochemistry experiments were used to assess the function of hsa_circ_0079875 in vivo. Hsa_circ_0079875 was up-regulated in HCC tissues and mainly distributed in the cytoplasm. Higher hsa_circ_0079875 leads to larger tumor tissue, more microvascular invasion(MVI) and higher AFP levels, which in turn leads to a poor prognosis. Overexpression of hsa_circ_0079875 can promote the proliferation, migration, and invasion of HCC cells and inhibit apoptosis in vitro and in vivo. Knocking down hsa_circ_0079875 has the opposite effect. Sequencing and biological information predicted the target miRNA and mRNA of hsa_circ_0079875. Further bioinformatics and clinical correlation analysis revealed that hsa_circ_0079875 promote the malignant biological behaviors of HCC through hsa_circ_0079875/miR-519d-59/NRAS ceRNA net. Therefore, hsa_circ_0079875 can be a potential prognostic marker and therapeutic target for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Animals
- Cell Proliferation/genetics
- Cell Movement/genetics
- Apoptosis/genetics
- Disease Progression
- Mice, Nude
- Male
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Mice
- Middle Aged
- Mice, Inbred BALB C
- Neoplasm Invasiveness/genetics
- RNA/metabolism
- RNA/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Yicun Liu
- Nantong University Medical School, Nantong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - WeiJie Chen
- Nantong University Medical School, Nantong, Jiangsu, China
| | - Zhixing Dong
- Nantong University Medical School, Nantong, Jiangsu, China
| | - Tiaochun Cheng
- Nantong University Medical School, Nantong, Jiangsu, China
| | - Lin Chen
- Department of Hepatology Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Linling Ju
- Department of Hepatology Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Zhaolian Bian
- Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Jiang D, Zhang H, Yin B, He M, Lu X, He C. The Prognostic Hub Gene POLE2 Promotes BLCA Cell Growth via the PI3K/AKT Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:1984-1998. [PMID: 38963027 DOI: 10.2174/0113862073273633231113060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 07/05/2024]
Abstract
BACKGROUND BLCA is a common urothelial malignancy characterized by a high recurrence rate. Despite its prevalence, the molecular mechanisms underlying its development remain unclear. AIMS This study aimed to explore new prognostic biomarkers and investigate the underlying mechanism of bladder cancer (BLCA). OBJECTIVE The objective of this study is to identify key prognostic biomarkers for BLCA and to elucidate their roles in the disease. METHODS We first collected the overlapping DEGs from GSE42089 and TCGA-BLCA samples for the subsequent weighted gene co-expression network analysis (WGCNA) to find a key module. Then, key module genes were analyzed by the MCODE algorithm, prognostic risk model, expression and immunohistochemical staining to identify the prognostic hub gene. Finally, the hub gene was subjected to clinical feature analysis, as well as cellular function assays. RESULTS In WGCNA on 1037 overlapping genes, the blue module was the key module. After a series of bioinformatics analyses, POLE2 was identified as a prognostic hub gene in BLCA from potential genes (TROAP, POLE2, ANLN, and E2F8). POLE2 level was increased in BLCA and related to different clinical features of BLCA patients. Cellular assays showed that si-POLE2 inhibited BLCA proliferation, and si-POLE2+ 740Y-P in BLCA cells up-regulated the PI3K and AKT protein levels. CONCLUSION In conclusion, POLE2 was identified to be a promising prognostic biomarker as an oncogene in BLCA. It was also found that POLE2 exerts a promoting function by the PI3K/AKT signaling pathway in BLCA.
Collapse
Affiliation(s)
- Dongzhen Jiang
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Huawei Zhang
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Minke He
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Xuwei Lu
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Chang He
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| |
Collapse
|
4
|
Nie Z, Guo N, Peng Y, Gao Y, Cao H, Zhang S. Duality of the SVIL expression in bladder cancer and its correlation with immune infiltration. Sci Rep 2023; 13:14595. [PMID: 37670039 PMCID: PMC10480233 DOI: 10.1038/s41598-023-41759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
SVIL is a member of the villin/gelsolin superfamily and is responsible for encoding supervillin. It has been reported to be closely related to the occurrence and development of various tumors. However, the mechanism of SVIL in bladder cancer has not been reported yet. In this research, we evaluated the relationship between SVIL expression and bladder cancer in public dataset and examined the expression of SVIL in bladder cancer cell lines, tissue microarrays and patients in our cohort. Our work determined that the expression of SVIL in bladder cancer tissue was significantly lower than that in normal tissue. However, in bladder cancer tissues, the high expression of SVIL is significantly associated with poor prognosis. This kind of duality is very novel and has great research value. The expression level of SVIL can well predict the survival time of bladder cancer patients, and is an independent risk factor of bladder cancer patients. The expression of SVIL is also closely related to the immune tumor microenvironment of bladder cancer. Our research provides a basis for personalized therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| |
Collapse
|
5
|
Yang T, Chi Z, Liu G, Hong X, Cao S, Cheng K, Zhang Y. Screening ANLN and ASPM as bladder urothelial carcinoma-related biomarkers based on weighted gene co-expression network analysis. Front Genet 2023; 14:1107625. [PMID: 37051591 PMCID: PMC10083327 DOI: 10.3389/fgene.2023.1107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction: Bladder cancer (BLCA) is one of the most common malignancies in the urinary system with a poor prognosis and high treatment costs. Identifying potential prognostic biomarkers is significant for exploring new therapeutic and predictive targets of BLCA.Methods: In this study, we screened differentially expressed genes using the GSE37815 dataset. We then performed a weighted gene co‐expression network analysis (WGCNA) to identify the genes correlated with the histologic grade and T stage of BLCA using the GSE32548 dataset. Subsequently, Kaplan Meier survival analysis and Cox regression were used to further identify prognosis‐related hub genes using the datasets GSE13507 and TCGA‐BLCA. Moreover, we detected the expression of the hub genes in 35 paired samples, including BLCA and paracancerous tissue, from the Shantou Central Hospital by qRT‐polymerase chain reaction.Results: This study showed that Anillin (ANLN) and Abnormal spindle-like microcephaly-associated gene (ASPM) were prognostic biomarkers for BLCA. High expression of ANLN and ASPM was associated with poor overall survival.The qRT‐PCR results revealed that ANLN and ASPM genes were upregulated in BLCA, and there was a correlation between the expression of ANLN and ASPM in cancer tissues and paracancerous tissue. Additionally, the increasing multiples in the ANLN gene was obvious in high-grade BLCA.Discussion: In summary, this preliminary exploration indicated a correlation between ANLN and ASPM expression. These two genes, serving as the risk factors for BLCA progression, might be promising targets to improve the occurrence and progression of BLCA.
Collapse
|
6
|
Fibroblast Common Serum Response Signature-Related Classification Affects the Tumour Microenvironment and Predicts Prognosis in Bladder Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5645944. [PMID: 36312898 PMCID: PMC9606836 DOI: 10.1155/2022/5645944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
Abnormal oncogenic signatures provide important clues regarding cancer prognosis and treatment. We analysed the variations in 189 oncogenic signature gene sets between normal and tumourous tissues from The Cancer Genome Atlas (TCGA) and found that the “CSR_LATE_UP” signature was the most upregulated oncogenic signature gene set in bladder cancer. Next, we developed a common serum response (CSR) risk score (CRS) model based on fibroblast CSR genes and systematically analysed the correlations of these genes or the CRSs with survival, previously reported molecular subtypes, clinicopathological features, cancer signalling pathways, chemotherapeutic responses, and the tumour microenvironment using TCGA and validation cohorts. The CRS could predict the malignant phenotype, chemotherapeutic efficacy, immune invasion, and disease prognosis. Inflammatory signalling pathways (e.g., inflammatory response, TNFA signalling via NFƘB, IFNα response, and IL2-STAT5 signalling) were markedly upregulated in patients with high CRS. Notably, the CSR-related gene ANLN was positively correlated with CD8+ immune cell infiltration, PD-L1 expression, and sensitivity to PD-L1 inhibitors and could thus provide guidance for clinical immunotherapy. This study highlights the crucial role of the CSR signature in bladder cancer and provides a CRS model for accurate predictions of the disease prognosis and chemotherapy and immunotherapy responses.
Collapse
|