1
|
Cui XY, Stavik B, Thiede B, Sandset PM, Kanse SM. FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro. Int J Mol Sci 2022; 23:ijms232213706. [PMID: 36430180 PMCID: PMC9690979 DOI: 10.3390/ijms232213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Factor-VII-activating protease (FSAP) is involved in the regulation of hemostasis and inflammation. Extracellular histones play a role in inflammation and the conversion of latent pro-FSAP into active FSAP. FSAP has been shown to regulate endothelial permeability, but the mechanisms are not clear. Here, we have investigated the effects of FSAP on endothelial permeability in vitro. A mixture of histones from calf thymus stimulated permeability, and the wild-type (WT) serine protease domain (SPD) of FSAP blocked this effect. WT-SPD-FSAP did not influence permeability on its own, nor that stimulated by thrombin or vascular endothelial growth factor (VEGF)-A165. Histones induced a large-scale rearrangement of the junction proteins VE-cadherin and zona occludens-1 from a clear junctional distribution to a diffuse pattern. The presence of WT-SPD-FSAP inhibited these changes. Permeability changes by histones were blocked by both TLR-2 and TLR4 blocking antibodies. Histones upregulated the expression of TLR-2, but not TLR-4, in HUVEC cells, and WT-SPD-FSAP abolished the upregulation of TLR-2 expression. An inactive variant, Marburg I (MI)-SPD-FSAP, did not have any of these effects. The inhibition of histone-mediated permeability may be an important function of FSAP with relevance to sepsis, trauma, and stroke and the need to be investigated further in in vivo experiments.
Collapse
Affiliation(s)
- Xue Yan Cui
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| | - Benedicte Stavik
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sandip M. Kanse
- Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
2
|
Kim JY, Manna D, Etscheid M, Leergaard TB, Kanse SM. Factor VII activating protease (FSAP) inhibits the outcome of ischemic stroke in mouse models. FASEB J 2022; 36:e22564. [PMID: 36165219 DOI: 10.1096/fj.202200828r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/16/2022]
Abstract
The outcome of ischemic stroke can be improved by further refinements of thrombolysis and reperfusion strategies. Factor VII activating protease (FSAP) is a circulating serine protease that could be important in this context. Its levels are raised in patients as well as mice after stroke and a single nucleotide polymorphism (SNP) in the coding sequence, which results in an inactive enzyme, is linked to an increased risk of stroke. In vitro, FSAP cleaves fibrinogen to promote fibrinolysis, activates protease-activated receptors, and decreases the cellular cytotoxicity of histones. Based on these facts, we hypothesized that FSAP can be used as a treatment for ischemic stroke. A combination of tissue plasminogen activator (tPA), a thrombolytic drug, and recombinant serine protease domain of FSAP (FSAP-SPD) improved regional cerebral perfusion and neurological outcome and reduced infarct size in a mouse model of thromboembolic stroke. FSAP-SPD also improved stroke outcomes and diminished the negative consequences of co-treatment with tPA in the transient middle cerebral artery occlusion model of stroke without altering cerebral perfusion. The inactive MI-isoform of FSAP had no impact in either model. FSAP enhanced the lysis of blood clots in vitro, but in the tail transection model of hemostasis, FSAP-SPD treatment provoked a faster clotting time indicating that it also has pro-coagulant actions. Thus, apart from enhancing thrombolysis, FSAP has multiple effects on stroke progression and represents a promising novel therapeutic strategy in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jeong Yeon Kim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Dipankar Manna
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael Etscheid
- Division of Hematology/Transfusion Medicine, Paul Ehrlich Institut, Langen, Germany
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sandip M Kanse
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Berge-Seidl S, Nielsen NV, Rodriguez Alfonso AA, Etscheid M, Kandanur SPS, Haug BE, Stensland M, Thiede B, Karacan M, Preising N, Wiese S, Ständker L, Declerck PJ, Løset GÅ, Kanse SM. Identification of a Phage Display-Derived Peptide Interacting with the N-Terminal Region of Factor VII Activating Protease (FSAP) Enables Characterization of Zymogen Activation. ACS Chem Biol 2022; 17:2631-2642. [PMID: 36070465 PMCID: PMC9486805 DOI: 10.1021/acschembio.2c00538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 01/19/2023]
Abstract
Factor VII Activating protease (FSAP) has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to single-nucleotide polymorphism. The zymogen form of FSAP in plasma is activated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear whether this activation mechanism is specific and amenable to manipulation. Using a phage display approach, we have identified a Cys-constrained 11 amino acid peptide, NNKC9/41, that activates pro-FSAP in plasma. The synthetic linear peptide has a propensity to cyclize through the terminal Cys groups, of which the antiparallel cyclic dimer, but not the monocyclic peptide, is the active component. Other commonly found zymogens in the plasma, related to the hemostasis system, were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in an intrinsically disordered stretch in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41, and this was reversed by MA-FSAP-38C7, demonstrating the utility of this peptide. Peptide NNKC9/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP, elucidate its biological role, and provide a starting point for the pharmacological manipulation of FSAP activity.
Collapse
Affiliation(s)
| | - Nis Valentin Nielsen
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| | | | | | | | - Bengt Erik Haug
- Department
of Chemistry and Center for Pharmacy, University
of Bergen, 5007 Bergen, Norway
| | - Maria Stensland
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department
of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Paul J. Declerck
- Department
of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Geir Åge Løset
- Department
of Biosciences, University of Oslo, 0371 Oslo, Norway
- Nextera
AS, 0349 Oslo, Norway
| | - Sandip M. Kanse
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
4
|
Artunc F, Bohnert BN, Schneider JC, Staudner T, Sure F, Ilyaskin AV, Wörn M, Essigke D, Janessa A, Nielsen NV, Birkenfeld AL, Etscheid M, Haerteis S, Korbmacher C, Kanse SM. Proteolytic activation of the epithelial sodium channel (ENaC) by factor VII activating protease (FSAP) and its relevance for sodium retention in nephrotic mice. Pflugers Arch 2021; 474:217-229. [PMID: 34870751 PMCID: PMC8766372 DOI: 10.1007/s00424-021-02639-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2−/−) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2−/− mice. However, Habp2−/− mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2−/− mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany. .,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany. .,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany.
| | - Bernhard N Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Jonas C Schneider
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Tobias Staudner
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Daniel Essigke
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Nis V Nielsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | | | - Silke Haerteis
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Institute of Anatomy, University of Regensburg, Regensburg, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Maffioli E, Jiang Z, Nonnis S, Negri A, Romeo V, Lietz CB, Hook V, Ristagno G, Baselli G, Kistler EB, Aletti F, O’Donoghue AJ, Tedeschi G. High-Resolution Mass Spectrometry-Based Approaches for the Detection and Quantification of Peptidase Activity in Plasma. Molecules 2020; 25:molecules25184071. [PMID: 32899982 PMCID: PMC7571063 DOI: 10.3390/molecules25184071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Proteomic technologies have identified 234 peptidases in plasma but little quantitative information about the proteolytic activity has been uncovered. In this study, the substrate profile of plasma proteases was evaluated using two nano-LC-ESI-MS/MS methods. Multiplex substrate profiling by mass spectrometry (MSP-MS) quantifies plasma protease activity in vitro using a global and unbiased library of synthetic peptide reporter substrates, and shotgun peptidomics quantifies protein degradation products that have been generated in vivo by proteases. The two approaches gave complementary results since they both highlight key peptidase activities in plasma including amino- and carboxypeptidases with different substrate specificity profiles. These assays provide a significant advantage over traditional approaches, such as fluorogenic peptide reporter substrates, because they can detect active plasma proteases in a global and unbiased manner, in comparison to detecting select proteases using specific reporter substrates. We discovered that plasma proteins are cleaved by endoproteases and these peptide products are subsequently degraded by amino- and carboxypeptidases. The exopeptidases are more active and stable in plasma and therefore were found to be the most active proteases in the in vitro assay. The protocols presented here set the groundwork for studies to evaluate changes in plasma proteolytic activity in shock.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
- Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (Z.J.); (C.B.L.); (V.H.)
| | - Simona Nonnis
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
- Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy
| | - Armando Negri
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
- Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy
| | - Valentina Romeo
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (Z.J.); (C.B.L.); (V.H.)
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (Z.J.); (C.B.L.); (V.H.)
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Giuseppe Ristagno
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy;
| | - Giuseppe Baselli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy;
| | - Erik B. Kistler
- Department of Anesthesiology & Critical Care, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Anesthesiology & Critical Care, VA San Diego HealthCare System, San Diego, CA 92161, USA
| | - Federico Aletti
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (Z.J.); (C.B.L.); (V.H.)
- Correspondence: (A.J.O.); (G.T.); Tel.: +1-8585345360 (A.J.O.); +39-02-50318127 (G.T.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; (E.M.); (S.N.); (A.N.); (V.R.)
- Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy
- Correspondence: (A.J.O.); (G.T.); Tel.: +1-8585345360 (A.J.O.); +39-02-50318127 (G.T.)
| |
Collapse
|
6
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Kara E, Nielsen NV, Eggertsdottir B, Thiede B, Kanse SM, Løset GÅ. Design and Characterization of a New pVII Combinatorial Phage Display Peptide Library for Protease Substrate Mining Using Factor VII Activating Protease (FSAP) as Model. Chembiochem 2020; 21:1875-1884. [PMID: 32180321 PMCID: PMC7383712 DOI: 10.1002/cbic.201900705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/07/2020] [Indexed: 12/18/2022]
Abstract
We describe a novel, easy and efficient combinatorial phage display peptide substrate-mining method to map the substrate specificity of proteases. The peptide library is displayed on the pVII capsid of the M13 bacteriophage, which renders pIII necessary for infectivity and efficient retrieval, in an unmodified state. As capture module, the 3XFLAG was chosen due to its very high binding efficiency to anti-FLAG mAbs and its independency of any post-translational modification. This library was tested with Factor-VII activating protease (WT-FSAP) and its single-nucleotide polymorphism variant Marburg-I (MI)-FSAP. The WT-FSAP results confirmed the previously reported Arg/Lys centered FSAP cleavage site consensus as dominant, as well as reinforcing MI-FSAP as a loss-of-function mutant. Surprisingly, rare substrate clones devoid of basic amino acids were also identified. Indeed one of these peptides was cleaved as free peptide, thus suggesting a broader range of WT-FSAP substrates than previously anticipated.
Collapse
Affiliation(s)
- Emrah Kara
- Institute of Basal Medical Sciences Oslo University HospitalUniversity of OsloOsloNorway
| | - Nis Valentin Nielsen
- Institute of Basal Medical Sciences Oslo University HospitalUniversity of OsloOsloNorway
| | | | - Bernd Thiede
- Department of BiosciencesUniversity of Oslo0316OsloNorway
| | - Sandip M. Kanse
- Institute of Basal Medical Sciences Oslo University HospitalUniversity of OsloOsloNorway
| | - Geir Åge Løset
- Department of BiosciencesUniversity of Oslo0316OsloNorway
- Nextera ASOsloNorway
| |
Collapse
|
8
|
Breidenbach J, Bartz U, Gütschow M. Coumarin as a structural component of substrates and probes for serine and cysteine proteases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140445. [PMID: 32405284 PMCID: PMC7219385 DOI: 10.1016/j.bbapap.2020.140445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Coumarins represent well-established structures to introduce fluorescence into tool compounds for biochemical investigations. They are valued for their small size, chemical stability and accessibility as well as their tunable photochemical properties. As components of fluorophore/quencher pairs or FRET donor/acceptor pairs, coumarins have frequently been applied in substrate mapping approaches for serine and cysteine proteases. This review also focuses on the incorporation of coumarins into the side chain of amino acids and the exploitation of the resulting fluorescent amino acids for the positional profiling of protease substrates. The protease-inhibiting properties of certain coumarin derivatives and the utilization of coumarin moieties to assemble activity-based probes for serine and cysteine proteases are discussed as well. Coumarins represent well-established structures to introduce fluorescence into tool compounds for biochemical investigations. They are valued for their small size, chemical stability and accessibility as well as their tunable photochemical properties. Coumarins are components of fluorophore/quencher pairs or FRET donor/acceptor pairs in substrate mapping of proteases. Coumarins have been incorporated into amino acids side chains to be used for the positional profiling of protease substrates. Coumarins have protease-inhibiting properties and are used for activity-based probes for serine and cysteine proteases.
Collapse
Affiliation(s)
- Julian Breidenbach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
9
|
Byskov K, Etscheid M, Kanse SM. Cellular effects of factor VII activating protease (FSAP). Thromb Res 2020; 188:74-78. [PMID: 32087413 DOI: 10.1016/j.thromres.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Factor VII activating protease (FSAP) is a circulating serine protease of broad specificity that is likely to be involved in many pathophysiological processes. The activation of the circulating zymogen form of FSAP by histones, released from damaged cells, underlines its roles in regulating host responses to tissue damage and inflammation. Some of the direct cellular effects of FSAP are mediated through protease-activated receptors (PARs). Knock-down of each one of the four PARs in endothelial cells indicated that PAR-1 and -3 are involved in regulating endothelial permeability in response to FSAP. Overexpression of PARs in cell lines led to the conclusion that PAR-2 and -1 were the main receptors for FSAP. Studies with synthetic peptides and receptor mutants demonstrate that FSAP cleaves PAR-1 and -2 at their canonical cleavage site. However, PAR-1 is not activated by FSAP in all cells, which may be related to other, as yet, undefined factors. Inhibition of apoptosis by FSAP is mediated through PAR-1 and was observed in neurons, astrocytes and A549 cells. FSAP also mediates cellular effects by modulating the activity of growth factors, generation of bradykinin, C5a and C3a generation or histone inactivation. These cellular effects need to be further investigated at the in vivo level.
Collapse
Affiliation(s)
- Kristina Byskov
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Byskov K, Le Gall SM, Thiede B, Camerer E, Kanse SM. Protease activated receptors (PAR)-1 and -2 mediate cellular effects of factor VII activating protease (FSAP). FASEB J 2019; 34:1079-1090. [PMID: 31914657 DOI: 10.1096/fj.201801986rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023]
Abstract
Factor VII activating protease (FSAP) is a circulating serine protease implicated in thrombosis, atherosclerosis, stroke, and cancer. Using an overexpression strategy, we have systematically investigated the role of protease activated receptors (PAR)-1, -2, -3, and -4 on FSAP-mediated signaling in HEK293T and A549 cells. Cleavage of PAR-reporter constructs and MAPK phosphorylation was used to monitor receptor activation. FSAP cleaved PAR-2 and to a lesser degree PAR-1, but not PAR-3 or PAR-4 in both cell types. Robust MAPK activation in response to FSAP was observed after PAR-2, but not PAR-1 overexpression in HEK293T. Recombinant serine protease domain of wild type FSAP, but not the Marburg I isoform of FSAP, could reproduce the effects of plasma purified FSAP. Canonical cleavage of both PARs was suggested by mass spectrometric analysis of synthetic peptide substrates from the N-terminus of PARs and site directed mutagenesis studies. Surprisingly, knockdown of endogenous PAR-1, but not PAR-2, prevented the apoptosis-inhibitory effect of FSAP, suggesting that PAR1 is nevertheless a direct or indirect target in some cell types. This molecular characterization of PAR-1 and -2 as cellular receptors of FSAP will help to define the actions of FSAP in the context of cancer and vascular biology.
Collapse
Affiliation(s)
- Kristina Byskov
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sylvain M Le Gall
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, Paris, France
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, Paris, France
| | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
VEGF-A-Cleavage by FSAP and Inhibition of Neo-Vascularization. Cells 2019; 8:cells8111396. [PMID: 31698750 PMCID: PMC6912458 DOI: 10.3390/cells8111396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing leads to the secretion of multiple forms of vascular endothelial growth factor-A (VEGF-A) that differ in their activity profiles with respect to neovascularization. FSAP (factor VII activating protease) is the zymogen form of a plasma protease that is activated (FSAPa) upon tissue injury via the release of histones. The purpose of the study was to determine if FSAPa regulates VEGF-A activity in vitro and in vivo. FSAP bound to VEGF165, but not VEGF121, and VEGF165 was cleaved in its neuropilin/proteoglycan binding domain. VEGF165 cleavage did not alter its binding to VEGF receptors but diminished its binding to neuropilin. The stimulatory effects of VEGF165 on endothelial cell proliferation, migration, and signal transduction were not altered by FSAP. Similarly, proliferation of VEGF receptor-expressing BAF3 cells, in response to VEGF165, was not modulated by FSAP. In the mouse matrigel model of angiogenesis, FSAP decreased the ability of VEGF165, basic fibroblast growth factor (bFGF), and their combination, to induce neovascularization. Lack of endogenous FSAP in mice did not influence neovascularization. Thus, FSAP inhibited VEGF165-mediated angiogenesis in the matrigel model in vivo, where VEGF’s interaction with the matrix and its diffusion are important.
Collapse
|
12
|
Characterization of α-amylases isolated from Cyperus esculentus seeds (tigernut): Biochemical features, kinetics and thermal inactivation thermodynamics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Rut W, Nielsen NV, Czarna J, Poreba M, Kanse SM, Drag M. Fluorescent activity-based probe for the selective detection of Factor VII activating protease (FSAP) in human plasma. Thromb Res 2019; 182:124-132. [PMID: 31479940 DOI: 10.1016/j.thromres.2019.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/28/2019] [Accepted: 08/17/2019] [Indexed: 12/21/2022]
Abstract
The zymogen form of circulating Factor VII activating protease (FSAP) is activated by histones that are released as a consequence of tissue damage or excessive inflammation. This is likely to have consequences in a number of disease conditions such as stroke, atherosclerosis, liver fibrosis, thrombosis and cancer. To investigate the existence, as well as the concentration of active FSAP (FSAPa) in complex biological systems an active site probe is needed. We used Hybrid Combinatorial Substrate Library (HyCoSuL) to screen for natural and unnatural amino acids that specifically bind to P4-P2 pockets of FSAPa. This information was used to designing a fluorogenic substrate (Ac-Pro-DTyr-Lys-Arg-ACC) as well as an irreversible, fluorogenic activity-based probe Cy5-6-Ahx-Pro-DTyr-Lys-ArgP(OPh)2. In normal human plasma the probe showed very low non-specific reactivity with some plasma proteins but upon activation of pro-FSAP with histones, strong labelling of FSAPa was observed. This labelling could be inhibited by aprotinin and was not found in the plasma of a subject that was homozygous for a polymorphism, which leads to loss of activity, or in plasma that was depleted of FSAP by antibodies. This 2nd generation substrate exhibited 6-fold higher catalytic efficiency than the 1st generation substrate and a much higher selectivity for FSAPa over other plasma proteases. This substrate and probe can be useful to detect and localize FSAPa in normal and pathological tissue and plasma to gain more insight into its functions.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | | | - Justyna Czarna
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sandip M Kanse
- Oslo University Hospital and University of Oslo, Norway.
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
14
|
Olsson M, Stanne TM, Pedersen A, Lorentzen E, Kara E, MartinezâPalacian A, RÃnnow Sand NP, Jacobsen AF, Sandset PM, Sidelmann JJ, EngstrÃm G, Melander O, Kanse SM, Jern C. Genome-wide analysis of genetic determinants of circulating factor VII-activating protease (FSAP) activity. J Thromb Haemost 2018; 16:2024-2034. [PMID: 30070759 PMCID: PMC6485504 DOI: 10.1111/jth.14258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 01/17/2023]
Abstract
Essentials Knowledge of genetic regulators of plasma factor VII activating protease (FSAP) levels is limited. We performed a genome-wide analysis of variants influencing FSAP activity in Scandinavian cohorts. We replicated an association for Marburg-1 and identified an association for a HABP2 stop variant. We identified a novel locus near ADCY2 as a potential additional regulator of FSAP activity. SUMMARY Background Factor VII-activating protease (FSAP) has roles in both coagulation and fibrinolysis. Recent data indicate its involvement in several other processes, such as vascular remodeling and inflammation. Plasma FSAP activity is highly variable among healthy individuals and, apart from the low-frequency missense variant Marburg-I (rs7080536) in the FSAP-encoding gene HABP2, determinants of this variation are unclear. Objectives To identify novel genetic variants within and outside of the HABP2 locus that influence circulating FSAP activity. Patients/Methods We performed an exploratory genome-wide association study (GWAS) on plasma FSAP activity amongst 3230 Swedish subjects. Directly genotyped rare variants were also analyzed with gene-based tests. Using GWAS, we confirmed the strong association between the Marburg-I variant and FSAP activity. HABP2 was also significant in the gene-based analysis, and remained significant after exclusion of Marburg-I carriers. This was attributable to a rare HABP2 stop variant (rs41292628). Carriers of this stop variant showed a similar reduction in FSAP activity as Marburg-I carriers, and this finding was replicated. A secondary genome-wide significant locus was identified at a 5p15 locus (rs35510613), and this finding requires future replication. This common variant is located upstream of ADCY2, which encodes a protein catalyzing the formation of cAMP. Results and Conclusions This study verified the Marburg-I variant to be a strong regulator of FSAP activity, and identified an HABP2 stop variant with a similar impact on FSAP activity. A novel locus near ADCY2 was identified as a potential additional regulator of FSAP activity.
Collapse
Affiliation(s)
- M. Olsson
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - T. M. Stanne
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - A. Pedersen
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - E. Lorentzen
- Bioinformatics Core FacilityUniversity of GothenburgGothenburgSweden
| | - E. Kara
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - A. MartinezâPalacian
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - N. P. RÃnnow Sand
- Department of CardiologyHospital of South West DenmarkEsbjerg and Department of Regional Health ResearchFaculty of Health ScienceUniversity of Southern DenmarkEsbjergDenmark
| | - A. F. Jacobsen
- Department of ObstetricsOslo University Hospital and University of OsloOsloNorway
| | - P. M. Sandset
- Department of HematologyOslo University Hospital and University of OsloOsloNorway
| | - J. J. Sidelmann
- Unit for Thrombosis ResearchDepartment of Regional Health ResearchFaculty of Health ScienceUniversity of Southern DenmarkEsbjergDenmark
| | - G. EngstrÃm
- Department of Clinical Sciences, MalmÃLund UniversityLundSweden
| | - O. Melander
- Department of Clinical Sciences, MalmÃLund UniversityLundSweden
| | - S. M. Kanse
- Institute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - C. Jern
- Department of Pathology and GeneticsInstitute of BiomedicineThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
| |
Collapse
|