1
|
Chan RJ, Parikh N, Ahmed S, Ruzicka M, Hiremath S. Blood Pressure Control Should Focus on More Potassium: Controversies in Hypertension. Hypertension 2024; 81:501-509. [PMID: 37641923 DOI: 10.1161/hypertensionaha.123.20545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
- Ryan J Chan
- Division of Nephrology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ontario, Canada (R.J.C., N.P., S.A., M.R., S.H.)
| | - Namrata Parikh
- Division of Nephrology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ontario, Canada (R.J.C., N.P., S.A., M.R., S.H.)
| | - Sumaiya Ahmed
- Division of Nephrology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ontario, Canada (R.J.C., N.P., S.A., M.R., S.H.)
| | - Marcel Ruzicka
- Division of Nephrology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ontario, Canada (R.J.C., N.P., S.A., M.R., S.H.)
| | - Swapnil Hiremath
- Division of Nephrology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ontario, Canada (R.J.C., N.P., S.A., M.R., S.H.)
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ontario, Canada (S.H.)
| |
Collapse
|
2
|
MacIntyre CJ, Ackerman MJ. Personalized Care in Long QT Syndrome: Better Management, More Sports, and Fewer Devices. Card Electrophysiol Clin 2023; 15:285-291. [PMID: 37558299 DOI: 10.1016/j.ccep.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Long QT Syndrome (LQTS) is a potentially life-threatening yet highly treatable inherited cardiac channelopathy. When evaluating these patients, it is important to consider patient-specific as well as genotype-specific factors in order to adequately encompass the many nuances to care that exist in its management. The tendency to follow a "one-size-fits-all" approach needs to be replaced by treatment strategies that embrace the unique considerations of the individual patient in the context of their genotype. Herein, the authors aim to review the spectrum of LQTS, including the considerations when tailoring a personalized, genotype-tailored treatment program for a patient's LQTS.
Collapse
Affiliation(s)
- Ciorsti J MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
4
|
Ono K, Iwasaki Y, Akao M, Ikeda T, Ishii K, Inden Y, Kusano K, Kobayashi Y, Koretsune Y, Sasano T, Sumitomo N, Takahashi N, Niwano S, Hagiwara N, Hisatome I, Furukawa T, Honjo H, Maruyama T, Murakawa Y, Yasaka M, Watanabe E, Aiba T, Amino M, Itoh H, Ogawa H, Okumura Y, Aoki‐Kamiya C, Kishihara J, Kodani E, Komatsu T, Sakamoto Y, Satomi K, Shiga T, Shinohara T, Suzuki A, Suzuki S, Sekiguchi Y, Nagase S, Hayami N, Harada M, Fujino T, Makiyama T, Maruyama M, Miake J, Muraji S, Murata H, Morita N, Yokoshiki H, Yoshioka K, Yodogawa K, Inoue H, Okumura K, Kimura T, Tsutsui H, Shimizu W. JCS/JHRS 2020 Guideline on Pharmacotherapy of Cardiac Arrhythmias. J Arrhythm 2022; 38:833-973. [PMID: 35283400 PMCID: PMC9745564 DOI: 10.1002/joa3.12714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
5
|
Ono K, Iwasaki YK, Akao M, Ikeda T, Ishii K, Inden Y, Kusano K, Kobayashi Y, Koretsune Y, Sasano T, Sumitomo N, Takahashi N, Niwano S, Hagiwara N, Hisatome I, Furukawa T, Honjo H, Maruyama T, Murakawa Y, Yasaka M, Watanabe E, Aiba T, Amino M, Itoh H, Ogawa H, Okumura Y, Aoki-Kamiya C, Kishihara J, Kodani E, Komatsu T, Sakamoto Y, Satomi K, Shiga T, Shinohara T, Suzuki A, Suzuki S, Sekiguchi Y, Nagase S, Hayami N, Harada M, Fujino T, Makiyama T, Maruyama M, Miake J, Muraji S, Murata H, Morita N, Yokoshiki H, Yoshioka K, Yodogawa K, Inoue H, Okumura K, Kimura T, Tsutsui H, Shimizu W. JCS/JHRS 2020 Guideline on Pharmacotherapy of Cardiac Arrhythmias. Circ J 2022; 86:1790-1924. [PMID: 35283400 DOI: 10.1253/circj.cj-20-1212] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | - Yu-Ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Masaharu Akao
- Department of Cardiovascular Medicine, National Hospital Organization Kyoto Medical Center
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine
| | - Yasuya Inden
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yoshinori Kobayashi
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital
| | | | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | | | | | - Tetsushi Furukawa
- Department of Bio-information Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| | - Haruo Honjo
- Research Institute of Environmental Medicine, Nagoya University
| | - Toru Maruyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital
| | - Yuji Murakawa
- The 4th Department of Internal Medicine, Teikyo University School of Medicine, Mizonokuchi Hospital
| | - Masahiro Yasaka
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center
| | - Eiichi Watanabe
- Department of Cardiology, Fujita Health University School of Medicine
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Mari Amino
- Department of Cardiovascular Medicine, Tokai University School of Medicine
| | - Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital
| | - Hisashi Ogawa
- Department of Cardiology, National Hospital Organisation Kyoto Medical Center
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Chizuko Aoki-Kamiya
- Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Jun Kishihara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Eitaro Kodani
- Department of Cardiovascular Medicine, Nippon Medical School Tama Nagayama Hospital
| | - Takashi Komatsu
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University School of Medicine
| | | | | | - Tsuyoshi Shiga
- Department of Clinical Pharmacology and Therapeutics, The Jikei University School of Medicine
| | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Atsushi Suzuki
- Department of Cardiology, Tokyo Women's Medical University
| | - Shinya Suzuki
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Yukio Sekiguchi
- Department of Cardiology, National Hospital Organization Kasumigaura Medical Center
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Noriyuki Hayami
- Department of Fourth Internal Medicine, Teikyo University Mizonokuchi Hospital
| | | | - Tadashi Fujino
- Department of Cardiovascular Medicine, Toho University, Faculty of Medicine
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Mitsunori Maruyama
- Department of Cardiovascular Medicine, Nippon Medical School Musashi Kosugi Hospital
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine
| | - Shota Muraji
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| | | | - Norishige Morita
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital
| | - Hisashi Yokoshiki
- Department of Cardiovascular Medicine, Sapporo City General Hospital
| | - Koichiro Yoshioka
- Division of Cardiology, Department of Internal Medicine, Tokai University School of Medicine
| | - Kenji Yodogawa
- Department of Cardiovascular Medicine, Nippon Medical School
| | | | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| |
Collapse
|
6
|
Blandin CE, Gravez BJ, Hatem SN, Balse E. Remodeling of Ion Channel Trafficking and Cardiac Arrhythmias. Cells 2021; 10:cells10092417. [PMID: 34572065 PMCID: PMC8468138 DOI: 10.3390/cells10092417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023] Open
Abstract
Both inherited and acquired cardiac arrhythmias are often associated with the abnormal functional expression of ion channels at the cellular level. The complex machinery that continuously traffics, anchors, organizes, and recycles ion channels at the plasma membrane of a cardiomyocyte appears to be a major source of channel dysfunction during cardiac arrhythmias. This has been well established with the discovery of mutations in the genes encoding several ion channels and ion channel partners during inherited cardiac arrhythmias. Fibrosis, altered myocyte contacts, and post-transcriptional protein changes are common factors that disorganize normal channel trafficking during acquired cardiac arrhythmias. Channel availability, described notably for hERG and KV1.5 channels, could be another potent arrhythmogenic mechanism. From this molecular knowledge on cardiac arrhythmias will emerge novel antiarrhythmic strategies.
Collapse
Affiliation(s)
- Camille E. Blandin
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Basile J. Gravez
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Stéphane N. Hatem
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- ICAN—Institute of Cardiometabolism and Nutrition, Institute of Cardiology, Pitié-Salpêtrière Hospital, Sorbonne University, F-75013 Paris, France
| | - Elise Balse
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- Correspondence:
| |
Collapse
|
7
|
Marstrand P, Almatlouh K, Kanters JK, Graff C, Christensen AH, Bundgaard H, Theilade J. Effect of moderate potassium-elevating treatment in long QT syndrome: the TriQarr Potassium Study. Open Heart 2021; 8:e001670. [PMID: 34531279 PMCID: PMC8449979 DOI: 10.1136/openhrt-2021-001670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In long QT syndrome (LQTS), beta blockers prevent arrhythmias. As a supplement, means to increase potassium has been suggested. We set to investigate the effect of moderate potassium elevation on cardiac repolarisation. METHODS Patients with LQTS with a disease-causing KCNQ1 or KCNH2 variant were included. In addition to usual beta-blocker treatment, patients were prescribed (1) 50 mg spironolactone (low dose) or (2) 100 mg spironolactone and 3 g potassium chloride per day (high dose+). Electrocardiographic measures were obtained at baseline and after 7 days of treatment. RESULTS Twenty patients were enrolled (10 low dose and 10 high dose+). One patient was excluded due to severe influenza-like symptoms, and 5 of 19 patients completing the study had mild side effects. Plasma potassium in low dose did not increase in response to treatment (4.26±0.22 to 4.05±0.19 mmol/L, p=0.07). Also, no change was observed in resting QTcF (QT interval corrected using Fridericia's formula) before versus after treatment (478±7 vs 479±7 ms, p=0.9). In high dose+, potassium increased significantly from 4.08±0.29 to 4.48±0.54 mmol/L (p=0.001). However, no difference in QTcF was observed comparing before (472±8 ms) versus after (469±8 ms) (p=0.66) high dose+ treatment. No patients developed hyperkalaemia. CONCLUSION In patients with LQTS, high dose+ treatment increased plasma potassium by 0.4 mmol/L without cases of hyperkalaemia. However, the potassium increase did not shorten the QT interval and several patients had side effects. Considering the QT interval as a proxy for arrhythmic risk, our data do not support that potassium-elevating treatment has a role as antiarrhythmic prophylaxis in patients with LQTS with normal-range potassium levels. TRIAL REGISTRATION NUMBER NCT03291145.
Collapse
Affiliation(s)
- Peter Marstrand
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasim Almatlouh
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Alex Hørby Christensen
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Juliane Theilade
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
8
|
Perry MD, Ng CA, Mangala MM, Ng TYM, Hines AD, Liang W, Xu MJO, Hill AP, Vandenberg JI. Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization. Cardiovasc Res 2021; 116:1434-1445. [PMID: 31628797 DOI: 10.1093/cvr/cvz247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Current treatment for congenital long QT syndrome Type 2 (cLQTS2), an electrical disorder that increases the risk of life-threatening cardiac arrhythmias, is aimed at reducing the incidence of arrhythmia triggers (beta-blockers) or terminating the arrhythmia after onset (implantable cardioverter-defibrillator). An alternative strategy is to target the underlying disease mechanism, which is reduced rapid delayed rectifier current (IKr) passed by Kv11.1 channels. Small molecule activators of Kv11.1 have been identified but the extent to which these can restore normal cardiac signalling in cLQTS2 backgrounds remains unclear. Here, we examined the ability of ICA-105574, an activator of Kv11.1 that impairs transition to the inactivated state, to restore function to heterozygous Kv11.1 channels containing either inactivation enhanced (T618S, N633S) or expression deficient (A422T) mutations. METHODS AND RESULTS ICA-105574 effectively restored Kv11.1 current from heterozygous inactivation enhanced or expression defective mutant channels in heterologous expression systems. In a human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of cLQTS2 containing the expression defective Kv11.1 mutant A422T, cardiac repolarization, estimated from the duration of calcium transients in isolated cells and the rate corrected field potential duration (FPDc) in culture monolayers of cells, was significantly prolonged. The Kv11.1 activator ICA-105574 was able to reverse the prolonged repolarization in a concentration-dependent manner. However, at higher doses, ICA-105574 produced a shortening of the FPDc compared to controls. In vitro and in silico analysis suggests that this overcorrection occurs as a result of a temporal redistribution of the peak IKr to much earlier in the plateau phase of the action potential, which results in early repolarization. CONCLUSION Kv11.1 activators, which target the primary disease mechanism, provide a possible treatment option for cLQTS2, with the caveat that there may be a risk of overcorrection that could itself be pro-arrhythmic.
Collapse
Affiliation(s)
- Matthew D Perry
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Melissa M Mangala
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
| | - Timothy Y M Ng
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Adam D Hines
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,Queensland Brain Institute, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Whitney Liang
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
| | - Michelle J O Xu
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Averin EE, Nikitin AE, Pozdnyak AO, Fedorova EL, Zhuk VS, Davydov SI, Fridman IL, Kompaniets OG, Kirpichnikova NV, Dudarenkova MR, Ginzburg ML, El Sharif MA, Martemyanova EG, Sozykin AV. [Expert Council Resolution. Practical Aspects of the Diagnosis and Correction of Potassium and Magnesium Deficiency States]. ACTA ACUST UNITED AC 2020; 60:155-164. [PMID: 32345211 DOI: 10.18087/cardio.2020.2.n972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 11/18/2022]
Abstract
The article analyzes properties of potassium and magnesium, which may exert vasodilatory, anti-inflammatory, anti-ischemic, antiaggregant, and antiarrhythmic effects. These are extremely important microelements and potentially beneficial therapeutic agents for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- E E Averin
- Central Clinical Hospital of the Russian Academy of Sciences, Moscow
| | - A E Nikitin
- Central Clinical Hospital of the Russian Academy of Sciences, Moscow
| | - A O Pozdnyak
- Kazan State Medical Academy, Branch of the Russian Medical Academy of Continuous Professional Education
| | | | - V S Zhuk
- N.I. Pirogov Multidisciplinary Clinic, St. Petersburg
| | | | | | | | | | | | | | | | | | - A V Sozykin
- N.I. Pirogov Russian National Research Medical University, Moscow
| |
Collapse
|
10
|
Perissinotti L, Guo J, Kudaibergenova M, Lees-Miller J, Ol'khovich M, Sharapova A, Perlovich GL, Muruve DA, Gerull B, Noskov SY, Duff HJ. The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain. Mol Pharmacol 2019; 96:259-271. [PMID: 31182542 PMCID: PMC6666383 DOI: 10.1124/mol.118.115642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade. SIGNIFICANCE STATEMENT: The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.
Collapse
Affiliation(s)
- Laura Perissinotti
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Jiqing Guo
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Meruyert Kudaibergenova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - James Lees-Miller
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Marina Ol'khovich
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Angelica Sharapova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - German L Perlovich
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Daniel A Muruve
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Brenda Gerull
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Henry J Duff
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| |
Collapse
|
11
|
|
12
|
Balse E, Boycott HE. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias? Front Physiol 2017; 8:808. [PMID: 29089904 PMCID: PMC5650974 DOI: 10.3389/fphys.2017.00808] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
The shape of the cardiac action potential (AP) is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP) and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.
Collapse
Affiliation(s)
- Elise Balse
- Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ. Paris VI, Inserm, UMRS 1166, Université Pierre et Marie Curie, Paris, France
| | - Hannah E. Boycott
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
El-Sherif N, Turitto G, Boutjdir M. Congenital Long QT syndrome and torsade de pointes. Ann Noninvasive Electrocardiol 2017; 22. [PMID: 28670758 DOI: 10.1111/anec.12481] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
Since its initial description by Jervell and Lange-Nielsen in 1957, the congenital long QT syndrome (LQTS) has been the most investigated cardiac ion channelopathy. A prolonged QT interval in the surface electrocardiogram is the sine qua non of the LQTS and is a surrogate measure of the ventricular action potential duration (APD). Congenital as well as acquired alterations in certain cardiac ion channels can affect their currents in such a way as to increase the APD and hence the QT interval. The inhomogeneous lengthening of the APD across the ventricular wall results in dispersion of APD. This together with the tendency of prolonged APD to be associated with oscillations at the plateau level, termed early afterdepolarizations (EADs), provides the substrate of ventricular tachyarrhythmia associated with LQTS, usually referred to as torsade de pointes (TdP) VT. This review will discuss the genetic, molecular, and phenotype characteristics of congenital LQTS as well as current management strategies and future directions in the field.
Collapse
Affiliation(s)
- Nabil El-Sherif
- Downstate Medical Center, State University of New York, Brooklyn, NY, USA.,VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Gioia Turitto
- NewYork-Presbyterian Brooklyn Methodist Hospital, New York, NY, USA
| | - Mohamed Boutjdir
- Downstate Medical Center, State University of New York, Brooklyn, NY, USA.,VA NY Harbor Healthcare System, Brooklyn, NY, USA.,NYU School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Etheridge SP, Cohen MI. An Overview of Diagnosis and Management Strategies for Long QT Syndrome. J Innov Card Rhythm Manag 2017; 8:2750-2757. [PMID: 32494455 PMCID: PMC7252925 DOI: 10.19102/icrm.2017.080605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
Abstract
Significant clinical, research, genetic, and therapeutic advances in the diagnosis and management of long QT syndrome (LQTS) have made the treatment of this channelopathy one of the most exciting and enlightening bench-to-bed success stories in the field of cardiology. Cascade screening identifies affected family members, and pre-symptomatic therapy saves lives. Here, we present a case of LQTS in a child and a review of the diagnostic and treatment strategies that have been introduced to date in the modern era.
Collapse
Affiliation(s)
- Susan P Etheridge
- University of Utah and Primary Children's Medical Center, Salt Lake City, UT
| | - Mitchell I Cohen
- University of Arizona College of Medicine and Phoenix Children's Hospital, Phoenix, AZ
| |
Collapse
|
15
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
16
|
Cho Y. Management of Patients with Long QT Syndrome. Korean Circ J 2016; 46:747-752. [PMID: 27826330 PMCID: PMC5099327 DOI: 10.4070/kcj.2016.46.6.747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 01/02/2023] Open
Abstract
Long QT syndrome (LQTS) is a rare cardiac channelopathy associated with syncope and sudden death due to torsades de pointes and ventricular fibrillation. Syncope and sudden death are frequently associated with physical and emotional stress. Management of patients with LQTS consists of life-style modification, β-blockers, left cardiac sympathetic denervation (LCSD), and implantable cardioverter-defibrillator (ICD) implantation. Prohibition of competitive exercise and avoidance of QT-prolonging drugs are important issues in life-style modification. Although β-blockers are the primary treatment modality for patients with LQTS, these drugs are not completely effective in some patients. Lifelong ICD implantation in young and active patients is associated with significant complications. LCSD is a relatively simple and highly effective surgical procedure. However, LCSD is rarely used.
Collapse
Affiliation(s)
- Yongkeun Cho
- Department of Internal Medicine, Kyungpook National Univeristy Hospital, Daegu, Korea
| |
Collapse
|
17
|
Gao Y, Liu W, Li C, Qiu X, Qin X, Guo B, Liu X, Li J, Yuan Y, Li X, Liang L, Li L, Hong K, Pu J, Liu J, Wang Q, Zhang L, Hu DY. Common Genotypes of Long QT Syndrome in China and the Role of ECG Prediction. Cardiology 2015; 133:73-78. [PMID: 26496715 DOI: 10.1159/000440608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Genetic testing, a gold standard for long QT syndrome (LQTS) diagnosis, is time-consuming and costly when all the 15 candidate genes are screened. Since genotype-specific ECG patterns are present in most LQT1-3 mutation carriers, we tested the utility of ECG-guided genotyping in a large cohort of Chinese LQTS patients. METHODS AND RESULTS We enrolled 230 patients (26 ± 17 years, 66% female) with a clinical diagnosis of LQTS. Genotypes were predicted as LQT1-3 based on the presence of ECG patterns typical for each genotype in 200 patients (85 LQT1, 110 LQT2 and 5 LQT3). Family-based genotype prediction was also conducted if gene-specific ECG patterns were found in other affected family members. Mutational screening identified 104 mutations (44% novel), i.e. 46 KCNQ1, 54 KCNH2 and 4 SCN5A mutations. The overall predictive accuracy of ECG-guided genotyping was 79% (157/200) and 79% (67/85), 78% (86/110) and 80% (4/5) for LQT1, LQT2 and LQT3, respectively. The predictive accuracy was 98% (42/43) when family-based ECG assessment was performed. CONCLUSIONS From this large-scale genotyping study, we found that LQT2 is the most common genotype among the Chinese. Family-based ECG-guided genotyping is highly accurate. ECG-guided genotyping is time- and cost-effective. We therefore recommend it as an optimal approach for the genetic diagnosis of LQTS.
Collapse
Affiliation(s)
- Yuanfeng Gao
- Heart Center, Peking University People's Hospital, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Spears DA, Gollob MH. Genetics of inherited primary arrhythmia disorders. APPLICATION OF CLINICAL GENETICS 2015; 8:215-33. [PMID: 26425105 PMCID: PMC4583121 DOI: 10.2147/tacg.s55762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A sudden unexplained death is felt to be due to a primary arrhythmic disorder when no structural heart disease is found on autopsy, and there is no preceding documentation of heart disease. In these cases, death is presumed to be secondary to a lethal and potentially heritable abnormality of cardiac ion channel function. These channelopathies include congenital long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, Brugada syndrome, and short QT syndrome. In certain cases, genetic testing may have an important role in supporting a diagnosis of a primary arrhythmia disorder, and can also provide prognostic information, but by far the greatest strength of genetic testing lies in the screening of family members, who may be at risk. The purpose of this review is to describe the basic genetic and molecular pathophysiology of the primary inherited arrhythmia disorders, and to outline a rational approach to genetic testing, management, and family screening.
Collapse
Affiliation(s)
- Danna A Spears
- Division of Cardiology - Electrophysiology, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - Michael H Gollob
- Division of Cardiology - Electrophysiology, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
19
|
Abstract
In the last decade, there have been considerable advances in the understanding of the pathophysiology of malignant ventricular tachyarrhythmias (VT) and sudden cardiac death (SCD). Over 80% of SCD occurs in patients with organic heart disease. However, approximately 10%-15% of SCD occurs in the presence of structurally normal heart, and the majority of these patients are young. In this group of patients, changes in genes encoding cardiac ion channels produce modifications of the function of the channel resulting in an electrophysiological substrate of VT and SCD. Collectively, these disorders are referred to as cardiac ion channelopathies. The four major syndromes in this group are: the long QT syndrome (LQTS), the Brugada syndrome (BrS), the short QT syndrome (SQTS), and the catecholaminergic polymorphic ventricular tachycardia (CPVT). Each of these syndromes includes multiple subtypes with different and sometimes complex cardiac ion channel genetic abnormalities. Many are associated with other somatic and neurological abnormalities besides the risk of VT and SCD. The current management of cardiac ion channelopathies can be summarized as follows: (1) in symptomatic patients, the implantable cardioverter defibrillator (ICD) is the only viable option; (2) in asymptomatic patients, risk stratification is necessary, followed by either the ICD, pharmacotherapy, or a combination of both. A genotype-specific approach to pharmacotherapy requires a thorough understanding of the molecular-cellular basis of arrhythmogenesis in cardiac ion channelopathies as well as the specific drug profile.
Collapse
|
20
|
β-Blockers are vital in the current management of congenital long QT syndrome, but genotype-specific treatments may be options in the future. DRUGS & THERAPY PERSPECTIVES 2015. [DOI: 10.1007/s40267-015-0205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Tadros R, Cadrin-Tourigny J, Abadir S, Rivard L, Nattel S, Talajic M, Khairy P. Pharmacotherapy for inherited arrhythmia syndromes: mechanistic basis, clinical trial evidence and practical application. Expert Rev Cardiovasc Ther 2015; 13:769-82. [DOI: 10.1586/14779072.2015.1049156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Martin CA, Huang CLH, Matthews GDK. Recent Developments in the Management of Patients at Risk for Sudden Cardiac Death. Postgrad Med 2015; 123:84-94. [DOI: 10.3810/pgm.2011.03.2266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Barsheshet A, Dotsenko O, Goldenberg I. Congenital long QT syndromes: prevalence, pathophysiology and management. Paediatr Drugs 2014; 16:447-56. [PMID: 25288402 DOI: 10.1007/s40272-014-0090-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long QT syndrome is a genetic disorder associated with life threatening ventricular arrhythmias and sudden death. This inherited arrhythmic disorder exhibits genetic heterogeneity, incomplete penetrance, and variable expressivity. During the past two decades there have been major advancements in understanding the genotype-phenotype correlations in LQTS. This genotype-phenotype relationship can lead to improved management of LQTS. However, development of genotype-specific or mutation-specific management strategies is very challenging. This review describes the pathophysiology of LQTS, genotype-phenotype correlations, and focuses on the management of LQTS. In general, the treatment of LQTS consists of lifestyle modifications, medical therapy with beta-blockers, device and surgical therapy. We further summarize current data on the efficacy of pharmacological treatment options for the three most prevalent LQTS variants including beta-blockers in LQT1, LQT2 and LQT3, sodium channel blockers and ranolazine for LQT3, potassium supplementation and spironolactone for LQT2, and possibly sex hormone-based therapy for LQT2.
Collapse
Affiliation(s)
- Alon Barsheshet
- Cardiology Department, Rabin Medical Center, Petach Tikva, Israel
| | | | | |
Collapse
|
24
|
Melgari D, Du C, El Harchi A, Zhang Y, Hancox JC. Suppression of the hERG potassium channel response to premature stimulation by reduction in extracellular potassium concentration. Physiol Rep 2014; 2:2/10/e12165. [PMID: 25318749 PMCID: PMC4254092 DOI: 10.14814/phy2.12165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Potassium channels encoded by human ether‐à‐go‐go‐related gene (hERG) mediate the cardiac rapid delayed rectifier K+ current (IKr), which participates in ventricular repolarization and has a protective role against unwanted premature stimuli late in repolarization and early in diastole. Ionic current carried by hERG channels (IhERG) is known to exhibit a paradoxical dependence on external potassium concentration ([K+]e), but effects of acute [K+]e changes on the response of IhERG to premature stimulation have not been characterized. Whole‐cell patch‐clamp measurements of hERG current were made at 37°C from hERG channels expressed in HEK293 cells. Under conventional voltage‐clamp, both wild‐type (WT) and S624A pore‐mutant IhERG during depolarization to +20 mV and subsequent repolarization to −40 mV were decreased when superfusate [K+]e was decreased from 4 to 1 mmol/L. When [K+]e was increased from 4 to 10 mmol/L, pulse current was increased and tail IhERG was decreased. Increasing [K+]e produced a +10 mV shift in voltage‐dependent inactivation of WT IhERG and slowed inactivation time course, while lowering [K+]e from 4 to 1 mmol/L produced little change in inactivation voltage dependence, but accelerated inactivation time course. Under action potential (AP) voltage‐clamp, lowering [K+]e reduced the amplitude of IhERG during the AP and suppressed the maximal IhERG response to premature stimuli. Raising [K+]e increased IhERG early during the AP and augmented the IhERG response to premature stimuli. Our results are suggestive that during hypokalemia not only is the contribution of IKr to ventricular repolarization reduced but its ability to protect against unwanted premature stimuli also becomes impaired. hERG potassium channels are important for ventricular repolarization and for protecting the ventricles of the heart from unwanted premature stimuli. This study shows that, in addition to reducing the contribution of hERG channel current to ventricular repolarization, hypokalemia impairs the protective response of hERG to premature stimulation.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Chunyun Du
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| |
Collapse
|
25
|
Affiliation(s)
- Enid Gilbert-Barness
- Laboratory Medicine, Pediatric, Obstetrics and Gynecology, Department of Pathology, College of Medicine, Tampa General Hospital, University of South Florida Morsani, 1 Tampa General Circle, Tampa, FL 33606, USA.
| |
Collapse
|
26
|
Wang T, Hogan-Cann A, Kang Y, Cui Z, Guo J, Yang T, Lamothe SM, Li W, Ma A, Fisher JT, Zhang S. Muscarinic receptor activation increases hERG channel expression through phosphorylation of ubiquitin ligase Nedd4-2. Mol Pharmacol 2014; 85:877-86. [PMID: 24688054 DOI: 10.1124/mol.113.091553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human ether-à-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel, which is important for cardiac repolarization. Reduction of hERG current due to genetic mutations or drug interferences causes long QT syndrome, leading to cardiac arrhythmias and sudden death. To date, there is no effective therapeutic method to restore or enhance hERG channel function. Using cell biology and electrophysiological methods, we found that the muscarinic receptor agonist carbachol increased the expression and function of hERG, but not ether-à-go-go or Kv1.5 channels stably expressed in human embryonic kidney cells. The carbachol-mediated increase in hERG expression was abolished by the selective M3 antagonist 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide) but not by the M2 antagonist AF-DX 116 (11[[2-[(diethylamino)methyl]-1-piperidinyl]-acetyl]-5,11-dihydro-6H-pyrido[2,3-b] [1,4]benzodiazepine-6-one). Treatment of cells with carbachol reduced the hERG-ubiquitin interaction and slowed the rate of hERG degradation. We previously showed that the E3 ubiquitin ligase Nedd4-2 mediates degradation of hERG channels. Here, we found that disrupting the Nedd4-2 binding domain in hERG completely eliminated the effect of carbachol on hERG channels. Carbachol treatment enhanced the phosphorylation level, but not the total level, of Nedd4-2. Blockade of the protein kinase C (PKC) pathway abolished the carbachol-induced enhancement of hERG channels. Our data suggest that muscarinic activation increases hERG channel expression by phosphorylating Nedd4-2 via the PKC pathway.
Collapse
Affiliation(s)
- Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China (T.W., A.M.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (T.W., A.H.-C., Y.K., Z.C., J.G., T.Y., S.M.L., W.L., J.T.F., S.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Riedel M, Jou CJ, Lai S, Lux RL, Moreno AP, Spitzer KW, Christians E, Tristani-Firouzi M, Benjamin IJ. Functional and pharmacological analysis of cardiomyocytes differentiated from human peripheral blood mononuclear-derived pluripotent stem cells. Stem Cell Reports 2014; 3:131-41. [PMID: 25068127 PMCID: PMC4110777 DOI: 10.1016/j.stemcr.2014.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Advances in induced pluripotent stem cell (iPSC) technology have set the stage for routine derivation of patient- and disease-specific human iPSC-cardiomyocyte (CM) models for preclinical drug screening and personalized medicine approaches. Peripheral blood mononuclear cells (PBMCs) are an advantageous source of somatic cells because they are easily obtained and readily amenable to transduction. Here, we report that the electrophysiological properties and pharmacological responses of PBMC-derived iPSC CM are generally similar to those of iPSC CM derived from other somatic cells, using patch-clamp, calcium transient, and multielectrode array (MEA) analyses. Distinct iPSC lines derived from a single patient display similar electrophysiological features and pharmacological responses. Finally, we demonstrate that human iPSC CMs undergo acute changes in calcium-handling properties and gene expression in response to rapid electrical stimulation, laying the foundation for an in-vitro-tachypacing model system for the study of human tachyarrhythmias.
Collapse
Affiliation(s)
- Michael Riedel
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chuanchau J Jou
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT 83113, USA ; Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Robert L Lux
- Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Alonso P Moreno
- Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth W Spitzer
- Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT 83113, USA ; Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ivor J Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
28
|
Barsheshet A, Dotsenko O, Goldenberg I. Genotype-specific risk stratification and management of patients with long QT syndrome. Ann Noninvasive Electrocardiol 2013; 18:499-509. [PMID: 24206565 DOI: 10.1111/anec.12117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Long QT syndrome (LQTS) is an inherited disorder associated with life-threatening ventricular arrhythmias. An understanding of the relationship between the genotype and phenotype characteristics of LQTS can lead to improved risk stratification and management of this hereditary arrhythmogenic disorder. Risk stratification in LQTS relies on combined assessment of clinical, electrocardiographic, and mutations-specific factors. Studies have shown that there are genotype-specific risk factors for arrhythmic events including age, gender, resting heart rate, QT corrected for heart rate, prior syncope, the postpartum period, menopause, mutation location, type of mutation, the biophysical function of the mutation, and response to beta-blockers. Importantly, genotype-specific therapeutic options have been suggested. Lifestyle changes are recommended according to the prevalent trigger for cardiac events. Beta-blockers confer greater benefit among patients with LQT1 with the greatest benefit among those with cytoplasmic loops mutations; specific beta-blocker agents may provide greater protection than other agents in specific LQTS genotypes. Potassium supplementation and sex hormone-based therapy may protect patients with LQT2. Sodium channel blockers such as mexiletine, flecainide, and ranolazine could be treatment options in LQT3.
Collapse
Affiliation(s)
- Alon Barsheshet
- Cardiology Department, Rabin Medical Center, Petah Tikva, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Cardiology Division, University of Rochester Medical Center, Rochester, NY
| | | | | |
Collapse
|
29
|
Myocardial fibrosis and QTc are reduced following treatment with spironolactone or amiloride in stroke survivors: a randomised placebo-controlled cross-over trial. Int J Cardiol 2013; 168:5229-33. [PMID: 23993727 DOI: 10.1016/j.ijcard.2013.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/03/2013] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Myocardial fibrosis is dysrhythmogenic and may contribute to the high incidence of cardiac death in stroke survivors, especially if they have long QTc. We tested the hypothesis that procollagen-1-carboxy terminal peptide (P1CP), a biomarker of myocardial fibrosis, might be improved following treatment with spironolactone or amiloride in stroke survivors. We also tested the hypothesis that both drugs would shorten QTc. METHODS STUDY DESIGN randomised, double-blinded, placebo-controlled, cross-over trial (spironolactone vs. amiloride vs. placebo). Duration of Study: 3 months (1 month per drug). Primary endpoints: P1CP, QTc RESULTS 11 stroke survivors (5 female), aged 71 ± 4, BP 139/81 mmHg ± 20/11 mmHg, completed the study. Both spironolactone and amiloride significantly reduced P1CP [Spironolactone-Placebo = -24 ug/L, 95% CI = -40 to -6.9; Amiloride-Placebo = -28 ug/L, 95% CI = -44 to -11]. Spironolactone and amiloride both shortened QTc [Spironolactone vs. Placebo=-18 ms(1/2), 95% CI = -36 to -0.55; Amiloride vs Placebo = -25 ms(1/2), 95% CI = -42 to -7.5]. CONCLUSIONS Procollagen-1-carboxy terminal peptide was reduced following treatment with spironolactone within a month. Further, this is the first study demonstrating amiloride could also improve myocardial fibrosis. The beneficial effects of both drugs on myocardial fibrosis, coupled with their effects on raising potassium translated to a shortening of QTc. Future studies should test the hypothesis that these drugs might reduce the risk of sudden cardiac death in stroke survivors.
Collapse
|
30
|
Abstract
Congenital long QT syndrome (LQTS) is caused by single autosomal-dominant mutations in a gene encoding for a cardiac ion channel or an accessory ion channel subunit. These single mutations can cause life-threatening arrhythmias and sudden death in heterozygous mutation carriers. This recognition has been the basis for world-wide staggering numbers of subjects and families counselled for LQTS and treated based on finding (putative) disease-causing mutations. However, prophylactic treatment of patients is greatly hampered by the growing awareness that simple carriership of a mutation often fails to predict clinical outcome: many carriers never develop clinically relevant disease while others are severely affected at a young age. It is still largely elusive what determines this large variability in disease severity, where even within one pedigree, an identical mutation can cause life-threatening arrhythmias in some carriers while in other carriers no disease becomes clinically manifested. This suggests that additional factors modify the clinical manifestations of a particular disease-causing mutation. In this article, potential demographic, environmental and genetic factors are reviewed, which, in conjunction with a mutation, may modify the phenotype in LQTS, and thereby determine, at least partially, the large variability in disease severity.
Collapse
Affiliation(s)
- Ahmad S Amin
- A. A. M. Wilde: Department of Cardiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Liu GX, Choi BR, Ziv O, Li W, de Lange E, Qu Z, Koren G. Differential conditions for early after-depolarizations and triggered activity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits. J Physiol 2011; 590:1171-80. [PMID: 22183728 DOI: 10.1113/jphysiol.2011.218164] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Early after-depolarization (EAD), or abnormal depolarization during the plateau phase of action potentials, is a hallmark of long-QT syndrome (LQTS). More than 13 genes have been identified as responsible for LQTS, and elevated risks for EADs may depend on genotypes, such as exercise in LQT1 vs. sudden arousal in LQT2 patients. We investigated mechanisms underlying different high-risk conditions that trigger EADs using transgenic rabbit models of LQT1 and LQT2, which lack I(Ks) and I(Kr) (slow and fast components of delayed rectifying K(+) current), respectively. Single-cell patch-clamp studies show that prolongation of action potential duration (APD) can be further enhanced by lowering extracellular potassium concentration ([K(+)](o)) from 5.4 to 3.6 mm. However, only LQT2 myocytes developed spontaneous EADs following perfusion with lower [K(+)](o), while there was no EAD formation in littermate control (LMC) or LQT1 myocytes, although APDs were also prolonged in LMC myocytes and LQT1 myocytes. Isoprenaline (ISO) prolonged APDs and triggered EADs in LQT1 myocytes in the presence of lower [K(+)](o). In contrast, continuous ISO perfusion diminished APD prolongation and reduced the incidence of EADs in LQT2 myocytes. These different effects of ISO on LQT1 and LQT2 were verified by optical mapping of the whole heart, suggesting that ISO-induced EADs are genotype specific. Further voltage-clamp studies revealed that ISO increases L-type calcium current (I(Ca)) faster than I(Ks) (time constant 9.2 s for I(Ca) and 43.6 s for I(Ks)), and computer simulation demonstrated a high-risk window of EADs in LQT2 during ISO perfusion owing to mismatch in the time courses of I(Ca) and I(Ks), which may explain why a sympathetic surge rather than high sympathetic tone can be an effective trigger of EADs in LQT2 perfused hearts. In summary, EAD formation is genotype specific, such that EADs can be elicited in LQT2 myocytes simply by lowering [K(+)](o), while LQT1 myocytes require sympathetic stimulation. Slower activation of I(Ks) than of I(Ca) by ISO may explain why different sympathetic modes, i.e. sympathetic surge vs. high sympathetic tone, are associated with polymorphic ventricular tachycardia in LQTS patients.
Collapse
Affiliation(s)
- Gong-Xin Liu
- Cardiovascular Research Centre, Division of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Dietary potassium intake has been demonstrated to significantly lower blood pressure (BP) in a dose-responsive manner in both hypertensive and nonhypertensive patients in observational studies, clinical trials, and several meta-analyses. In hypertensive patients, the linear dose-response relationship is a 1.0 mm Hg reduction in systolic BP and a 0.52 mm Hg reduction in diastolic BP per 0.6 g per day increase in dietary potassium intake that is independent of baseline potassium deficiency. The average reduction in BP with 4.7 g (120 mmol) of dietary potassium per day is 8.0/4.1 mm Hg, depending race and on the relative intakes of other minerals such as sodium, magnesium, and calcium. If the dietary sodium chloride intake is high, there is a greater BP reduction with an increased intake of dietary potassium. Blacks have a greater decrease in BP than Caucasians with an equal potassium intake. Potassium-induced reduction in BP significantly lowers the incidence of stroke (cerebrovascular accident, CVA), coronary heart disease, myocardial infarction, and other cardiovascular events. However, potassium also reduces the risk of CVA independent of BP reductions. Increasing consumption of potassium to 4.7 g per day predicts lower event rates for future cardiovascular disease, with estimated decreases of 8% to 15% in CVA and 6% to 11% in myocardial infarction.
Collapse
Affiliation(s)
- Mark C Houston
- Hypertension Institute, Saint Thomas Medical Plaza, Nashville, TN 37205, USA.
| |
Collapse
|
33
|
Krishnan Y, Zheng R, Walsh C, Tang Y, McDonald TV. Partially dominant mutant channel defect corresponding with intermediate LQT2 phenotype. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2011; 35:3-16. [PMID: 21951015 DOI: 10.1111/j.1540-8159.2011.03222.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The hereditary Long QT Syndrome is a common cardiac disorder where ventricular repolarization is delayed, abnormally prolonging the QTc interval on electrocardiograms. LQTS is linked to various genetic loci, including the KCNH2 (HERG) gene that encodes the α-subunit of the cardiac potassium channel that carries I(Kr). Here, we report and characterize a novel pathologic missense mutation, G816V HERG, in a patient with sudden cardiac death. METHODS Autopsy-derived tissue sample was used for DNA extraction and sequencing from an unexpected sudden death victim. The G816V HERG mutation was studied using heterologous expression in mammalian cell culture, whole cell patch clamp, confocal immunofluorescence, and immunochemical analyses. RESULTS The mutant G816V HERG channel has reduced protein expression and shows a trafficking defective phenotype that is incapable of carrying current when expressed at physiological temperatures. The mutant channel showed reduced cell surface localization compared to wild-type HERG (WT HERG) but the mutant and wild-type subunits are capable of interacting. Expression studies at reduced temperatures enabled partial rescue of the trafficking defect with appearance of potassium currents, albeit with reduced current density and altered voltage-dependent activation. Lastly, we examined a potential role for hypokalemia as a contributory factor to the patient's lethal arrhythmia by possible low-potassium-induced degradation of WT HERG and haplo-insufficiency of G816V HERG. CONCLUSION The G816V mutation in HERG causes a trafficking defect that acts in a partially dominant negative manner. This intermediate severity defect agrees with the mild clinical presentation in other family members harboring the same mutation. Possible hypokalemia in the proband induced WT HERG degradation combined with haplo-insufficiency may have further compromised repolarization reserve and contributed to the lethal arrhythmia.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Antzelevitch C, Dumaine R. Electrical Heterogeneity in the Heart: Physiological, Pharmacological and Clinical Implications. Compr Physiol 2011. [DOI: 10.1002/cphy.cp020117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Hayashi K, Fujino N, Ino H, Uchiyama K, Sakata K, Konno T, Masuta E, Funada A, Sakamoto Y, Tsubokawa T, Hodatsu A, Yasuda T, Kanaya H, Kim MY, Kupershmidt S, Higashida H, Yamagishi M. A KCR1 variant implicated in susceptibility to the long QT syndrome. J Mol Cell Cardiol 2011; 50:50-7. [DOI: 10.1016/j.yjmcc.2010.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022]
|
37
|
Vieweg WVR, Wood MA, Fernandez A, Beatty-Brooks M, Hasnain M, Pandurangi AK. Proarrhythmic risk with antipsychotic and antidepressant drugs: implications in the elderly. Drugs Aging 2010; 26:997-1012. [PMID: 19929028 DOI: 10.2165/11318880-000000000-00000] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quinidine-like effects of some antidepressant drugs (particularly tricyclic antidepressants) and many antipsychotic drugs (particularly the phenothiazines) confound treatment of psychosis and depression in patients with major mental illness. This is especially true among elderly patients with existing risk factors for corrected QT (QTc) interval prolongation. We used PubMed, previously reported review articles and the extensive personal files of the authors to identify cases of subjects aged>or=60 years who developed QTc interval prolongation, polymorphic ventricular tachycardia (PVT)/torsade de pointes (TdP) and/or sudden cardiac death while taking antipsychotic or antidepressant drugs or a combination of these medications. We identified 37 patients who had taken, in total, 46 antipsychotic or antidepressant drugs. Our most striking finding was that almost four-fifths of our cases involved women. When the 14 critically ill subjects receiving haloperidol intravenously were excluded, 91.3% of our subjects were women. Almost three-quarters of our study subjects had cardiovascular disease. Intravenous administration of haloperidol in the critically ill and profoundly agitated elderly warrants particular comment. Of the 14 subjects in this category identified, six were men and eight were women. In 13 cases, the drug dose far exceeded the 2 mg necessary to produce an antipsychotic effect. These clinicians were using an agent to achieve sedation that usually requires very high doses in the critically ill and profoundly agitated elderly to achieve this effect. Inclusion criteria for our literature review required antipsychotic and/or antidepressant drug-induced QTc interval prolongation. Even so, our finding that 31 of our 37 subjects developed PVT is sobering. However, the reader should not conclude that drug-induced QTc interval prolongation is highly predictive of PVT or its TdP subtype. All of our study subjects had at least two risk factors for TdP, with age and sex being the most common. We included the rare case of a patient with congenital long QT syndrome who developed further lengthening of the QTc interval and TdP when prescribed an antidepressant drug well known to produce QTc interval prolongation. We conclude with recommendations for clinicians not expert in the specialty of cardiology to deal with the many questions raised in this review. Specifically, such clinicians treating elderly patients with antipsychotic and antidepressant drugs that may prolong the QTc interval should aggressively obtain a baseline ECG for elderly female patients with additional risk factors such as personal or family history of pre-syncope or syncope, electrolyte disturbances or cardiovascular disease. Elderly male patients are also subject to QTc interval prolongation when such risk factors are present. It is important that the clinicians themselves inspect ECGs. If the QT interval is more than half the RR interval, QTc interval prolongation is likely to be present. In such cases, a cardiology colleague interested in QTc interval issues and TdP should be asked to review the ECG. Finally, nothing in our recommendations replaces meticulous attention to US FDA guidelines in the package insert of each drug.
Collapse
Affiliation(s)
- W Victor R Vieweg
- Department of Psychiatry, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23238-5414, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Massaeli H, Sun T, Li X, Shallow H, Wu J, Xu J, Li W, Hanson C, Guo J, Zhang S. Involvement of caveolin in low K+-induced endocytic degradation of cell-surface human ether-a-go-go-related gene (hERG) channels. J Biol Chem 2010; 285:27259-27264. [PMID: 20605793 DOI: 10.1074/jbc.m110.124909] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reduction in the rapidly activating delayed rectifier K(+) channel current (I(Kr)) due to either mutations in the human ether-a-go-go-related gene (hERG) or drug block causes inherited or drug-induced long QT syndrome. A reduction in extracellular K(+) concentration ([K(+)](o)) exacerbates long QT syndrome. Recently, we demonstrated that lowering [K(+)](o) promotes degradation of I(Kr) in rabbit ventricular myocytes and of the hERG channel stably expressed in HEK 293 cells. In this study, we investigated the degradation pathways of hERG channels under low K(+) conditions. We demonstrate that under low K(+) conditions, mature hERG channels and caveolin-1 (Cav1) displayed a parallel time-dependent reduction. Mature hERG channels coprecipitated with Cav1 in co-immunoprecipitation analysis, and internalized hERG channels colocalized with Cav1 in immunocytochemistry analysis. Overexpression of Cav1 accelerated internalization of mature hERG channels in 0 mM K(+)(o), whereas knockdown of Cav1 impeded this process. In addition, knockdown of dynamin 2 using siRNA transfection significantly impeded hERG internalization and degradation under low K(+)(o) conditions. In cultured neonatal rat ventricular myocytes, knockdown of caveolin-3 significantly impeded low K(+)(o)-induced reduction of I(Kr). Our data indicate that a caveolin-dependent endocytic route is involved in low K(+)(o)-induced degradation of mature hERG channels.
Collapse
Affiliation(s)
- Hamid Massaeli
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tao Sun
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Xian Li
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Heidi Shallow
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jimmy Wu
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jianmin Xu
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wentao Li
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Christian Hanson
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jun Guo
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shetuan Zhang
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
39
|
Moss AJ, Goldenberg I. Importance of Knowing the Genotype and the Specific Mutation When Managing Patients with Long QT Syndrome. Circ Arrhythm Electrophysiol 2009; 1:213-26; discussion 226. [PMID: 19701491 DOI: 10.1161/circep.108.796599] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Arthur J Moss
- Cardiology Division of the Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642-8653, USA.
| | | |
Collapse
|
40
|
Howley LW, DI Maria M, Bailey A, Schaffer MS. Neonatal long QT syndrome type 3 predicted by positive lidocaine challenge. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2009; 33:377-9. [PMID: 19793370 DOI: 10.1111/j.1540-8159.2009.02550.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A female infant presented with bradycardia and an electrocardiogram demonstrating 2:1 atrioventricular depolarization, a prolonged QT interval, and T wave alternans. After propranolol therapy was initiated, a lidocaine challenge was performed with progressive shortening of the QT interval. This positive lidocaine challenge prompted clinical suspicion of long QT syndrome type 3 (LQT3) and early initiation of mexiletine therapy. Subsequent genetic testing confirmed the infant's diagnosis of LQT3.
Collapse
Affiliation(s)
- Lisa W Howley
- Section of Pediatric Cardiology University of Colorado, Denver, The Children's Hospital, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
41
|
Guo J, Massaeli H, Xu J, Jia Z, Wigle JT, Mesaeli N, Zhang S. Extracellular K+ concentration controls cell surface density of IKr in rabbit hearts and of the HERG channel in human cell lines. J Clin Invest 2009; 119:2745-57. [PMID: 19726881 DOI: 10.1172/jci39027] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/10/2009] [Indexed: 12/19/2022] Open
Abstract
Although the modulation of ion channel gating by hormones and drugs has been extensively studied, much less is known about how cell surface ion channel expression levels are regulated. Here, we demonstrate that the cell surface density of both the heterologously expressed K+ channel encoded by the human ether-a-go-go-related gene (HERG) and its native counterpart, the rapidly activating delayed rectifier K+ channel (IKr), in rabbit hearts in vivo is precisely controlled by extracellular K+ concentration ([K+]o) within a physiologically relevant range. Reduction of [K+]o led to accelerated internalization and degradation of HERG channels within hours. Confocal analysis revealed colocalization between HERG and ubiquitin during the process of HERG internalization, and overexpression of ubiquitin facilitated HERG degradation under low [K+]o. The HERG channels colocalized with a marker of multivesicular bodies during internalization, and the internalized HERG channels were targeted to lysosomes. Our results provide the first evidence to our knowledge that the cell surface density of a voltage-gated K+ channel, HERG, is regulated by a biological factor, extracellular K+. Because hypokalemia is known to exacerbate long QT syndrome (LQTS) and Torsades de pointes tachyarrhythmias, our findings provide a potential mechanistic link between hypokalemia and LQTS.
Collapse
Affiliation(s)
- Jun Guo
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Markiewicz-Łoskot G, Moric-Janiszewska E, Mazurek U. The risk of cardiac events and genotype-based management of LQTS patients. Ann Noninvasive Electrocardiol 2009; 14:86-92. [PMID: 19149798 DOI: 10.1111/j.1542-474x.2008.00278.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This review discusses the risk of cardiac events and genotype-based management of LQTS. We describe here the genetic background of long QT syndrome and the eleven different genes for ion-channels and a structural anchoring protein associated with that disorder. Clinical Background section discusses the risk of cardiac events associated with different LQTS types. Management and Prevention section describes in turn gene-specific therapy, which was based on the identification of the gene defect and the dysfunction of the associated transmembrane ion channel. In patients affected by LQTS, genetic analysis is useful for risk stratification and for making therapeutic decisions. A recent study reported a quite novel pathogenic mechanism for LQTS and suggested that treatments aimed at scaffolding proteins rather than specific ion channels may be an alternative to antiarrhythmic strategy in the future.
Collapse
|
43
|
Abstract
The current status of the research in genetics of cardiac diseases causing sudden death is reviewed. Few techniques will impact medicine as will those of molecular biology. The identification of the gene-causing diseases will allow the use of better preventive, diagnostic, and therapeutic options. From genetic counseling at present to gene therapy in the future, the new challenge for the clinician will be to acquire the new information provided by molecular biology and apply it at the bedside to improve the quality of life for the patient.
Collapse
Affiliation(s)
- R Brugada
- Department of Medicine/Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
44
|
Abstract
Over the past decade, molecular genetic studies have established a link between a number of inherited cardiac arrhythmias, including congenital long QT syndrome (LQTS) and Brugada syndrome (BrS), and mutations in genes encoding for ion channels or other membrane components. Twelve forms of LQTS have been identified in 50-70% of clinically affected patients. Genotype-phenotype correlations have been rigorously investigated in LQT1, LQT2 and LQT3 syndromes, which constitute more than 90% of genotyped LQTS patients, enabling stratification of risk and effective treatment of genotyped patients. Genotype-specific triggers for both the cardiac events and the clinical course have been reported, and genotype-specific therapy has been already introduced. More recently, mutation site-specific differences in the clinical phenotype have been reported in LQT1 and LQT2 patients, indicating the possibility of mutation site-specific management or treatment. In contrast, only one-third of BrS patients can be genotyped, and data on genotype-phenotype relationships in clinical studies are limited. A Haplotype B consisting of 6 individual DNA polymorphisms within the proximal promoter region of the SCN5A gene was recently identified only in Asians (frequency 22%). Individuals with Haplotype B show significantly longer duration of both PQ and QRS than those without Haplotype B, indicating that Haplotype B likely contributes to the higher incidence of BrS in Asian populations.
Collapse
Affiliation(s)
- Wataru Shimizu
- Division of Cardiology, Department of Internal Medicine, National Cardiovascular Center, Suita, Japan.
| |
Collapse
|
45
|
Inherited long QT syndromes: be mindful of the potassium level. J Am Coll Cardiol 2008; 52:1605; author reply 1605-6. [PMID: 19007601 DOI: 10.1016/j.jacc.2008.07.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/10/2008] [Indexed: 11/23/2022]
|
46
|
|
47
|
Effect of domperidone on QT interval in neonates. J Pediatr 2008; 153:663-6. [PMID: 18589449 DOI: 10.1016/j.jpeds.2008.05.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 04/02/2008] [Accepted: 05/07/2008] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To determine whether oral domperidone is associated with QT interval prolongation and ventricular arrhythmia and to identify factors that can influence these effects. STUDY DESIGN An electrocardiogram was performed before and after oral administration of domperidone in 31 neonates or infants classified into 3 groups according to gestational age. RESULTS Oral domperidone is associated with QTc prolongation except in infants with a gestational age less than 32 weeks of amenorrhea (P < .005). Mean QTc prolongation was 14 msec. On univariate analysis, oral domperidone-induced QTc prolongation was correlated with gestational age, birth weight, and elevated serum potassium. On multivariate analysis, after adjustment for gestational age, serum potassium was the only factor independently associated with interval QT prolongation during treatment. No ventricular arrhythmias were observed. CONCLUSIONS This study shows a significant association between oral domperidone therapy and QTc prolongation. Two risk factors were identified: advanced gestational age and serum potassium at the upper limit of normal. It is recommended that measurement of the QT interval be done before and after oral domperidone therapy.
Collapse
|
48
|
Patel C, Antzelevitch C. Pharmacological approach to the treatment of long and short QT syndromes. Pharmacol Ther 2008; 118:138-51. [PMID: 18378319 DOI: 10.1016/j.pharmthera.2008.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 12/30/2022]
Abstract
Inherited channelopathies have received increasing attention in recent years. The past decade has witnessed impressive progress in our understanding of the molecular and cellular basis of arrhythmogenesis associated with inherited channelopathies. An imbalance in ionic forces induced by these channelopathies affects the duration of ventricular repolarization and amplifies the intrinsic electrical heterogeneity of the myocardium, creating an arrhythmogenic milieu. Today, many of the channelopathies have been linked to mutations in specific genes encoding either components of ion channels or membrane or regulatory proteins. Many of the channelopathies are genetically heterogeneous with a variable degree of expression of the disease. Defining the molecular basis of channelopathies can have a profound impact on patient management, particularly in cases in which genotype-specific pharmacotherapy is available. The long QT syndrome (LQTS) is one of the first identified and most studied channelopathies where abnormal prolongation of ventricular repolarization predisposes an individual to life threatening ventricular arrhythmia called Torsade de Pointes. On the other hand of the spectrum, molecular defects favoring premature repolarization lead to Short QT syndrome (SQTS), a recently described inherited channelopathy. Both of these channelopathies are associated with a high risk of sudden cardiac death due to malignant ventricular arrhythmia. Whereas pharmacological therapy is first line treatment for LQTS, defibrillators are considered as primary treatment for SQTS. This review provides a comprehensive review of the molecular genetics, clinical features, genotype-phenotype correlations and genotype-specific approach to pharmacotherapy of these two mirror-image channelopathies, SQTS and LQTS.
Collapse
|
49
|
Abstract
Until recently, humans consumed a diet high in potassium. However, with the increasing consumption of processed food, which has potassium removed, combined with a reduction in the consumption of fruits and vegetables, there has been a large decrease in potassium intake which now, in most developed countries, averages around 70 mmol day-1, i.e. only one third of our evolutionary intake. Much evidence shows that increasing potassium intake has beneficial effects on human health. Epidemiological and clinical studies show that a high-potassium diet lowers blood pressure in individuals with both raised blood pressure and average population blood pressure. Prospective cohort studies and outcome trials show that increasing potassium intake reduces cardiovascular disease mortality. This is mainly attributable to the blood pressure-lowering effect and may also be partially because of the direct effects of potassium on the cardiovascular system. A high-potassium diet may also prevent or at least slow the progression of renal disease. An increased potassium intake lowers urinary calcium excretion and plays an important role in the management of hypercalciuria and kidney stones and is likely to decrease the risk of osteoporosis. Low serum potassium is strongly related to glucose intolerance, and increasing potassium intake may prevent the development of diabetes that occurs with prolonged treatment with thiazide diuretics. Reduced serum potassium increases the risk of lethal ventricular arrhythmias in patients with ischaemic heart disease, heart failure and left ventricular hypertrophy, and increasing potassium intake may prevent this. The best way to increase potassium intake is to increase the consumption of fruits and vegetables.
Collapse
Affiliation(s)
- Feng J He
- Blood Pressure Unit, Cardiac and Vascular Sciences, St George's, University of London, Cranmer Terrace, London, UK.
| | | |
Collapse
|
50
|
Shimizu W. Genetics of congenital long QT syndrome and Brugada syndrome. Future Cardiol 2008; 4:379-89. [PMID: 19804318 DOI: 10.2217/14796678.4.4.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inherited cardiac arrhythmias including congenital and acquired long QT syndrome (LQTS), Brugada syndrome, progressive cardiac conduction defect, catecholaminergic polymorphic ventricular tachycardia, arrhythmogenic right ventricular cardiomyopathy, familial atrial fibrillation, familial sick sinus syndrome and short QT syndrome, are linked to mutations in genes encoding for ion channels or other membrane components. Eleven forms of congenital LQTS have been identified and these are caused by mutations in genes of the potassium, sodium and calcium channels or membrane adapter. Genotype-phenotype correlations have been rigorously investigated, especially in the LQT1, LQT2 and LQT3 forms, which constitute more than 90% of genotyped patients. On the other hand, causative mutations were identified much less in patients with Brugada syndrome, therefore data on genotype-phenotype relationships are limited.
Collapse
Affiliation(s)
- Wataru Shimizu
- National Cardiovascular Center, Division of Cardiology, Department of Internal Medicine, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565 Japan.
| |
Collapse
|