1
|
Zhang J, Yuan W, Hong X, Ying Y, Zhu F. Simultaneous high throughput genotyping of 36 blood group systems using NGS based on probe capture technology. Heliyon 2024; 10:e33608. [PMID: 39040346 PMCID: PMC11260914 DOI: 10.1016/j.heliyon.2024.e33608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Human blood group antigen has important biological functions, and transfusion of incompatible blood can cause alloimmunization and may lead to serious hemolytic reactions. Currently, serological methods are most commonly used in blood group typing. However, this technique has certain limitations and cannot fully meet the increasing demand for the identification of blood group antigens. This study describes a next-generation sequencing (NGS) technology platform based on exon and flanking region capture probes to detect full coding exon and flanking intron regions of the 36 blood group systems, providing a new high-throughput method for the identification of blood group antigens. The 871 capture probes were designed for the exon and flanking intron sequences of 36 blood group system genes, and synchronization analysis for 36 blood groups was developed. The library for NGS was tested using the MiSeq Sequencing Reagent Kit (v2, 300 cycles) by Illumina NovaSeq, and the data were analyzed by the CLC Genomics Workbench 21.0 software. A total of 199 blood specimens have been sequenced for the 41 genes from 36 blood groups. Among them, heterozygote genotypes were found in the ABO, Rh, MNS, Lewis, Duffy, Kidd, Diego, Gerbich, Dombrock, Globoside, JR, LAN, and Landsteiner-Wiene blood group systems. Only the homozygous genotype was found in the remaining 22 blood group systems. The obtained data in the NGS method shows a good correlation (99.98 %) with those of the polymerase chain reaction-sequence-based typing. An NGS technology platform for 36 blood group systems genotyping was successfully established, which has the characteristics of high accuracy, high throughput, and wide coverage.
Collapse
Affiliation(s)
| | - Wenjing Yuan
- Blood Center of Zhejiang Province, Hangzhou, China
| | | | - Yanling Ying
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Srivastava K, Bueno MU, Flegel WA. Breakpoint regions of an RHD-CE(4-9)-D allele and a rare JK allele in a Pacific Islander individual. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2024; 22:189-197. [PMID: 37677094 PMCID: PMC11073622 DOI: 10.2450/bloodtransfus.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Among 710 RHD alleles, 3 alleles have been shown to express CcEe antigens and, among 67 hybrid alleles of the RHD gene, 2 alleles have evolved to include RHCE exons 4-9. No breakpoint region had been described for such RHD-CE(4-9)-D hybrid alleles. In the Kidd blood group system, the JK*02N.01 null allele is found with high prevalence in the Polynesian population. We investigated a self-identified Pacific Islander with discrepant serologic and molecular results for his C and Jkb antigens. Another 8 samples with genotype-phenotype discrepancies in the Kidd blood group system were assessed. MATERIALS AND METHODS A combination of published molecular methods and commercial kits were applied to analyze the RHD, RHCE, and SLC14A1 gene sequences, as were hemagglutination tests to determine the serologic phenotypes. RESULTS Nucleotide sequencing of the RHD gene in the index case, including relevant intron stretches, and cDNA identified an RHD-CE(4-9)-D hybrid allele. Nucleotide sequencing of his RHCE gene confirmed the presence of 2 RHCE*ce alleles despite expressing the C antigen. Sequencing of his SLC14A1 gene documented the JK*02N.01 null allele. In the other 8 samples, 5 previously known SLC14A1 nucleotide substitutions were identified. The JK*02N.17 allele was determined to be Jkb-positive. DISCUSSION We determined the 2 breakpoint regions of his RHD-CE(4-9)-D hybrid allele, which was likely distinct from the 2 previously published hybrid alleles due to the differences in the linked RHCE allele. His RHD variant was shown to express the C antigen. An SLC14A1 substitution was underlying his unexpected Jkb-negative phenotype. In a quality improvement project, we resolved 8 samples with similarly discrepant results between Jk serology and red cell genotyping.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Marina U Bueno
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
3
|
Hamilton JR. An update to Kidd blood group system. Immunohematology 2024; 40:28-33. [PMID: 38739024 DOI: 10.2478/immunohematology-2024-005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Since publication of the original Immunohematology review of the Kidd blood group system in 2015 (Hamilton JR. Kidd blood group system: a review. Immunohematology 2015;31:29-34), knowledge has mushroomed pertaining to gene structure, alleles causing variant and null phenotypes, clinical significance in renal transplant and hemolytic disease of the fetus and newborn, and physiologic functions of urea transporters in non-renal tissues. This review will detail much of this new information.
Collapse
Affiliation(s)
- Janis R Hamilton
- Immunohematology Reference Laboratory, American Red Cross, Detroit, MI, US
| |
Collapse
|
4
|
Gueuning M, Thun GA, Trost N, Schneider L, Sigurdardottir S, Engström C, Larbes N, Merki Y, Frey BM, Gassner C, Meyer S, Mattle-Greminger MP. Resolving Genotype-Phenotype Discrepancies of the Kidd Blood Group System Using Long-Read Nanopore Sequencing. Biomedicines 2024; 12:225. [PMID: 38275395 PMCID: PMC10813000 DOI: 10.3390/biomedicines12010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Due to substantial improvements in read accuracy, third-generation long-read sequencing holds great potential in blood group diagnostics, particularly in cases where traditional genotyping or sequencing techniques, primarily targeting exons, fail to explain serological phenotypes. In this study, we employed Oxford Nanopore sequencing to resolve all genotype-phenotype discrepancies in the Kidd blood group system (JK, encoded by SLC14A1) observed over seven years of routine high-throughput donor genotyping using a mass spectrometry-based platform at the Blood Transfusion Service, Zurich. Discrepant results from standard serological typing and donor genotyping were confirmed using commercial PCR-SSP kits. To resolve discrepancies, we amplified the entire coding region of SLC14A1 (~24 kb, exons 3 to 10) in two overlapping long-range PCRs in all samples. Amplicons were barcoded and sequenced on a MinION flow cell. Sanger sequencing and bridge-PCRs were used to confirm findings. Among 11,972 donors with both serological and genotype data available for the Kidd system, we identified 10 cases with unexplained conflicting results. Five were linked to known weak and null alleles caused by variants not included in the routine donor genotyping. In two cases, we identified novel null alleles on the JK*01 (Gly40Asp; c.119G>A) and JK*02 (Gly242Glu; c.725G>A) haplotypes, respectively. Remarkably, the remaining three cases were associated with a yet unknown deletion of ~5 kb spanning exons 9-10 of the JK*01 allele, which other molecular methods had failed to detect. Overall, nanopore sequencing demonstrated reliable and accurate performance for detecting both single-nucleotide and structural variants. It possesses the potential to become a robust tool in the molecular diagnostic portfolio, particularly for addressing challenging structural variants such as hybrid genes, deletions and duplications.
Collapse
Affiliation(s)
- Morgan Gueuning
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Rütistrasse 19, 8952 Schlieren, Switzerland
| | - Gian Andri Thun
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Rütistrasse 19, 8952 Schlieren, Switzerland
| | - Nadine Trost
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Linda Schneider
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Sonja Sigurdardottir
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Charlotte Engström
- Department of Immunohematology, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland; (C.E.)
| | - Naemi Larbes
- Department of Immunohematology, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland; (C.E.)
| | - Yvonne Merki
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Beat M. Frey
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Rütistrasse 19, 8952 Schlieren, Switzerland
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
- Department of Immunohematology, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland; (C.E.)
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, 9495 Triesen, Liechtenstein;
| | - Stefan Meyer
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Maja P. Mattle-Greminger
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Rütistrasse 19, 8952 Schlieren, Switzerland
| |
Collapse
|
5
|
Matosinho CGR, Silva CGR, Martins ML, Silva-Malta MCF. Next Generation Sequencing of Red Blood Cell Antigens in Transfusion Medicine: Systematic Review and Meta-Analysis. Transfus Med Rev 2024; 38:150776. [PMID: 37914611 DOI: 10.1016/j.tmrv.2023.150776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023]
Abstract
Molecular analysis of blood groups is important in transfusion medicine, allowing the prediction of red blood cell (RBC) antigens. Many blood banks use single nucleotide variant (SNV) based methods for blood group analysis. While this is a well-established approach, it is limited to the polymorphisms included in genotyping panels. Thus, variants that alter antigenic expression may be ignored, resulting in incorrect prediction of phenotypes. The popularization of next-generation sequencing (NGS) has led to its application in transfusion medicine, including for RBC antigens determination. The present review/meta-analysis aimed to evaluate the applicability of the NGS for the prediction of RBC antigens. A systematic review was conducted following a comprehensive literature search in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Studies were selected based on predefined criteria and evaluated using Strengthening the Reporting of Observational studies in Epidemiology guidelines. The characteristics and results of the studies were extracted and meta-analysis was performed to verify the agreement between results from standard molecular methods and NGS. Kell (rs8176058), Duffy (rs2814778, rs12078), or Kidd (rs1085396) alleles were selected as a model for comparisons. Additionally, results are presented for other blood group systems. Of the 864 eligible studies identified, 10 met the inclusion criteria and were selected for meta-analysis. The pooled concordance proportion for NGS compared to other methods ranged from 0.982 to 0.994. The sequencing depth coverage was identified as crucial parameters for the reliability of the results. Some studies reported difficulty in analyzing more complex systems, such as Rh and MNS, requiring the adoption of specific strategies. NGS is a technology capable of predicting blood group phenotypes and has many strengths such as the possibility of simultaneously analyzing hundred individuals and gene regions, and the ability to provide comprehensive genetic analysis, which is useful in the description of new alleles and a better understanding of the genetic basis of blood groups. The implementation of NGS in the routine of blood banks depends on several factors such as cost reduction, the availability of widely validated panels, the establishment of clear quality parameters and access to bioinformatics analysis tools that are easy to access and operate.
Collapse
|
6
|
Lehmann C, Doxiadis I. Immungenetik beeinflusst Infektion und Verlauf von COVID-19. BIOSPEKTRUM 2023; 29:483-485. [DOI: 10.1007/s12268-023-1991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
AbstractIn the present report, we concentrate on the influence of immunogenetics on the SARS-CoV-2 infection. A total of 527 SARS-CoV-2 PCR positive and negative individuals from Saxony was investigated. We used NGS for HLA-A, B, C, DRB1, DRB345, DQA1, DQB1, DPA1, and DPB1 typing. Then, we defined 26 genes and 5 platelet genes. Here we discuss possible predisposition of individuals expressing specific HLA alleles or combinations.
Collapse
|