1
|
McKeague S, Tam C. Prognostic factors in chronic lymphocytic leukaemia - the old, the new and the future. Leuk Lymphoma 2025; 66:847-857. [PMID: 39773307 DOI: 10.1080/10428194.2024.2449214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Prognostic assessment in chronic lymphocytic leukemia (CLL) is essential for delivery of timely, personalized therapy. TP53 status, karyotype, IGHV mutational status, minimal residual disease (MRD), gene mutations and markers of cell proliferation were important prognostic tools in the era of chemo-immunotherapy (CIT). With BCL2 inhibitors (BCL2i), outcome is still impacted by IGHV status, TP53 status, complex karyotype, and achievement of undetectable MRD. On the other hand, BTK inhibitors (BTKi) are agnostic to IGHV status, rarely cause MRD negative remissions and are less clearly impacted by TP53 status. Although based on less mature data, outcomes with BCL2i/BTKi combinations are likely influenced by TP53 and IGHV status. Responses to non-covalent BTKI (ncBTKI) are impacted by the mechanism of resistance to previous covalent BTKi. Finally, responses to chimeric antigen receptor T cell therapy (CAR-T) appear independent of TP53 status, but dependent on overall T- cell fitness.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Mutation
- Protein Kinase Inhibitors/therapeutic use
- Tumor Suppressor Protein p53/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Immunotherapy, Adoptive
- Neoplasm, Residual
Collapse
Affiliation(s)
- Sean McKeague
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Constantine Tam
- Lymphoma Service - The Alfred Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Chong SJF, Lu J, Valentin R, Lehmberg TZ, Eu JQ, Wang J, Zhu F, Kong LR, Fernandes SM, Zhang J, Herbaux C, Goh BC, Brown JR, Niemann CU, Huber W, Zenz T, Davids MS. BCL-2 dependence is a favorable predictive marker of response to therapy for chronic lymphocytic leukemia. Mol Cancer 2025; 24:62. [PMID: 40025512 PMCID: PMC11874845 DOI: 10.1186/s12943-025-02260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Established genetic biomarkers in chronic lymphocytic leukemia (CLL) have been useful in predicting response to chemoimmunotherapy but are less predictive of response to targeted therapies. With several such targeted therapies now approved for CLL, identifying novel, non-genetic predictive biomarkers of response may help to select the optimal therapy for individual patients. METHODS We coupled data from a functional precision medicine technique called BH3-profiling, which assesses cellular cytochrome c loss levels as indicators for survival dependence on anti-apoptotic proteins, with multi-omics data consisting of targeted and whole-exome sequencing, genome-wide DNA methylation profiles, RNA-sequencing, protein and functional analyses, to identify biomarkers for treatment response in CLL patients. RESULTS We initially studied 73 CLL patients from a discovery cohort. We found that greater dependence on the anti-apoptotic BCL-2 protein was associated with prognostically favorable genetic biomarkers. Furthermore, BCL-2 dependence was strongly associated with gene expression patterns and signaling pathways that suggest a more targeted drug-sensitive milieu and was predictive of drug responses. We subsequently demonstrated that these associations were causal in cell lines and additional CLL patient samples. To validate the findings from our discovery cohort and in vitro studies, we utilized primary CLL cells from 54 additional patients treated on a prospective, phase-2 clinical trial of the BTK inhibitor ibrutinib given in combination with chemoimmunotherapy (fludarabine, cyclophosphamide, rituximab) and confirmed in this independent dataset that higher BCL-2 dependence predicted favorable clinical response, independent of the genetic background of the CLL cells. CONCLUSION We comprehensively defined BCL-2 dependence as a potential functional and predictive biomarker of treatment response in CLL, underscoring the importance of characterizing apoptotic signaling in CLL to stratify patients beyond genetic markers and identifying novel combinations to exploit BCL-2 dependence therapeutically. Our approach has the potential to help optimize targeted therapy combinations for CLL patients.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Biomarkers, Tumor/genetics
- Piperidines
- Male
- Prognosis
- Female
- Treatment Outcome
- Middle Aged
- Aged
- Adenine/analogs & derivatives
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Pyrimidines/administration & dosage
- Apoptosis/drug effects
- Pyrazoles/administration & dosage
- DNA Methylation
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Physiology, NUS Centre for Cancer Research (N2CR), National University of Singapore (NUS), Singapore, Singapore
- Cancer Science Institute of Singapore, N2CR, NUS, Singapore, Singapore
| | - Junyan Lu
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Timothy Z Lehmberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Jie Qing Eu
- Cancer Science Institute of Singapore, N2CR, NUS, Singapore, Singapore
| | - Jing Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Fen Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Li Ren Kong
- Cancer Science Institute of Singapore, N2CR, NUS, Singapore, Singapore
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Jeremy Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Charles Herbaux
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, N2CR, NUS, Singapore, Singapore
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | | | - Wolfgang Huber
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University of Zurich & University Hospital Zurich, Zurich, Switzerland
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Cantera R, Fernández-Barge T, Salmanton-García J, Yáñez L. Holding the therapy in CLLp53: mechanisms to achieve durable responses. Anticancer Drugs 2025; 36:89-93. [PMID: 39133031 DOI: 10.1097/cad.0000000000001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a common leukemia, mainly affecting the elderly. Originating in the bone marrow, CLL involves the accumulation of B lymphocytes and progresses slowly, though 50-60% of patients will require therapy. At diagnosis, the presence of p53 protein aberrations, such as 17p deletion and TP53 mutation, arises in approximately one out of 10 patients. Even in the era of targeted therapies, these aberrations remain the most important prognostic factors. Current guidelines favor continuous BTK inhibitor therapy in patients with CLLp53, though adverse events and drug resistance may lead to discontinuation. Herein, we discuss the effects of B-cell receptor and BCL-2 inhibition, as well as the role of the immune system, in two elderly CLLp53 patients with prolonged responses to different therapies.
Collapse
MESH Headings
- Aged
- Humans
- Male
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Piperidines
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Pyrimidines/therapeutic use
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Rodrigo Cantera
- Hematology Department, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | | | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Lucrecia Yáñez
- Hematology Department, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Medicine and Psychiatry Department, University of Cantabria, Santander, Spain
| |
Collapse
|
4
|
Sobczyńska-Konefał A, Jasek M, Karabon L, Jaskuła E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies. Biomark Res 2024; 12:162. [PMID: 39732734 DOI: 10.1186/s40364-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p). Despite the significant progress in CLL treatment, some patients still experience disease relapse. This is due to the substantial heterogeneity of CLL as well as the interconnected genetic resistance mechanisms and pathway adaptive resistance mechanisms to targeted therapies in CLL. Although the knowledge of the pathomechanism of CLL has expanded significantly in recent years, the precise origins of CLL and the interplay between various genetic factors remain incompletely understood, necessitating further research. This review enhances the molecular understanding of CLL by describing how BCR signalling, NF-κB PI3K/AKT, and ROR1 pathways sustain CLL cell survival, proliferation, and resistance to apoptosis. It also presents genetic and pathway-adaptive resistance mechanisms in CLL. Identifying B-cell receptor (BCR) signalling as a pivotal driver of CLL progression, the findings advocate personalized treatment strategies based on molecular profiling, emphasizing the need for further research to unravel the complex interplay between BCR signalling and its associated pathways to improve patient outcomes.
Collapse
Affiliation(s)
- Anna Sobczyńska-Konefał
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland
| | - Monika Jasek
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Emilia Jaskuła
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland.
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland.
| |
Collapse
|
5
|
Yi Q, Ouyang X, Zhong K, Chen Z, Zhu W, Zhu G, Zhong J. circFOXP1: a potential diagnostic and therapeutic target in human diseases. Front Immunol 2024; 15:1489378. [PMID: 39606233 PMCID: PMC11599189 DOI: 10.3389/fimmu.2024.1489378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Circular RNA (circRNA) are a unique class of non-coding RNAs characterized by their covalently closed loop structures, which grant them properties such as stability and conservation. Among these, circFOXP1 has been implicated in various diseases, including cancers, respiratory, skeletal, and cardiovascular disorders. This review systematically examines circFOXP1's role in disease progression, highlighting its involvement in critical biological processes, including cell proliferation, invasion, apoptosis, and autophagy. Mechanistically, circFOXP1 functions through miRNA sponging, protein interactions, and modulation of key signaling pathways such as Wnt and PI3K/AKT. We discuss its potential as a diagnostic and therapeutic target. Our analysis also identifies key unresolved questions, such as the precise regulatory networks involving circFOXP1 and its translation potential, offering pathways for future research.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kui Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zheng Chen
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Kamaso J, Puiggros A, Salido M, Melero C, Rodríguez-Rivera M, Gimeno E, Martínez L, Arenillas L, Calvo X, Román D, Abella E, Ramos-Campoy S, Lorenzo M, Ferrer A, Collado R, Moro-García MA, Espinet B. Complex Karyotype Detection in Chronic Lymphocytic Leukemia: A Comparison of Parallel Cytogenetic Cultures Using TPA and IL2+DSP30 from a Single Center. Cancers (Basel) 2024; 16:2258. [PMID: 38927962 PMCID: PMC11202013 DOI: 10.3390/cancers16122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Current CLL guidelines recommend a two parallel cultures assessment using TPA and IL2+DSP30 mitogens for complex karyotype (CK) detection. Studies comparing both mitogens for CK identification in the same cohort are lacking. We analyzed the global performance, CK detection, and concordance in the complexity assessment of two cytogenetic cultures from 255 CLL patients. IL2+DSP30 identified more altered karyotypes than TPA (50 vs. 39%, p = 0.031). Moreover, in 71% of those abnormal by both, IL2+DSP30 identified more abnormalities and/or abnormal metaphases. CK detection was similar for TPA and IL2+DSP30 (10% vs. 11%). However, 11/33 CKs (33%) were discordant, mainly due to the detection of a normal karyotype or no metaphases in the other culture. Patients requiring treatment within 12 months after sampling (active CLL) displayed significantly more CKs than those showing a stable disease (55% vs. 12%, p < 0.001). Disease status did not impact cultures' concordance (κ index: 0.735 and 0.754 for stable and active). Although CK was associated with shorter time to first treatment (TTFT) using both methods, IL2+DSP30 displayed better accuracy than TPA for predicting TTFT (C-index: 0.605 vs. 0.580, respectively). In summary, the analysis of two parallel cultures is the best option to detect CKs in CLL. Nonetheless, IL2+DSP30 could be prioritized above TPA to optimize cytogenetic assessment in clinical practice.
Collapse
Affiliation(s)
- Joanna Kamaso
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Anna Puiggros
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Marta Salido
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Carme Melero
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - María Rodríguez-Rivera
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Eva Gimeno
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (E.G.); (E.A.)
- Applied Clinical Research in Hematological Malignances Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Laia Martínez
- Hematology Service, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain;
| | - Leonor Arenillas
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Xavier Calvo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - David Román
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Eugènia Abella
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (E.G.); (E.A.)
| | - Silvia Ramos-Campoy
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Marta Lorenzo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Ana Ferrer
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| | - Rosa Collado
- Department of Hematology, Consorcio Hospital General Universitario Valencia, 46014 Valencia, Spain;
| | | | - Blanca Espinet
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (J.K.); (M.S.); (C.M.); (M.R.-R.); (L.A.); (X.C.); (D.R.); (S.R.-C.); (M.L.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute (HMRI), 08003 Barcelona, Spain
| |
Collapse
|
7
|
Bottardi S, Layne T, Ramòn AC, Quansah N, Wurtele H, Affar EB, Milot E. MNDA, a PYHIN factor involved in transcriptional regulation and apoptosis control in leukocytes. Front Immunol 2024; 15:1395035. [PMID: 38680493 PMCID: PMC11045911 DOI: 10.3389/fimmu.2024.1395035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Taylorjade Layne
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Ailyn C. Ramòn
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Woś J, Szymańska A, Lehman N, Chocholska S, Zarobkiewicz M, Pożarowski P, Bojarska-Junak A. Can Galectin-3 Be a Novel Biomarker in Chronic Lymphocytic Leukemia? Cells 2023; 13:30. [PMID: 38201234 PMCID: PMC10778116 DOI: 10.3390/cells13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Galectin-3's (Gal-3) effect on the pathogenesis of chronic lymphocytic leukemia (CLL) has not yet been extensively studied. The present study aims to analyze the potential role of Gal-3 as a prognostic biomarker in CLL patients. The Gal-3 expression was evaluated in CLL cells with RT-qPCR and flow cytometry. Due to the unclear clinical significance of soluble Gal-3 in CLL, our goal was also to assess the prognostic value of Gal-3 plasma level. Because cell survival is significantly affected by the interaction between Gal-3 and proteins such as Bcl-2, the results of Gal-3 expression analysis were also compared with the expression of Bcl-2. The results were analyzed for known prognostic factors, clinical data, and endpoints such as time to first treatment and overall survival time. Our research confirmed that Gal-3 is detected in and on CLL cells. However, using Gal-3 as a potential biomarker in CLL is challenging due to the significant heterogeneity in its expression in CLL cells. Moreover, our results revealed that Gal-3 mRNA expression in leukemic B cells is associated with the expression of proliferation markers (Ki-67 and PCNA) as well as anti-apoptotic protein Bcl-2 and can play an important role in supporting CLL cells.
Collapse
Affiliation(s)
- Justyna Woś
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (J.W.); (A.S.); (N.L.); (M.Z.); (P.P.)
| | - Agata Szymańska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (J.W.); (A.S.); (N.L.); (M.Z.); (P.P.)
| | - Natalia Lehman
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (J.W.); (A.S.); (N.L.); (M.Z.); (P.P.)
| | - Sylwia Chocholska
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (J.W.); (A.S.); (N.L.); (M.Z.); (P.P.)
| | - Piotr Pożarowski
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (J.W.); (A.S.); (N.L.); (M.Z.); (P.P.)
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (J.W.); (A.S.); (N.L.); (M.Z.); (P.P.)
| |
Collapse
|
9
|
Bojarska-Junak A, Kowalska W, Chocholska S, Szymańska A, Tomczak W, Zarobkiewicz MK, Roliński J. Prognostic Potential of Galectin-9 mRNA Expression in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5370. [PMID: 38001630 PMCID: PMC10670166 DOI: 10.3390/cancers15225370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Galectin-9 (Gal-9), very poorly characterized in chronic lymphocytic leukemia (CLL), was chosen in our study to examine its potential role as a CLL biomarker. The relation of Gal-9 expression in malignant B-cells and other routinely measured CLL markers, as well as its clinical relevance are poorly understood. Gal-9 mRNA expression was quantified with RT-qPCR in purified CD19+ B-cells of 100 CLL patients and analyzed in the context of existing clinical data. Our results revealed the upregulation of Gal-9 mRNA in CLL cells. High Gal-9 mRNA expression was closely associated with unfavorable prognostic markers. In addition, Gal-9 expression in leukemic cells was significantly elevated in CLL patients who did not respond to the first-line therapy compared to those who did respond. This suggests its potential predictive value. Importantly, Gal-9 was an independent predictor for the time to treatment parameters. Thus, we can suggest an adverse role of Gal-9 expression in CLL. Interestingly, it is possible that Gal-9 expression is induced in B-cells by EBV infection, so we determined the patients' EBV status. Our suggestion is that EBV coinfection could worsen prognosis in CLL, partly due to Gal-9 expression upregulation caused by EBV.
Collapse
Affiliation(s)
- Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (M.K.Z.); (J.R.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (M.K.Z.); (J.R.)
| | - Sylwia Chocholska
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland; (S.C.); (W.T.)
| | - Agata Szymańska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (M.K.Z.); (J.R.)
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland; (S.C.); (W.T.)
| | - Michał Konrad Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (M.K.Z.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (M.K.Z.); (J.R.)
| |
Collapse
|