1
|
de Sousa JC, Santos SACS, Kurtenbach E. Multiple approaches for the evaluation of connexin-43 expression and function in macrophages. J Immunol Methods 2024; 533:113741. [PMID: 39111361 DOI: 10.1016/j.jim.2024.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Connexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway. Macrophages contribute to defenses against inflammatory reactions such as bacterial sepsis and peritonitis. Several assays can identify the presence and activity of Cx43 in macrophages. Real-time polymerase chain reaction (PCR) can measure the relative mRNA expression of Cx43, whereas western blotting can detect protein expression levels. Using immunofluorescence assays, it is possible to analyze the expression and observe the localization of Cx43 in cells or tissues. Moreover, connexin-mediated gap junction intercellular communication can be evaluated using functional assays such as microinjection of fluorescent dyes or scrape loading-dye transfer. The use of selective inhibitors contributes to this understanding and reinforces the role of connexins in various processes. Here, we discuss these methods to evaluate Cx43 and macrophage gap junctions.
Collapse
Affiliation(s)
- Júlia Costa de Sousa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | | | - Eleonora Kurtenbach
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
2
|
Han N, Liu Y, Li X, Du J, Guo L, Liu Y. Reuterin isolated from the probiotic Lactobacillus reuteri promotes periodontal tissue regeneration by inhibiting Cx43-mediated the intercellular transmission of endoplasmic reticulum stress. J Periodontal Res 2024; 59:552-564. [PMID: 38193526 DOI: 10.1111/jre.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE The present study aimed to evaluate the effects of reuterin, a bioactive isolated from the probiotic Lactobacillus reuteri (L. reuteri) on periodontal tissue regeneration, and provide a new strategy for periodontitis treatment in the future. BACKGROUND Data discussing the present state of the field: Probiotics are essential for maintaining oral microecological balance. Our previous study confirmed that probiotic L. reuteri extracts could rescue the function of mesenchymal stem cells (MSCs) and promote soft tissue wound healing by neutralizing inflammatory Porphyromonas gingivalis-LPS. Periodontitis is a chronic inflammatory disease caused by bacteria seriously leading to tooth loss. In this study, we isolated and purified reuterin from an extract of L. reuteri to characterize from the extracts of L. reuteri to characterize its role in promoting periodontal tissue regeneration and controlling inflammation in periodontitis. METHODS Chromatographic analysis was used to isolate and purify reuterin from an extract of L. reuteri, and HNMR was used to characterize its structure. The inflammatory cytokine TNFα was used to simulate the inflammatory environment. Periodontal ligament stem cells (PDLSCs) were treated with TNFα and reuterin after which their effects were characterized using scratch wound cell migration assays to determine the concentration of reuterin, an experimental periodontitis model in rats was used to investigate the function of reuterin in periodontal regeneration and inflammation control in vivo. Real-time PCR, dye transfer experiments, image analysis, alkaline phosphatase activity, Alizarin red staining, cell proliferation, RNA-sequencing and Western Blot assays were used to detect the function of PDLSCs. RESULTS In vivo, local injection of reuterin promoted periodontal tissue regeneration of experimental periodontitis in rats and reduced local inflammatory response. Moreover, we found that TNFα stimulation caused endoplasmic reticulum (ER) stress in PDLSCs, which resulted in decreased osteogenic differentiation. Treatment with reuterin inhibited the ER stress state of PDLSCs caused by the inflammatory environment and restored the osteogenic differentiation and cell proliferation functions of inflammatory PDLSCs. Mechanistically, we found that reuterin restored the functions of inflammatory PDLSCs by inhibiting the intercellular transmission of ER stress mediated by Cx43 in inflammatory PDLSCs and regulated osteogenic differentiation capacity. CONCLUSION Our findings identified reuterin isolated from extracts of the probiotic L. reuteri, which improves tissue regeneration and controls inflammation, thus providing a new therapeutic method for treating periodontitis.
Collapse
Affiliation(s)
- Nannan Han
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
3
|
Sedovy MW, Leng X, Leaf MR, Iqbal F, Payne LB, Chappell JC, Johnstone SR. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J Vasc Res 2022; 60:101-113. [PMID: 36513042 PMCID: PMC11073551 DOI: 10.1159/000527469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) is essential to the function of the vasculature. Cx43 proteins form gap junctions that allow for the exchange of ions and molecules between vascular cells to facilitate cell-to-cell signaling and coordinate vasomotor activity. Cx43 also has intracellular signaling functions that influence vascular cell proliferation and migration. Cx43 is expressed in all vascular cell types, although its expression and function vary by vessel size and location. This includes expression in vascular smooth muscle cells (vSMC), endothelial cells (EC), and pericytes. Cx43 is thought to coordinate homocellular signaling within EC and vSMC. Cx43 gap junctions also function as conduits between different cell types (heterocellular signaling), between EC and vSMC at the myoendothelial junction, and between pericyte and EC in capillaries. Alterations in Cx43 expression, localization, and post-translational modification have been identified in vascular disease states, including atherosclerosis, hypertension, and diabetes. In this review, we discuss the current understanding of Cx43 localization and function in healthy and diseased blood vessels across all vascular beds.
Collapse
Affiliation(s)
- Meghan W. Sedovy
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Translational Biology, Medicine, And Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | - Xinyan Leng
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Melissa R. Leaf
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Farwah Iqbal
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Laura Beth Payne
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - John C. Chappell
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Scott R. Johnstone
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Ling X, Peng S, Xu Y, Chu F. Beneficial effect of simvastatin on human umbilical vein endothelial cells gap junctions induced by TNF-α. Anim Cells Syst (Seoul) 2022; 26:10-18. [PMID: 35308127 PMCID: PMC8928848 DOI: 10.1080/19768354.2021.2023037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although simvastatin has been shown to inhibit vascular permeability, which might be amplified via gap junction intercellular communication (GJIC), the underlying mechanism of action remains unclear. In the present study, we investigated the effects and mechanisms of simvastatin on endothelial cells GJIC. Specifically, human umbilical vein endothelial cells (HUVECs) were stimulated with TNF-α (10 ng/mL) alone or in combination with simvastatin (5 µM), and their effects on vascular endothelial cell GJIC tested via the scrape loading/dye transfer (SL/DT) assay. Next, we performed immunofluorescence, real-time PCR and western blot assays to analyze expression of Cx37, Cx40 and Cx43 in HUVECs. Results showed that GJIC activity in HUVECs was markedly elevated in HUVECs treated with TNF-α in combination with simvastatin. In addition, simvastatin treatment significantly upregulated expression of Cx37 and Cx40 but downregulated Cx43 mRNAs and proteins. Taken together, these marked changes indicated that simvastatin exerts its regulatory effects on gap junction function by upregulating Cx37 and Cx40 and downregulating Cx43 expression.
Collapse
Affiliation(s)
- Xiwen Ling
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Siyuan Peng
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yaqin Xu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Fujiang Chu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Tirosh A, Tuncman G, Calay ES, Rathaus M, Ron I, Tirosh A, Yalcin A, Lee YG, Livne R, Ron S, Minsky N, Arruda AP, Hotamisligil GS. Intercellular Transmission of Hepatic ER Stress in Obesity Disrupts Systemic Metabolism. Cell Metab 2021; 33:319-333.e6. [PMID: 33340456 PMCID: PMC7858244 DOI: 10.1016/j.cmet.2020.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum stress (ERS) has a pathophysiological role in obesity-associated insulin resistance. Yet, the coordinated tissue response to ERS remains unclear. Increased connexin 43 (Cx43)-mediated intercellular communication has been implicated in tissue-adaptive and -maladaptive response to various chronic stresses. Here, we demonstrate that in hepatocytes, ERS results in increased Cx43 expression and cell-cell coupling. Co-culture of ER-stressed "donor" cells resulted in intercellular transmission of ERS and dysfunction to ERS-naive "recipient" cells ("bystander response"), which could be prevented by genetic or pharmacologic suppression of Cx43. Hepatocytes from obese mice were able to transmit ERS to hepatocytes from lean mice, and mice lacking liver Cx43 were protected from diet-induced ERS, insulin resistance, and hepatosteatosis. Taken together, our results indicate that in obesity, the increased Cx43-mediated cell-cell coupling allows intercellular propagation of ERS. This novel maladaptive response to over-nutrition exacerbates the tissue ERS burden, promoting hepatosteatosis and impairing whole-body glucose metabolism.
Collapse
Affiliation(s)
- Amir Tirosh
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Harvard Medical School, Boston, MA 02115, USA.
| | - Gurol Tuncman
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ediz S Calay
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Moran Rathaus
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Ron
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amit Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abdullah Yalcin
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Adnan Menderes Üniversitesi Medical School, Department of Medical Biology, 09100 Aydin, Turkey
| | - Yankun G Lee
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rinat Livne
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Ron
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neri Minsky
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Paula Arruda
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Zhang Q, Wu S, Sun G, Zhang R, Li X, Zhang Y, Huang F, Yuan D. Hyperglycemia aggravates monocyte-endothelial adhesion in human umbilical vein endothelial cells from women with gestational diabetes mellitus by inducing Cx43 overexpression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:234. [PMID: 33708861 PMCID: PMC7940931 DOI: 10.21037/atm-19-4738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Gestational diabetes mellitus (GDM) is among the most common metabolic diseases during pregnancy and inevitably leads to maternal and fetal complications. Hyperglycemia results in injury to vascular endothelial cells, including monocyte-endothelial adhesion, which is considered to be the initiating factor of vascular endothelial cell injury. Connexin 43 (Cx43) plays a key role in this adhesion process. Therefore, this study aimed to explore the effects of Cx43 on monocyte-endothelial adhesion in GDM-induced injury of vascular endothelial cells. Methods Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords from pregnant women with and without GDM. THP-1 cells (a human leukemia monocytic cell line) adhering to HUVECs, related molecules [intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1)], and the activity of the phosphoinositide 3-kinase/protein kinase B/Nuclear factor- kappa B (PI3K/AKT/NF-κB) signaling pathway were compared between the normal and GDM-HUVECs. Oleamide and specific small interfering ribonucleic acids (siRNAs) were used to inhibit Cx43 expression in GDM-HUVECs to observe the effects of Cx43 on the adhesion of THP-1 cells and HUVECs. Results A much higher number of THP-1 cells adhered to GDM-HUVECs than to normal HUVECs. This was accompanied by an increased expression of Cx43, ICAM-1, and VCAM-1, as well as activation of the PI3K/AKT/NF-κB signaling pathway. After the inhibition of Cx43 expression in GDM-HUVECs with oleamide and specific siRNA, THP-1-HUVEC adhesion, ICAM-1 and VCAM-1 expression, and activation of PI3K/AKT/NF-κB signaling pathway were all attenuated. Hyperglycemia was able to increase expression of Cx43 in HUVECs. Conclusions For the first time, Cx43 expression was found to be substantially higher in GDM-HUVECs than in normal HUVECs. Hyperglycemia caused the overexpression of Cx43 in HUVECs, which resulted in the activation of the PI3K/AKT/NF-κB signaling pathway and the increase of its downstream adhesion molecules, including ICAM-1 and VCAM-1, ultimately leading to increased monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoliang Sun
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of Anesthesiology, Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China
| | - Xianlong Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanling Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Rodjakovic D, Salm L, Beldi G. Function of Connexin-43 in Macrophages. Int J Mol Sci 2021; 22:1412. [PMID: 33573367 PMCID: PMC7866802 DOI: 10.3390/ijms22031412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Recent studies have helped to increase the understanding of the function of Connexin-43 (Cx43) in macrophages (Mφ). The various roles of Cx43 in Mφs range from migration, antigen-presentation and some forms of intercellular communication to more delicate processes, such as electrochemical support in the propagation of the heartbeat, immunomodulatory regulation in the lungs and in macrophage-differentiation. Its relevance in pathophysiology becomes evident in inflammatory bowel disease (IBD), tumours and HIV, in which aberrant functioning of Cx43 has been described. However, the involvement of Cx43 in other Mφ functions, such as phagocytosis and polarisation, and its involvement in other types of local and systemic inflammation, are still unclear and need further research.
Collapse
Affiliation(s)
- Daniel Rodjakovic
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| | - Lilian Salm
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| |
Collapse
|
8
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
9
|
Molica F, Figueroa XF, Kwak BR, Isakson BE, Gibbins JM. Connexins and Pannexins in Vascular Function and Disease. Int J Mol Sci 2018; 19:ijms19061663. [PMID: 29874791 PMCID: PMC6032213 DOI: 10.3390/ijms19061663] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/24/2022] Open
Abstract
Connexins (Cxs) and pannexins (Panxs) are ubiquitous membrane channel forming proteins that are critically involved in many aspects of vascular physiology and pathology. The permeation of ions and small metabolites through Panx channels, Cx hemichannels and gap junction channels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. This review provides an overview of current knowledge with respect to the pathophysiological role of these channels in large arteries, the microcirculation, veins, the lymphatic system and platelet function. The essential nature of these membrane proteins in vascular homeostasis is further emphasized by the pathologies that are linked to mutations and polymorphisms in Cx and Panx genes.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Xavier F Figueroa
- Departamento de Fisiología, Faculdad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8330025, Chile.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Jonathan M Gibbins
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Reading RG6 6AS, UK.
| |
Collapse
|
10
|
Johnson RD, Camelliti P. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets? Int J Mol Sci 2018; 19:ijms19030866. [PMID: 29543751 PMCID: PMC5877727 DOI: 10.3390/ijms19030866] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.
Collapse
Affiliation(s)
- Robert D Johnson
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
11
|
Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-Induced Cardiovascular Disease: Mechanisms and Importance of Linear Energy Transfer. Front Cardiovasc Med 2018; 5:5. [PMID: 29445728 PMCID: PMC5797745 DOI: 10.3389/fcvm.2018.00005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) in the form of photons and protons is a well-established treatment for cancer. More recently, heavy charged particles have been used to treat radioresistant and high-risk cancers. Radiation treatment is known to cause cardiovascular disease (CVD) which can occur acutely during treatment or years afterward in the form of accelerated atherosclerosis. Radiation-induced cardiovascular disease (RICVD) can be a limiting factor in treatment as well as a cause of morbidity and mortality in successfully treated patients. Inflammation plays a key role in both acute and chronic RICVD, but the underling pathophysiology is complex, involving DNA damage, reactive oxygen species, and chronic inflammation. While understanding of the molecular mechanisms of RICVD has increased, the growing number of patients receiving RT warrants further research to identify individuals at risk, plans for prevention, and targets for the treatment of RICVD. Research on RICVD is also relevant to the National Aeronautics and Space Administration (NASA) due to the prevalent space radiation environment encountered by astronauts. NASA's current research on RICVD can both contribute to and benefit from concurrent work with cell and animal studies informing radiotoxicities resulting from cancer therapy. This review summarizes the types of radiation currently in clinical use, models of RICVD, current knowledge of the mechanisms by which they cause CVD, and how this knowledge might apply to those exposed to various types of radiation.
Collapse
Affiliation(s)
- Christopher B Sylvester
- Department of Bioengineering, Rice University, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zarana S Patel
- Science and Space Operations, KBRwyle, Houston, TX, United States
| | | |
Collapse
|
12
|
Zhang J, Yang G, Zhu Y, Peng X, Li T, Liu L. Relationship of Cx43 regulation of vascular permeability to osteopontin-tight junction protein pathway after sepsis in rats. Am J Physiol Regul Integr Comp Physiol 2018; 314:R1-R11. [PMID: 28978514 DOI: 10.1152/ajpregu.00443.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our previous study demonstrated that connexin (Cx)43 participated in the regulation of vascular permeability in severe sepsis. Osteopontin (OPN) has been demonstrated to participate in the occurrence of atherosclerosis, inflammation, as well as the adhesion and migration of cells. It is not clear whether OPN is involved in Cx43 regulating vascular permeability after sepsis and if it is related to tight-junction proteins. with the use of cecal ligation and puncture (CLP)-induced septic rats and lipopolysaccharide (LPS)-treated pulmonary vein vascular endothelial cells (VECs), the role of zona occuldens 1 (ZO-1) and claudin-5 in Cx43 regulation of vascular permeability and its relationship to OPN were investigated in the present study. The results showed that the expression of ZO-1 and claudin-5 in pulmonary vein were decreased in CLP rats and LPS-treated pulmonary vein VECs. Cx43-overexpressed lentivirus induced the degradation of ZO-1 and claudin-5, while Cx43 RNAi lentivirus abrogated the degradation of ZO-1 and claudin-5 induced by LPS. The vascular permeability and expression of OPN in pulmonary veins were significantly increased in CLP rats and LPS-treated pulmonary vein VECs. Silencing OPN by OPN RNAi lentivirus inhibited the vascular hyperpermeability induced by LPS. Overexpressed Cx43 lentivirus increased the expression of OPN and vascular permeability and downregulated the expression of ZO-1 and claudin-5 in pulmonary vein VECs. Silencing OPN by OPN RNAi lentivirus inhibited the effects of Cx43-overexpressed lentivirus on downregulation of ZO-1 and claudin-5 and vascular hyperpermeability in pulmonary vein VECs. Transfection of specific double-stranded RNA targeting to β-catenin and T-cell factor-4 (Tcf-4) abolished the upregulation of OPN induced by Cx43 overexpression. These results suggest that OPN participates in the regulation of vascular permeability by Cx43 after sepsis. Cx43 upregulation of OPN is via the Tcf-4/β-catenin transcription pathway; OPN increases vascular permeability by downregulating the expression of the tight junction proteins ZO-1 and claudin-5.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Guangming Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
13
|
Mensah SA, Cheng MJ, Homayoni H, Plouffe BD, Coury AJ, Ebong EE. Regeneration of glycocalyx by heparan sulfate and sphingosine 1-phosphate restores inter-endothelial communication. PLoS One 2017; 12:e0186116. [PMID: 29023478 PMCID: PMC5638341 DOI: 10.1371/journal.pone.0186116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
Vasculoprotective endothelium glycocalyx (GCX) shedding plays a critical role in vascular disease. Previous work demonstrated that GCX degradation disrupts endothelial cell (EC) gap junction connexin (Cx) proteins, likely blocking interendothelial molecular transport that maintains EC and vascular tissue homeostasis to resist disease. Here, we focused on GCX regeneration and tested the hypothesis that vasculoprotective EC function can be stimulated via replacement of GCX when it is shed. We used EC with [i] intact heparan sulfate (HS), the most abundant GCX component; [ii] degraded HS; or [iii] HS that was restored after enzyme degradation, by cellular self-recovery or artificially. Artificial HS restoration was achieved via treatment with exogenous HS, with or without the GCX regenerator and protector sphingosine 1- phosphate (S1P). In these cells we immunocytochemically examined expression of Cx isotype 43 (Cx43) at EC borders and characterized Cx-containing gap junction activity by measuring interendothelial spread of gap junction permeable Lucifer Yellow dye. With intact HS, 60% of EC borders expressed Cx43 and dye spread to 2.88 ± 0.09 neighboring cells. HS degradation decreased Cx43 expression to 30% and reduced dye spread to 1.87± 0.06 cells. Cellular self-recovery of HS restored baseline levels of Cx43 and dye transfer. Artificial HS recovery with exogenous HS partially restored Cx43 expression to 46% and yielded dye spread to only 1.03 ± 0.07 cells. Treatment with both HS and S1P, recovered HS and restored Cx43 to 56% with significant dye transfer to 3.96 ± 0.23 cells. This is the first evidence of GCX regeneration in a manner that effectively restores vasculoprotective EC communication.
Collapse
Affiliation(s)
- Solomon A. Mensah
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Ming J. Cheng
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Homa Homayoni
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Brian D. Plouffe
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Arthur J. Coury
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Eno E. Ebong
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
15
|
Denis JF, Scheckenbach KEL, Pfenniger A, Meens MJ, Krams R, Miquerol L, Taffet S, Chanson M, Delmar M, Kwak BR. Connexin40 controls endothelial activation by dampening NFκB activation. Oncotarget 2017; 8:50972-50986. [PMID: 28881621 PMCID: PMC5584222 DOI: 10.18632/oncotarget.16438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/27/2017] [Indexed: 01/01/2023] Open
Abstract
Connexins are proteins forming gap junction channels for intercellular communication. Connexin40 (Cx40) is highly expressed by endothelial cells (ECs) of healthy arteries but this expression is lost in ECs overlying atherosclerotic plaques. Low/oscillatory shear stress observed in bends and bifurcations of arteries is atherogenic partly through activation of the pro-inflammatory NFκB pathway in ECs. In this study, we investigated the relation between shear stress, Cx40 and NFκB. Shear stress-modifying casts were placed around carotid arteries of mice expressing eGFP under the Cx40 promoter (Cx40+/eGFP). We found that Cx40 expression is decreased in carotid regions of oscillatory shear stress but conserved in high and low laminar shear stress regions. These results were confirmed in vitro. Using phage display, we retrieved a binding motif for the intracellular regulatory Cx40 C-terminus (Cx40CT), i.e. HS[I, L, V][K, R]. One of the retrieved peptides (HSLRPEWRMPGP) showed a 58.3% homology with amino acids 5-to-16 of IκBα, a member of the protein complex inhibiting NFκB activation. Binding of IκBα (peptide) and Cx40 was confirmed by crosslinking and en face proximity ligation assay on carotid arteries. TNFα-induced nuclear translocation of NFκB in ECs was enhanced after reducing Cx40 with siRNA. Transfection of HeLa cells with either full-length Cx40 or Cx40CT demonstrated that Cx40CT was sufficient for inhibition of TNFα-induced NFκB phosphorylation. Finally, Tie2CreTgCx40fl/flApoe-/- mice showed exaggerated shear stress-induced atherosclerosis and enhanced NFκB nuclear translocation. Our data show a novel functional IκBα-Cx40 interaction that may be relevant for the control of NFκB activation by shear stress in atherogenesis.
Collapse
Affiliation(s)
- Jean-Francois Denis
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Anna Pfenniger
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| | - Merlijn J Meens
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Rob Krams
- Department of Bioengineering, Imperial College, London, UK
| | - Lucile Miquerol
- Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Steven Taffet
- Department of Microbiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marc Chanson
- Departments of Pediatrics and of Cell Physiology and Metabolism, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Morel S, Christoffersen C, Axelsen LN, Montecucco F, Rochemont V, Frias MA, Mach F, James RW, Naus CC, Chanson M, Lampe PD, Nielsen MS, Nielsen LB, Kwak BR. Sphingosine-1-phosphate reduces ischaemia-reperfusion injury by phosphorylating the gap junction protein Connexin43. Cardiovasc Res 2016; 109:385-396. [PMID: 26762268 PMCID: PMC4752044 DOI: 10.1093/cvr/cvw004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/09/2016] [Indexed: 01/29/2023] Open
Abstract
AIM Increasing evidence points to lipoprotein composition rather than reverse cholesterol transport in the cardioprotective properties of high-density lipoproteins (HDLs). HDL binding to receptors at the surface of cardiomyocytes activates signalling pathways promoting survival, but downstream targets are largely unknown. Here, we investigate the pathways by which the sphingosine-1-phosphate (S1P) constituent of HDL limits cell death induced by cardiac ischaemia-reperfusion (I/R). METHODS AND RESULTS Apolipoprotein M (ApoM) transgenic (Apom-Tg) mice, in which plasma S1P is increased by 296%, and wild-type (WT) mice were subjected to in vivo I/R. Infarct size, neutrophil infiltration into the infarcted area, and serum Troponin I were less pronounced in Apom-Tg mice. In vitro experiments suggest that this cardioprotection depends on direct effects of S1P on cardiomyocytes, whereas leucocyte recruitment seems only indirectly affected. Importantly, short-term S1P treatment at the onset of reperfusion was sufficient to reduce I/R injury in isolated perfused hearts. Mechanistic in vitro and ex vivo studies revealed that 5 min of S1P treatment induced phosphorylation of the gap junction protein Connexin43 (Cx43) on Serine368 (S368), which was mediated by S1P2 and S1P3, but not by S1P1, receptors in cardiomyocytes. Finally, S1P-induced reduction of infarct size after ex vivo I/R was lost in hearts of mice with a truncated C-terminus of Cx43 (Cx43(K258/KO)) or in which the S368 is mutated to a non-phosphorylatable alanine (Cx43(S368A/S368A)). CONCLUSION Our study reveals an important molecular pathway by which modulating the apoM/S1P axis has a therapeutic potential in the fight against I/R injury in the heart.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, CMU, F06.2747.a, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen 2100, Denmark Department of Biomedical Sciences, Copenhagen 2200, Denmark
| | - Lene N Axelsen
- Department of Biomedical Sciences, Copenhagen 2200, Denmark The Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen 2200, Denmark
| | - Fabrizio Montecucco
- Department of Medical Specialties-Cardiology, University of Geneva, Geneva 1211, Switzerland
| | - Viviane Rochemont
- Department of Pathology and Immunology, University of Geneva, CMU, F06.2747.a, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Miguel A Frias
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva 1211, Switzerland
| | - Francois Mach
- Department of Medical Specialties-Cardiology, University of Geneva, Geneva 1211, Switzerland
| | - Richard W James
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva 1211, Switzerland
| | - Christian C Naus
- Department of Cellular and Physiological Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marc Chanson
- Department of Pediatrics, University of Geneva, Geneva 1211, Switzerland Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Morten S Nielsen
- Department of Biomedical Sciences, Copenhagen 2200, Denmark The Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen 2200, Denmark
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen 2100, Denmark Department of Biomedical Sciences, Copenhagen 2200, Denmark Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CMU, F06.2747.a, Rue Michel-Servet 1, Geneva 1211, Switzerland Department of Medical Specialties-Cardiology, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
17
|
Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 2016; 43:450-9. [PMID: 26009190 DOI: 10.1042/bst20150056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collaborative communication lies at the centre of multicellular life. Gap junctions (GJs) are surface membrane structures that allow direct communication between cells. They were discovered in the 1960s following the convergence of the detection of low-resistance electrical interactions between cells and anatomical studies of intercellular contact points. GJs purified from liver plasma membranes contained a 27 kDa protein constituent; it was later named Cx32 (connexin 32) after its full sequence was determined by recombinant technology. Identification of Cx43 in heart and later by a further GJ protein, Cx26 followed. Cxs have a tetraspan organization in the membrane and oligomerize during intracellular transit to the plasma membrane; these were shown to be hexameric hemichannels (connexons) that could interact end-to-end to generate GJs at areas of cell-to-cell contact. The structure of the GJ was confirmed and refined by a combination of biochemical and structural approaches. Progress continues towards obtaining higher atomic 3D resolution of the GJ channel. Today, there are 20 and 21 highly conserved members of the Cx family in the human and mouse genomes respectively. Model organisms such as Xenopus oocytes and zebra fish are increasingly used to relate structure to function. Proteins that form similar large pore membrane channels in cells called pannexins have also been identified in chordates. Innexins form GJs in prechordates; these two other proteins, although functionally similar, are very different in amino acid sequence to the Cxs. A time line tracing the historical progression of wide ranging research in GJ biology over 60 years is mapped out. The molecular basis of channel dysfunctions in disease is becoming evident and progress towards addressing Cx channel-dependent pathologies, especially in ischaemia and tissue repair, continues.
Collapse
|
18
|
Zhang J, Yang GM, Zhu Y, Peng XY, Li T, Liu LM. Role of connexin 43 in vascular hyperpermeability and relationship to Rock1-MLC20 pathway in septic rats. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1323-32. [PMID: 26342084 DOI: 10.1152/ajplung.00016.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022] Open
Abstract
Connexin (Cx)43 has been shown to participate in several cardiovascular diseases. Increased vascular permeability is a common and severe complication in sepsis or septic shock. Whether or not Cx43 takes part in the regulation of vascular permeability in severe sepsis is not known, and the underlying mechanism has not been described. With cecal ligation and puncture-induced sepsis in rats and lipopolysaccharide (LPS)-treated vascular endothelial cells (VECs) from pulmonary veins, the role of Cx43 in increased vascular permeability and its relationship to the RhoA/Rock1 pathway were studied. It was shown that vascular permeability in the lungs, kidneys, and mesentery in sepsis rats and LPS-stimulated monolayer pulmonary vein VECs was significantly increased and positively correlated with the increased expression of Cx43 and Rock1 in these organs and cultured pulmonary vein VECs. The connexin inhibitor carbenoxolone (10 mg/kg iv) and the Rock1 inhibitor Y-27632 (2 mg/kg iv) alleviated the vascular leakage of lung, mesentery, and kidney in sepsis rats. Overexpressed Cx43 increased the phosphorylation of 20-kDa myosin light chain (MLC20) and the expression of Rock1 and increased the vascular permeability and decreased the transendothelial electrical resistance of pulmonary vein VECs. Cx43 RNA interference decreased the phosphorylation of MLC20 and the expression of Rock1 and decreased LPS-stimulated hyperpermeability of cultured pulmonary vein VECs. The Rock1 inhibitor Y-27632 alleviated LPS- and overexpressed Cx43-induced hyperpermeability of monolayer pulmonary vein VECs. This report shows that Cx43 participates in the regulation of vascular permeability in sepsis and that the mechanism is related to the Rock1-MLC20 phosphorylation pathway.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Guang-Ming Yang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiao-Yong Peng
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|