1
|
Fitzgibbon-Collins LK, Pereira TJ, Edgell H. Women, orthostatic tolerance, and POTS: a narrative review. Auton Neurosci 2025; 259:103284. [PMID: 40311188 DOI: 10.1016/j.autneu.2025.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/28/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Young women experience orthostatic intolerance to a greater degree than men. Numerous physiological pathways could be responsible for this intolerance in both healthy and pathophysiological conditions. This review discusses sex differences in hemodynamics, ventilation, autonomic control, and cerebral blood flow. Further, we discuss these phenomena and their potential exacerbations in postural orthostatic tachycardiac syndrome (POTS). After normalization for body size women have lower stroke volume and blood volume, and while upright women have reduced ventilation, reduced venous return likely from attenuated respiratory pump and skeletal muscle pump activity, augmented parasympathetic withdrawal, attenuated neurovascular transduction of sympathetic outflow, and increased vasodilatory capacity compared to age-matched men. Women have greater middle cerebral artery blood velocity, potentially impaired cerebral dynamic autoregulation (depending on the timing), yet similar cerebrovascular reactivity to carbon dioxide exists between the sexes. Thus, we suggest that the greater incidence of orthostatic intolerance in women is primarily due to hemodynamic control and autonomic function; however, the enhanced parasympathetic withdrawal while upright could theoretically influence cerebral vasodilatory capacity and is proposed as a possibility in need of further investigation. POTS physiology is described briefly due to its increasing prevalence via post-COVID infections. We summarize some potential physiological changes in POTS including hemodynamic and ventilatory control, and we highlight that cerebral blood flow control is impaired and likely plays a role in the symptomology of POTS.
Collapse
Affiliation(s)
| | - T J Pereira
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - H Edgell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
2
|
De Maria B, Dalla Vecchia LA, Bari V, Cairo B, Gelpi F, Perego F, Takahashi ACM, Milan-Mattos JC, Minatel V, Rehder-Santos P, Esler M, Lambert E, Baumert M, Catai AM, Porta A. The degree of engagement of cardiac and sympathetic arms of the baroreflex does not depend on the absolute value and sign of arterial pressure variations. Physiol Meas 2023; 44:114002. [PMID: 37922536 DOI: 10.1088/1361-6579/ad0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Objective.The percentages of cardiac and sympathetic baroreflex patterns detected via baroreflex sequence (SEQ) technique from spontaneous variability of heart period (HP) and systolic arterial pressure (SAP) and of muscle nerve sympathetic activity (MSNA) burst rate and diastolic arterial pressure (DAP) are utilized to assess the level of the baroreflex engagement. The cardiac baroreflex patterns can be distinguished in those featuring both HP and SAP increases (cSEQ++) and decreases (cSEQ--), while the sympathetic baroreflex patterns in those featuring a MSNA burst rate decrease and a DAP increase (sSEQ+-) and vice versa (sSEQ-+). The present study aims to assess the modifications of the involvement of the cardiac and sympathetic arms of the baroreflex with age and postural stimulus intensity.Approach.We monitored the percentages of cSEQ++ (%cSEQ++) and cSEQ-- (%cSEQ--) in 100 healthy subjects (age: 21-70 years, 54 males, 46 females), divided into five sex-balanced groups consisting of 20 subjects in each decade at rest in supine position and during active standing (STAND). We evaluated %cSEQ++, %cSEQ--, and the percentages of sSEQ+- (%sSEQ+-) and sSEQ-+ (%sSEQ-+) in 12 young healthy subjects (age 23 ± 2 years, 3 females, 9 males) undergoing incremental head-up tilt.Main results.We found that: (i) %cSEQ++ and %cSEQ-- decreased with age and increased with STAND and postural stimulus intensity; (ii) %sSEQ+- and %sSEQ-+ augmented with postural challenge magnitude; (iii) the level of cardiac and sympathetic baroreflex engagement did not depend on either the absolute value of arterial pressure or the direction of its changes.Significance.This study stresses the limited ability of the cardiac and sympathetic arms of the baroreflex in controlling absolute arterial pressure values and the equivalent ability of both positive and negative arterial pressure changes in soliciting them.
Collapse
Affiliation(s)
| | | | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | | | - Vinicius Minatel
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | | | - Murray Esler
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Elisabeth Lambert
- School of Health Science, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Australia
| | - Mathias Baumert
- Discipline of Biomedical Engineering, School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, Australia
| | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
3
|
Adams ZH, Blythe HC, Charkoudian N, Curry TB, Joyner MJ, Kendrick AH, Nightingale AK, Abdala Sheikh AP, Hart EC. Aging in females is associated with changes in respiratory modulation of sympathetic nerve activity and blood pressure. Am J Physiol Heart Circ Physiol 2023; 325:H1108-H1117. [PMID: 37656132 PMCID: PMC10907029 DOI: 10.1152/ajpheart.00226.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Sympathetic nerve activity (SNA) is tightly coupled with the respiratory cycle. In healthy human males, respiratory modulation of SNA does not change with age. However, it is unclear how this modulation is affected by age in females. We investigated whether respiratory sympathetic modulation is altered in healthy postmenopausal (PMF) versus premenopausal female (YF), and younger male (YM) adults, and determined its relationship to resting blood pressure. Muscle SNA (MSNA; microneurography), respiration (transducer belt), ECG, and continuous blood pressure were measured in 12 YF, 13 PMF, and 12 YM healthy volunteers. Respiratory modulation of MSNA was quantified during two phases of the respiratory cycle: mid-late expiration and inspiration/postinspiration. All groups showed respiratory modulation of MSNA (P < 0.0005). There was an interaction between the respiratory phase and group for MSNA [bursts/100 heartbeats (HB) (P = 0.004) and bursts/min (P = 0.029)], with smaller reductions in MSNA during inspiration observed in PMF versus the other groups. Respiratory modulation of blood pressure was also reduced in PMF versus YF (6 [2] vs. 12 [9] mmHg, P = 0.008) and YM (13 [13] mmHg, P = 0.001, median [interquartile range]). The magnitude of respiratory sympathetic modulation was related to resting blood pressure in PMF only, such that individuals with less modulation had greater resting blood pressure. The data indicate that aging in postmenopausal females is associated with less inspiratory inhibition of MSNA. This correlated with a higher resting blood pressure in PMF only. Thus, the reduced modulation of MSNA could contribute to the age-related rise in blood pressure that occurs in females.NEW & NOTEWORTHY The current study demonstrates that respiratory modulation of sympathetic nerve activity (SNA) is reduced in healthy postmenopausal (PMF) versus premenopausal females (YF). Furthermore, respiratory sympathetic modulation was negatively related to resting blood pressure in postmenopausal females, such that blood pressure was greater in individual with less modulation. Reduced respiratory sympathetic modulation may have implications for the autonomic control of blood pressure in aging postmenopausal females, by contributing to age-related sympathetic activation and reducing acute, respiratory-linked blood pressure variation.
Collapse
Affiliation(s)
- Zoe H Adams
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Hazel C Blythe
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Timothy B Curry
- Department of Anaesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Joyner
- Department of Anaesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Adrian H Kendrick
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Department of Respiratory Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Angus K Nightingale
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Ana P Abdala Sheikh
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Kao TW, Liu YS, Yang CY, Lee OKS. Mechanotransduction of mesenchymal stem cells and hemodynamic implications. CHINESE J PHYSIOL 2023; 66:55-64. [PMID: 37082993 DOI: 10.4103/cjop.cjop-d-22-00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the capacity for self-renewal and multipotency. The traditional approach to manipulating MSC's fate choice predominantly relies on biochemical stimulation. Accumulating evidence also suggests the role of physical input in MSCs differentiation. Therefore, investigating mechanotransduction at the molecular level and related to tissue-specific cell functions sheds light on the responses secondary to mechanical forces. In this review, a new frontier aiming to optimize the cultural parameters was illustrated, i.e. spatial boundary condition, which recapitulates in vivo physiology and facilitates the investigations of cellular behavior. The concept of mechanical memory was additionally addressed to appreciate how MSCs store imprints from previous culture niches. Besides, different types of forces as physical stimuli were of interest based on the association with the respective signaling pathways and the differentiation outcome. The downstream mechanoreceptors and their corresponding effects were further pinpointed. The cardiovascular system or immune system may share similar mechanisms of mechanosensing and mechanotransduction; for example, resident stem cells in a vascular wall and recruited MSCs in the bloodstream experience mechanical forces such as stretch and fluid shear stress. In addition, baroreceptors or mechanosensors of endothelial cells detect changes in blood flow, pass over signals induced by mechanical stimuli and eventually maintain arterial pressure at the physiological level. These mechanosensitive receptors transduce pressure variation and regulate endothelial barrier functions. The exact signal transduction is considered context dependent but still elusive. In this review, we summarized the current evidence of how mechanical stimuli impact MSCs commitment and the underlying mechanisms. Future perspectives are anticipated to focus on the application of cardiovascular bioengineering and regenerative medicine.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Shiuan Liu
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University; Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Stem Cell Research Center, National Yang Ming Chiao Tung University; Department of Medical Research, Taipei Veterans General Hospital, Taipei; Department of Orthopedics, China Medical University Hospital; Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Effects of age and sex on vasomotor activity and baroreflex sensitivity during the sleep-wake cycle. Sci Rep 2022; 12:22424. [PMID: 36575245 PMCID: PMC9794808 DOI: 10.1038/s41598-022-26440-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular function is related to age, sex, and state of consciousness. We hypothesized that cardiovagal baroreflex sensitivity (BRS) demonstrates different patterns in both sexes before and after 50 years of age and that these patterns are associated with patterned changes during the sleep-wake cycle. We recruited 67 healthy participants (aged 20-79 years; 41 women) and divided them into four age groups: 20-29, 30-49, 50-69, and 70-79 years. All the participants underwent polysomnography and blood pressure measurements. For each participant, we used the average of the arterial pressure variability, heart rate variability (HRV), and BRS parameters during the sleep-wake stages. BRS and HRV parameters were significantly negatively correlated with age. The BRS indexes were significantly lower in the participants aged ≥ 50 years than in those aged < 50 years, and these age-related declines were more apparent during non-rapid eye movement sleep than during wakefulness. Only BRS demonstrated a significantly negative correlation with age in participants ≥ 50 years old. Women exhibited a stronger association than men between BRS and age and an earlier decline in BRS. Changes in BRS varied with age, sex, and consciousness state, each demonstrating a specific pattern. The age of 50 years appeared to be a crucial turning point for sexual dimorphism in BRS. Baroreflex modulation of the cardiovascular system during sleep sensitively delineated the age- and sex-dependent BRS patterns, highlighting the clinical importance of our results. Our findings may aid in screening for neurocardiac abnormalities in apparently healthy individuals.
Collapse
|
6
|
Edwards JJ, Wiles J, O'Driscoll J. Mechanisms for blood pressure reduction following isometric exercise training: a systematic review and meta-analysis. J Hypertens 2022; 40:2299-2306. [PMID: 35950976 DOI: 10.1097/hjh.0000000000003261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Isometric exercise training (IET) is established as an effective antihypertensive intervention. Despite this, the physiological mechanisms driving blood pressure (BP) reductions following IET are not well understood. Therefore, we aimed to perform the first meta-analysis of the mechanistic changes measured following IET. METHODS PubMed, Cochrane library and SPORTDiscus were systematically searched for randomized controlled trials published between January 2000 and December 2021 reporting the effects of IET on resting BP and at least one secondary mechanistic parameter following a short-term intervention (2-12 weeks). RESULTS Eighteen studies with a pooled sample size of 628 participants were included in the final analysis. IET produced significant reductions in resting systolic and diastolic BP of 9.35 mmHg (95% confidence interval [CI] = -7.80 to -10.89, P < 0.001) and 4.30 mmHg (CI = -3.01 to -5.60, P < 0.001), respectively. Mechanistically, IET produced a statistically significant reduction in resting heart rate (mean difference [MD]: -1.55 bpm, CI = -0.14 to -2.96, P = 0.031) and a significant increase in stroke volume (MD: 6.35 ml, CI = 0.35 to 12.60, P = 0.038), with no significant change in cardiac output. Conversely, total peripheral resistance (TPR) significantly decreased following IET (MD: -100.38 dyne s -1 cm 5 , CI = -14.16 to -186.61, P = 0.023), with significant improvements in the low frequency to high frequency heart rate variability ratio (MD: -0.41, CI = -0.09 to -0.73, P = 0.013) and baroreceptor reflex sensitivity (MD: 7.43 ms/mmHg, P < 0.001). CONCLUSION This work demonstrates that a reduction in TPR, potentially mediated through enhanced autonomic vasomotor control, is primarily responsible for BP reductions following IET. Furthermore, this novel analysis suggests wall squat interventions to be the most effective IET mode, with clinically relevant differences in BP reductions compared to handgrip and leg extension IET; although future direct comparative research is required.
Collapse
Affiliation(s)
- Jamie J Edwards
- School of Psychology and Life Sciences, Canterbury Christ Church University, Kent, UK
| | | | | |
Collapse
|
7
|
Ferreira FC, Padilha MCSV, Tobadini E, Bellocchi C, Carandina A, Montano N, Soares PPS, Rodrigues GD. Women have a greater cardiac vagal withdrawal to heat stress compared to men. Temperature (Austin) 2022; 10:444-453. [PMID: 38130655 PMCID: PMC10732604 DOI: 10.1080/23328940.2022.2135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022] Open
Abstract
The heated environment shifts the sympatho-vagal balance toward sympathetic predominance and vagal withdrawal. Women's heart is more reliant on vagal autonomic control, while men's heart is more dependent on sympathetic control. However, sex differences in cardiovascular autonomic responses to heat stress remain unknown. We aimed to investigate the cardiovascular autonomic regulation under heat stress between sexes. Thirty-two young participants (27 ± 4 years old; 16 women) were enrolled in a single visit, resting for 30min at baseline (thermal reference condition TC; ∼24°C) and 30min under a heated environment (HOT; ∼38°C). Blood pressure (BP), skin temperature, electrocardiogram, and respiratory oscillations were continuously recorded. The heart rate variability (HRV) was assessed by spectral analysis (low-frequency [LFnu; sympathetic and vagal] and high-frequency [HFnu; vagal]), and symbolic analysis (0 V% [sympathetic] and 2UV%, and 2LV% [vagal]). The spontaneous baroreflex sensitivity (BRS) was calculated by the gain between BP and R-R within the LF band (αLF). The estimated maximal aerobic capacity and body surface area were employed as covariates in sex comparisons. The effects of HOT were the following: 1) Women have a greater cardiac vagal withdrawal to heat stress compared to men; 2) Sex differences on cardiac autonomic response to heat stress exist after controlling for the effect of estimated physical fitness and body surface area. Therefore, heat stress provokes a higher vagal withdrawal to the heart in women compared to men. It could be attributed to sex per se since significant differences between men and women were not modified after covariate analysis.
Collapse
Affiliation(s)
- Felipe C. Ferreira
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Michelle Cristina S. V. Padilha
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Eleonora Tobadini
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Pedro Paulo S. Soares
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Gabriel D. Rodrigues
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
| |
Collapse
|
8
|
Veiz E, Kieslich SK, Staab J, Czesnik D, Herrmann-Lingen C, Meyer T. Men Show Reduced Cardiac Baroreceptor Sensitivity during Modestly Painful Electrical Stimulation of the Forearm: Exploratory Results from a Sham-Controlled Crossover Vagus Nerve Stimulation Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111193. [PMID: 34769711 PMCID: PMC8582936 DOI: 10.3390/ijerph182111193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
This paper presents data from a transcutaneous vagus nerve stimulation experiment that point towards a blunted cardiac baroreceptor sensitivity (cBRS) in young males compared to females during electrical stimulation of the forearm and a rhythmic breathing task. Continuous electrocardiography, impedance cardiography and continuous blood-pressure recordings were assessed in a sex-matched cohort of twenty young healthy subjects. Electrical stimulation of the median nerve was conducted by using a threshold-tracking method combined with two rhythmic breathing tasks (0.1 and 0.2 Hz) before, during and after active or sham transcutaneous vagus nerve stimulation. Autonomic and hemodynamic parameters were calculated, and differences were analyzed by using linear mixed models and post hoc F-tests. None of the autonomic and hemodynamic parameters differed between the sham and active conditions. However, compared to females, male participants had an overall lower total cBRS independent of stimulation condition during nerve stimulation (females: 14.96 ± 5.67 ms/mmHg, males: 11.89 ± 3.24 ms/mmHg, p = 0.031) and rhythmic breathing at 0.2 Hz (females: 21.49 ± 8.47 ms/mmHg, males: 15.12 ± 5.70 ms/mmHg, p = 0.004). Whereas vagus nerve stimulation at the left inner tragus did not affect the efferent vagal control of the heart, we found similar patterns of baroreceptor sensitivity activation over the stimulation period in both sexes, which, however, significantly differed in their magnitude, with females showing an overall higher cBRS.
Collapse
Affiliation(s)
- Elisabeth Veiz
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, University of Göttingen, 37075 Göttingen, Germany; (S.-K.K.); (J.S.); (C.H.-L.)
- Department of Neurology, University Medical Center, University of Göttingen, 37075 Göttingen, Germany;
- Correspondence: (E.V.); (T.M.)
| | - Susann-Kristin Kieslich
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, University of Göttingen, 37075 Göttingen, Germany; (S.-K.K.); (J.S.); (C.H.-L.)
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, University of Göttingen, 37075 Göttingen, Germany; (S.-K.K.); (J.S.); (C.H.-L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Dirk Czesnik
- Department of Neurology, University Medical Center, University of Göttingen, 37075 Göttingen, Germany;
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, University of Göttingen, 37075 Göttingen, Germany; (S.-K.K.); (J.S.); (C.H.-L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, University of Göttingen, 37075 Göttingen, Germany; (S.-K.K.); (J.S.); (C.H.-L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
- Correspondence: (E.V.); (T.M.)
| |
Collapse
|
9
|
Sex differences in blood pressure regulation during the isometric exercise under heated environment. Blood Press Monit 2021; 27:55-62. [PMID: 34569989 DOI: 10.1097/mbp.0000000000000566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the absence of heat stress, females increase blood pressure (BP) during isometric handgrip exercise due to cardiac output more than total peripheral resistance (TPR) compared to men. Although heat stress seems to blunt BP responses at rest and during handgrip, possible sex differences remained unknown. We hypothesized that BP responses during handgrip under a heated environment (HOT) will be different between men and women. Eight healthy men (29 ± 6 years) and eight women (26 ± 4 years) participated in this study. The experimental protocol was separated into two environmental conditions: HOT (~ 36 °C) and thermoneutral (TC; ~ 24 °C). In both conditions, participants rested for 30 min and performed the handgrip for 3 min. BP, heart rate (HR) stroke volume and cardiac output were continuously recorded, and TPR was calculated (TPR = mean blood pressure (MBP)/cardiac output). HOT reduced BP and TPR at baseline and during handgrip in females as compared to TC, while males showed similar responses in both thermal conditions. HR was higher under HOT in both groups. Cardiac output and stroke volume were not different under HOT compared to TC for females. In males, cardiac output increased at the last minute of handgrip under HOT through augmented HR, because stroke volume was unchanged. In conclusion, the main effect of HOT was to shift downwards BP and total peripheral resistance at rest and during isometric exercise in females. In males, the combination of handgrip and HOT increased cardiac output by augmented HR, whereas BP presented similar responses between thermal conditions during handgrip.
Collapse
|
10
|
Saha M, Sun QJ, Hildreth CM, Burke PGR, Phillips JK. Augmented Respiratory-Sympathetic Coupling and Hemodynamic Response to Acute Mild Hypoxia in Female Rodents With Chronic Kidney Disease. Front Physiol 2021; 12:623599. [PMID: 34113258 PMCID: PMC8185289 DOI: 10.3389/fphys.2021.623599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/15/2021] [Indexed: 11/15/2022] Open
Abstract
Carotid body feedback and hypoxia may serve to enhance respiratory–sympathetic nerve coupling (respSNA) and act as a driver of increased blood pressure. Using the Lewis polycystic kidney (LPK) rat model of chronic kidney disease, we examined respSNA in adult female rodents with CKD and their response to acute hypoxia or hypercapnia compared to Lewis control animals. Under urethane anesthesia, phrenic nerve activity, splanchnic sympathetic nerve activity (sSNA), and renal sympathetic nerve activity (rSNA) were recorded under baseline conditions and during mild hypoxic or hypercapnic challenges. At baseline, tonic SNA and blood pressure were greater in female LPK rats versus Lewis rats (all P < 0.05) and respSNA was at least two-fold larger [area under the curve (AUC), sSNA: 7.8 ± 1.1 vs. 3.4 ± 0.7 μV s, rSNA: 11.5 ± 3 vs. 4.8 ± 0.7 μV s, LPK vs. Lewis, both P < 0.05]. Mild hypoxia produced a larger pressure response in LPK [Δ mean arterial pressure (MAP) 30 ± 6 vs. 12 ± 6 mmHg] and augmented respSNA (ΔAUC, sSNA: 8.9 ± 3.4 vs. 2 ± 0.7 μV s, rSNA: 6.1 ± 1.2 vs. 3.1 ± 0.7 μV s, LPK vs. Lewis, all P ≤ 0.05). In contrast, central chemoreceptor stimulation produced comparable changes in blood pressure and respSNA (ΔMAP 13 ± 3 vs. 9 ± 5 mmHg; respSNA ΔAUC, sSNA: 2.5 ± 1 vs. 1.3 ± 0.7 μV s, rSNA: 4.2 ± 0.9 vs. 3.5 ± 1.4 μV s, LPK vs. Lewis, all P > 0.05). These results demonstrate that female rats with CKD exhibit heightened respSNA coupling at baseline that is further augmented by mild hypoxia, and not by hypercapnia. This mechanism may be a contributing driver of hypertension in this animal model of CKD.
Collapse
Affiliation(s)
- Manash Saha
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Nephrology, National Institute of Kidney Disease and Urology, Dhaka, Bangladesh.,Graduate School of Medicine, Wollongong University, Wollongong, NSW, Australia
| | - Qi-Jian Sun
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cara M Hildreth
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter G R Burke
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | | |
Collapse
|
11
|
Akerman AP, Meade RD, Notley SR, Rutherford MM, Kenny GP. Myths and methodologies: Reliability of non-invasive estimates of cardiac autonomic modulation during whole-body passive heating. Exp Physiol 2020; 106:593-614. [PMID: 33197089 DOI: 10.1113/ep089069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Observed individual variability in cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV) is extensive, especially during exposure to stressors such as heat. A large part of the observed variation may be related to the reliability (consistency) of the measurement. We therefore examined the test-retest reliability of cBRS and HRV measurements on three separate occasions in 14 young men (age: 24 (SD 5) years), at rest and during whole-body heating (water-perfused suit) to raise and clamp oesophageal temperature 0.6°C, 1.2°C and 1.8°C above baseline. Beat-to-beat measurements of RR interval and systolic blood pressure (BP) were obtained for deriving HRV (from RR), and cBRS calculated via (i) the spontaneous method, α coefficients and transfer function analysis at each level of heat strain, and (ii) during forced oscillations via squat-stand manoeuvres (0.1 Hz) before and after heating. Absolute values and changes in all cBRS estimates were variable but generally consistent with reductions in parasympathetic activity. cBRS estimates demonstrated poor absolute reliability (coefficient of variation ≥25%), but relative reliability (intraclass correlation coefficient; ICC) of some frequency estimates was acceptable (ICC ≥0.70) during low-heat strain (ICC: 0.56-0.74). After heating, forced oscillations in BP demonstrated more favourable responses than spontaneous oscillations (better reliability, lower minimum detectable change). Absolute reliability of HRV estimates were poor, but relative reliability estimates were often acceptable (≥0.70). Our findings illustrate how measurement consistency of cardiac autonomic modulation estimates are altered during heat stress, and we demonstrate the possible implications on research design and data interpretation.
Collapse
Affiliation(s)
- Ashley P Akerman
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Maura M Rutherford
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Post-Exercise Hypotension and Reduced Cardiac Baroreflex after Half-Marathon Run: In Men, but Not in Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176337. [PMID: 32878130 PMCID: PMC7503517 DOI: 10.3390/ijerph17176337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
We examined whether trained women exhibit similar cardiovascular and cardiac baroreflex alterations after a half-marathon compared to men. Thirteen women (39.1 ± 9.3 years; 165 ± 6 cm; 58.2 ± 7.5 kg; maximal aerobic speed (MAS): 13.7 ± 2.2 km·h-1) and 12 men (45.7 ± 10.5 years; 178 ± 7 cm; 75.0 ± 8.3 kg; MAS: 15.8 ± 2.2 km·h-1) ran an official half-marathon. Before and 60-min after, cardiovascular variables, parasympathetic (heart rate variability analysis) modulation and cardiac baroreflex function (transfer function and sequence analyses) were assessed during supine rest and a squat-stand test. Running performance was slower in women than in men (120 ± 19 vs. 104 ± 14 min for women and men, respectively). However, when expressed as a percentage of MAS, it was similar (78.1 ± 4.6% and 78.2 ± 5.4% of MAS for women and men, respectively). Before the run, women exhibited lower mean blood pressure (BP), cardiac output (CO) and stroke volume (SV) compared to men, together with higher parasympathetic indexes. After the race, parasympathetic indexes decreased in both sexes, but remained higher in women. Reduced SV, systolic BP and cardiac baroreflex were observed in men but not in women. Contrary to men, a competitive half-marathon did not trigger post-exercise hypotension and a reduced cardiac baroreflex in women.
Collapse
|
13
|
Reed JT, Pareek T, Sriramula S, Pabbidi MR. Aging influences cerebrovascular myogenic reactivity and BK channel function in a sex-specific manner. Cardiovasc Res 2020; 116:1372-1385. [PMID: 31738403 DOI: 10.1093/cvr/cvz314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/14/2022] Open
Abstract
AIMS The myogenic reactivity of the middle cerebral arteries (MCA) protects the brain by altering the diameter in response to changes in lumen pressure. Large conductance potassium (BK) channels are known to regulate the myogenic reactivity, yet, it is not clear how aging alters the myogenic reactivity via the BK channel in males and females. Thus, we hypothesize that age-associated changes in BK channel subunits modulate the myogenic reactivity in a sex-specific manner. METHODS AND RESULTS We used vascular reactivity, patch-clamp, and biochemical methods to measure myogenic reactivity, BK channel function, and expression, respectively in cerebral vessels of adult and aged male and female Sprague Dawley rats. Our results suggest that aging and ovariectomy (OVX) exaggerated the myogenic reactivity of MCA in females but attenuated it in males. Aging induced outward eutrophic remodelling in females but inward hypertrophic remodelling in males. Aging decreased total, Kv, BK channel currents, and spontaneous transient outward currents (STOC) in vascular smooth muscle cells isolated from females, but not in males. Aging increased BKα subunit mRNA and protein both in males and females. However, aging decreased BKβ1 subunit protein and mRNA in females only. In males, BKβ1 mRNA is increased, but protein is decreased. Iberiotoxin-induced MCA constriction is lower in aged females but higher in aged males. Activation of BKα (10 µM NS1619) and BKβ1 (10 µM S-Equol) subunits failed to increase STOCs and were unable to decrease the myogenic reactivity of MCA in aged female but not in aged male rats. OVX decreased, but chronic supplementation of oestradiol restored BK channel expression and function. CONCLUSION Overall our results suggest that aging or OVX-associated downregulation of the BKβ1 expression and function in females results in exaggerated myogenic reactivity of MCA. However, age-associated increase in BK channel function in males attenuated myogenic reactivity of MCA.
Collapse
Affiliation(s)
- Joseph T Reed
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | - Tanya Pareek
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC 27834-4300, USA
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| |
Collapse
|
14
|
Salman IM, Ameer OZ, McMurray S, Giarola AS, Sridhar A, Lewis SJ, Hsieh YH. Laterality Influences Central Integration of Baroreceptor Afferent Input in Male and Female Sprague Dawley Rats. Front Physiol 2020; 11:499. [PMID: 32536876 PMCID: PMC7269127 DOI: 10.3389/fphys.2020.00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
We explored the effects of baroreceptor afferents laterality and sexual dimorphism on the expression of cardiovascular reflex responses to baroreflex activation in Sprague Dawley (SD) rats. Under urethane anesthesia, rats of either sex (total n = 18) were instrumented for left, right and bilateral aortic depressor nerve (ADN) stimulation (1–40 Hz, 0.2 ms, 0.4 mA for 20 s) and measurement of mean arterial pressure (MAP), heart rate (HR) and mesenteric (MVR) and femoral (FVR) vascular resistance. Female rats were matched for the diestrus phase of the estrus cycle. Left, right and bilateral ADN stimulation evoked frequency-dependent drops in MAP, HR, and MVR, and increases in FVR. Irrespective of sex, left and bilateral ADN stimulation as compared to right-sided stimulation mediated greater reflex reductions in MAP, HR, and MVR but not in FVR. In males, reflex bradycardic responses were greater in response to bilateral stimulation relative to both left- and right-sided stimulation. In females, left ADN stimulation evoked the largest increase in FVR. Left and bilateral ADN stimulations evoked greater reductions in MAP and MVR while left-sided stimulation produced larger increases in FVR in females compared with males. All other reflex responses to ADN stimulation were relatively comparable between males and females. These results show a differential baroreflex processing of afferent neurotransmission promoted by left versus right baroreceptor afferent inputs and sexual dimorphism in the expression of baroreflex responses in rats of either sex. Collectively, these data add to our understanding of physiological mechanisms pertaining to baroreflex control in both males and females.
Collapse
Affiliation(s)
- Ibrahim M Salman
- College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia.,Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Omar Z Ameer
- College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Sheridan McMurray
- Department of Disease Biology, Galvani Bioelectronics, Hertfordshire, United Kingdom
| | - Alessandra S Giarola
- Department of Disease Biology, Galvani Bioelectronics, Hertfordshire, United Kingdom
| | - Arun Sridhar
- Department of Disease Biology, Galvani Bioelectronics, Hertfordshire, United Kingdom
| | - Stephen J Lewis
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Bassareo PP, Crisafulli A. Gender Differences in Hemodynamic Regulation and Cardiovascular Adaptations to Dynamic Exercise. Curr Cardiol Rev 2020; 16:65-72. [PMID: 30907327 PMCID: PMC7393595 DOI: 10.2174/1573403x15666190321141856] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 01/28/2023] Open
Abstract
Exercise is a major challenge for cardiovascular apparatus since it recruits chronotropic, inotropic, pre-load, and afterload reserves. Regular physical training induces several physiological adaptations leading to an increase in both cardiac volume and mass. It appears that several gender-related physiological and morphological differences exist in the cardiovascular adjustments and adaptations to dynamic exercise in humans. In this respect, gender may be important in determining these adjustments and adaptations to dynamic exercise due to genetic, endocrine, and body composition differences between sexes. Females seem to have a reduced vasoconstriction and a lower vascular resistance in comparison to males, especially after exercise. Significant differences exist also in the cardiovascular adaptations to physical training, with trained women showing smaller cardiac volume and wall thickness compared with male athletes. In this review, we summarize these differences.
Collapse
Affiliation(s)
- Pier P Bassareo
- University College of Dublin, Mater Misericordiae University Teaching Hospital, Dublin, Ireland
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Fu Q, Ogoh S. Sex differences in baroreflex function in health and disease. J Physiol Sci 2019; 69:851-859. [PMID: 31721084 PMCID: PMC10717578 DOI: 10.1007/s12576-019-00727-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/29/2019] [Indexed: 01/16/2023]
Abstract
This brief review summarizes the current knowledge on sex differences in baroreflex function, with a major focus on studies in humans. It has been demonstrated that healthy women have blunted cardiovagal baroreflx sensitivity during a rapid (i.e., within seconds) hypertensive stimulus, but baroreflex sensitivity is similar between the sexes during a hypotensive stimulus. Normal aging decreases cardiovagal baroreflex sensitivity and the rate of decline is similar in men and women. Cardiovagal baroreflex sensitivity is reduced in pathological conditions such as hypertension and type II diabetes, and the reduction is greater in female patients than male patients. There is no clear sex difference in sympathetic baroreflex sensitivity among young individuals, however, with women of more advanced age, sympathetic baroreflex sensitivity decreases, which appears to be associated with greater arterial stiffness compared with similarly aged men. The blunted sympathetic baroreflex sensitivity in older women may predispose them to an increased prevalence of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Qi Fu
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX, 75231, USA.
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Tokyo, Japan
| |
Collapse
|
17
|
The blood pressure variability and baroreflex sensitivity in healthy participants are not determined by sex or cardiorespiratory fitness. Blood Press Monit 2019; 23:260-270. [PMID: 29994926 DOI: 10.1097/mbp.0000000000000338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Heart rate (HR) and blood pressure (BP) autonomic modulation and baroreflex sensitivity (BRS) are important indexes of cardiovascular homeostasis. However, methodological errors are often observed, such as joint analysis of men and women. Another important aspect is that we still do not know whether cardiorespiratory fitness influences these autonomic parameters in healthy individuals. OBJECTIVES This study aimed to investigate whether sex can affect BRS, autonomic modulation of HR and BP variabilities (HRV and BPV, respectively), as well as the influence of cardiorespiratory fitness on these autonomic parameters. METHODS Healthy men and women (N=120) were assigned to groups according to the peak oxygen consumption (VO2 peak) obtained in the cardiorespiratory test: low cardiorespiratory fitness (VO2 peak: 22-38 ml/kg/min), moderate cardiorespiratory fitness (VO2 peak: 38-48 ml/kg/min), and high cardiorespiratory fitness (VO2 peak>48 ml/kg/min). HRV and BPV evaluations were performed for all groups in the frequency domain by spectral analysis. Spontaneous BRS was assessed using the sequence method. RESULTS Women presented lower BP values compared with men. HR did not differ between sexes, but showed an inverse relationship with cardiorespiratory performance. The HRV analysis showed greater sympathetic modulation for men and greater vagal modulation for women. Men and women presented similar results for systolic BPV and BRS, and cardiorespiratory performance did not influence any of the autonomic parameters evaluated. CONCLUSION Cardiorespiratory fitness does not interfere with HRV and BPV autonomic modulation or BRS. However, the cardiac modulatory balance differs between sexes, with a greater influence of the autonomic vagal component in women and the sympathetic component in men.
Collapse
|
18
|
Changes in tinnitus and physiological biomarkers of stress in response to short-term broadband noise and sounds of nature. Complement Ther Med 2019; 46:62-68. [PMID: 31519289 DOI: 10.1016/j.ctim.2019.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/09/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Tinnitus is the perception of sound when no external sound source is present. In some cases, this perception coincides with, or results in, stress. Tinnitus-related distress has been associated with increased levels of cortisol and elevated levels of sympathetic tone. Our primary hypothesis was that short-term sound exposure would reduce tinnitus perception and various physiological measures of stress. A secondary hypothesis was that a self-selected nature sound would reduce physiological markers of stress more than broadband noise. METHODS Twenty-one participants with constant bothersome tinnitus underwent an audiological assessment. Measurements of blood pressure, heart rate, salivary cortisol and cortisone concentrations, and tinnitus ratings were carried out three times: prior to and, in a counterbalance order, after 30 min of broadband noise and after 30 min of a self-selected nature sound (from: ocean waves, stream, rain or shower sounds). RESULTS Findings revealed significant reductions in blood pressure measurements following broadband noise. None of the other stress measures demonstrated a statistically significant change. Both broadband noise and nature sounds elicited significant improvements in ratings of tinnitus. CONCLUSIONS While both sound types had a positive impact on many dimensions of tinnitus, only the broadband noise was associated with a reduction in blood pressure. These results are consistent with a complex interaction between sound and tinnitus and suggest a multifactorial basis to sound therapy that includes a reduction in arousal.
Collapse
|
19
|
Favre ME, Serrador JM. Sex differences in cerebral autoregulation are unaffected by menstrual cycle phase in young, healthy women. Am J Physiol Heart Circ Physiol 2019; 316:H920-H933. [DOI: 10.1152/ajpheart.00474.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex is known to affect the prevalence of conditions such as stroke. However, effects of sex on cerebral blood flow regulation are still not well understood. Critical to this understanding is how fluctuations in hormones across the menstrual cycle affect cerebral autoregulation. We measured autoregulation in the early follicular, late follicular, and midluteal phases during spontaneous and induced blood pressure oscillations in 26 young, healthy individuals (13 women and 13 men, age: 26 ± 4 yr). Men participated three times, ~1–3 wk apart. Beat-by-beat blood pressure, heart rate, end-tidal CO2, and transcranial Doppler ultrasonography of the middle (MCA) and anterior (ACA) cerebral arteries were obtained. We did not find a difference in cerebral autoregulation across the menstrual cycle in women but found significantly improved autoregulation in the MCA and ACA of women compared with men. Women demonstrated significantly lower MCA gain (0.97 ± 0.13 vs. 1.17 ± 0.14%/mmHg, P = 0.001), higher MCA phase (46.1 ± 12.6 vs. 35.8 ± 7.9°, P = 0.019), and higher ACA phase (40.5 ± 10.8 vs 31.5 ± 8.5°, P = 0.040) during repeated squat-to-stand maneuvers. Women also had lower MCA gain (1.50 ± 0.11 vs. 1.72 ± 0.30%/mmHg, P = 0.029) during spontaneous fluctuations in pressure while standing and less of a decrease in MCA flow velocity (−18.7 ± 2.7 vs. −23.2 ± 6.0%, P = 0.014) during sit-to-stand maneuvers. Our results suggest that young women have improved cerebral autoregulation compared with young men regardless of menstrual cycle phase and that autoregulation is relatively robust to acute fluctuations in female sex hormones. NEW & NOTEWORTHY This is the first study to investigate thoroughly the effects of menstrual cycle phase and sex differences in cerebral autoregulation in young, healthy individuals. Cerebral autoregulation was unaffected by menstrual cycle phase during both repeated squat-to-stand and sit-to-stand maneuvers. However, women demonstrated significantly improved cerebral autoregulation in the middle and anterior cerebral arteries, suggesting women were able to maintain cerebral blood flow during changes in blood pressure more efficiently than men.
Collapse
Affiliation(s)
- Michelle E. Favre
- Department of Pharmacology, Physiology and Neuroscience; Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Jorge M. Serrador
- Department of Pharmacology, Physiology and Neuroscience; Rutgers Biomedical and Health Sciences, Newark, New Jersey
- War-Related Illness and Injury Study Center, Department of Veterans Affairs, East Orange, New Jersey
- Department of Cardiovascular Electronics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
20
|
Hissen SL, Sayed KE, Macefield VG, Brown R, Taylor CE. The Stability and Repeatability of Spontaneous Sympathetic Baroreflex Sensitivity in Healthy Young Individuals. Front Neurosci 2018; 12:403. [PMID: 29962929 PMCID: PMC6010576 DOI: 10.3389/fnins.2018.00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/25/2018] [Indexed: 01/18/2023] Open
Abstract
Spontaneous sympathetic baroreflex sensitivity (BRS) is a valuable tool for assessing how well the baroreflex buffers beat-to-beat changes in blood pressure. However, there has yet to be a study involving appropriate statistical tests to examine the stability of sympathetic BRS within an experimental session and the repeatability between separate sessions. The aim of this study was to use intra-class correlations, ordinary least products regression, and Bland–Altman analyses to examine the stability and repeatability of spontaneous sympathetic BRS assessment. In addition, the influence of recording duration on values of BRS was assessed. In eighty-four healthy young individuals (49 males, 35 females), continuous measurements of blood pressure, heart rate and muscle sympathetic nerve activity (MSNA) were recorded for 10 min. In a subgroup of 13 participants (11 male, 2 female) the measurements were repeated on a separate day. Sympathetic BRS was quantified using MSNA burst incidence (BRSinc) and total MSNA (BRStotal) for the first 5-min period, the second 5-min period, and a 2-min segment taken from the second 5-min period. Intra-class correlation coefficients indicated moderate stability in sympathetic BRSinc and BRStotal between the first and second 5-min periods in males (BRSincr = 0.63, BRStotalr = 0.78) and females (BRSincr = 0.61, BRStotalr = 0.47) with no proportional bias, but with fixed bias for BRSinc in females. When comparing the first 5-min with the 2-min period (n = 76), the intra-class correlation coefficient indicated poor to moderate repeatability in sympathetic BRSinc and BRStotal for males (BRSincr = -0.01, BRStotalr = 0.70) and females (BRSincr = 0.46, BRStotalr = 0.39). However, Bland–Altman analysis revealed a fixed bias for BRStotal in males and proportional bias for BRStotal in females, with lower BRS values for 5-min recordings. In the subgroup, intra-class correlations indicated moderate repeatability for measures of BRSinc (9 male, 2 female, r = 0.63) and BRStotal (6 male, 2 female, r = 0.68) assessed using 5-min periods recorded on separate days. However, Bland–Altman analysis indicated proportional bias for BRSinc and fixed bias for BRStotal. In conclusion, measures of spontaneous sympathetic BRS are moderately stable and repeatable within and between testing sessions in healthy young adults, provided that the same length of recording is used when making comparisons.
Collapse
Affiliation(s)
- Sarah L Hissen
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia
| | - Khadigeh El Sayed
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Rachael Brown
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Chloe E Taylor
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Toschi-Dias E, Rondon MUPB, Cogliati C, Paolocci N, Tobaldini E, Montano N. Contribution of Autonomic Reflexes to the Hyperadrenergic State in Heart Failure. Front Neurosci 2017; 11:162. [PMID: 28424575 PMCID: PMC5372354 DOI: 10.3389/fnins.2017.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is a complex syndrome representing the clinical endpoint of many cardiovascular diseases of different etiology. Given its prevalence, incidence and social impact, a better understanding of HF pathophysiology is paramount to implement more effective anti-HF therapies. Based on left ventricle (LV) performance, HF is currently classified as follows: (1) with reduced ejection fraction (HFrEF); (2) with mid-range EF (HFmrEF); and (3) with preserved EF (HFpEF). A central tenet of HFrEF pathophysiology is adrenergic hyperactivity, featuring increased sympathetic nerve discharge and a progressive loss of rhythmical sympathetic oscillations. The role of reflex mechanisms in sustaining adrenergic abnormalities during HFrEF is increasingly well appreciated and delineated. However, the same cannot be said for patients affected by HFpEF or HFmrEF, whom also present with autonomic dysfunction. Neural mechanisms of cardiovascular regulation act as “controller units,” detecting and adjusting for changes in arterial blood pressure, blood volume, and arterial concentrations of oxygen, carbon dioxide and pH, as well as for humoral factors eventually released after myocardial (or other tissue) ischemia. They do so on a beat-to-beat basis. The central dynamic integration of all these afferent signals ensures homeostasis, at rest and during states of physiological or pathophysiological stress. Thus, the net result of information gathered by each controller unit is transmitted by the autonomic branch using two different codes: intensity and rhythm of sympathetic discharges. The main scope of the present article is to (i) review the key neural mechanisms involved in cardiovascular regulation; (ii) discuss how their dysfunction accounts for the hyperadrenergic state present in certain forms of HF; and (iii) summarize how sympathetic efferent traffic reveal central integration among autonomic mechanisms under physiological and pathological conditions, with a special emphasis on pathophysiological characteristics of HF.
Collapse
Affiliation(s)
- Edgar Toschi-Dias
- Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil.,Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | | | - Chiara Cogliati
- Medicina ad Indirizzo Fisiopatologico, ASST Fatebenefratelli SaccoMilan, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical InstitutionsBaltimore, MD, USA.,Dipartimento di Medicina Sperimentale, Universita' degli Studi di PerugiaPerugia, Italy
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,Dipartimento di Dipartimento Scienze cliniche e di comunità, Università degli Studi di MilanoMilan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,Dipartimento di Dipartimento Scienze cliniche e di comunità, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
22
|
Amra B, Behjati M, Penzel T, Fietze I, Schoebel C, Sarrafzadegan N. Nocturnal heart rate variation in diabetic and non-diabetic patients with sleep apnea syndrome. Sleep Med 2016; 29:57-60. [PMID: 28153217 DOI: 10.1016/j.sleep.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Heart rate variability (HRV) analysis is used for the evaluation of autonomic function in the cardiovascular system. Decreased HRV is associated with disorders affecting the autonomous system such as diabetes mellitus (DM) and obstructive sleep apnea (OSA). Previous studies have shown an association between OSA and DM. However, the interrelationships of HRV with OSA and DM are not well known. The aim of this study was to assess nocturnal HRV in patients who suffered from OSA with and without DM. METHODS Sixty patients with OSA (27 with DM and 33 non-DM) underwent polysomnography for eight hours starting at midnight. From electrocardiogram (ECG) recordings taken as a part of polysomnography, time-domain and frequency-domain HRV parameters were evaluated to compare patients with regard to nocturnal HRV components such as low frequency (LF) and high frequency (HF), apnea-hypopnea index (AHI) and sleep parameters. RESULTS In the non-DM group, a direct relationship was observed between AHI and HRV rather than very low frequency (VLF) and LF/HF variables. This relationship was just significant between AHI and standard deviation of five-min average of normal R-R intervals and adjacent R-R intervals differing by 0.50 ms over 24 h (p < 0.05). In the DM group, the correlation between AHI and HRV parameters except HF and waking frequency was direct and non-significant. Intergroup comparison showed a significant difference between groups regarding AHI and HRV-index, LF and VLF (p < 0.05). CONCLUSIONS DM can affect HRV; however, this is not the case in OSA patients. This means that in the presence of OSA, the DM effect on HRV disappears.
Collapse
Affiliation(s)
- Babak Amra
- Pulmonary Unit, Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Bamdad Respiratory Research Center, Isfahan, Iran.
| | - Mohaddeseh Behjati
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Khorram Ave, PO Box 81465-1148 Isfahan, Iran.
| | - Thomas Penzel
- Center of Sleep Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, DE-10117 Berlin, Germany.
| | - Ingo Fietze
- Charité - Universitätsmedizin Berlin, Dept. of Cardiology and Pulmonology, Center of Sleep Medicine, Luisenstr. 13a, D-10117 Berlin, Germany.
| | - Christoph Schoebel
- Charité - Universitätsmedizin Berlin, Dept. of Cardiology and Pulmonology, Center of Sleep Medicine, Luisenstr. 13a, D-10117 Berlin, Germany.
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Khorram Ave, PO Box 81465-1148 Isfahan, Iran.
| |
Collapse
|
23
|
Klassen SA, Chirico D, Dempster KS, Shoemaker JK, O'Leary DD. Role of aortic arch vascular mechanics in cardiovagal baroreflex sensitivity. Am J Physiol Regul Integr Comp Physiol 2016; 311:R24-32. [PMID: 27122371 DOI: 10.1152/ajpregu.00491.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/26/2016] [Indexed: 01/06/2023]
Abstract
Cardiovagal baroreflex sensitivity (cvBRS) measures the efficiency of the cardiovagal baroreflex to modulate heart rate in response to increases or decreases in systolic blood pressure (SBP). Given that baroreceptors are located in the walls of the carotid sinuses (CS) and aortic arch (AA), the arterial mechanics of these sites are important contributors to cvBRS. However, the relative contribution of CS and AA mechanics to cvBRS remains unclear. This study employed sex differences as a model to test the hypothesis that differences in cvBRS between groups would be explained by the vascular mechanics of the AA but not the CS. Thirty-six young, healthy, normotensive individuals (18 females; 24 ± 2 yr) were recruited. cvBRS was measured using transfer function analysis of the low-frequency region (0.04-0.15 Hz). Ultrasonography was performed at the CS and AA to obtain arterial diameters for the measurement of distensibility. Local pulse pressure (PP) was taken at the CS using a hand-held tonometer, whereas AA PP was estimated using a transfer function of brachial PP. Both cvBRS (25 ± 11 vs. 19 ± 7 ms/mmHg, P = 0.04) and AA distensibility (16.5 ± 6.0 vs. 10.5 ± 3.8 mmHg(-1) × 10(-3), P = 0.02) were greater in females than males. Sex differences in cvBRS were eliminated after controlling for AA distensibility (P = 0.19). There were no sex differences in CS distensibility (5.32 ± 2.3 vs. 4.63 ± 1.3 mmHg(-1) × 10(-3), P = 0.32). The present data demonstrate that AA mechanics are an important contributor to differences in cvBRS.
Collapse
Affiliation(s)
- Stephen A Klassen
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada; and
| | - Daniele Chirico
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada; and
| | - Kylie S Dempster
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada; and
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Deborah D O'Leary
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada; and
| |
Collapse
|
24
|
Burton AR, Fazalbhoy A, Macefield VG. Sympathetic Responses to Noxious Stimulation of Muscle and Skin. Front Neurol 2016; 7:109. [PMID: 27445972 PMCID: PMC4927631 DOI: 10.3389/fneur.2016.00109] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022] Open
Abstract
Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological – reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation.
Collapse
Affiliation(s)
| | - Azharuddin Fazalbhoy
- School of Health and Biomedical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
25
|
Salman IM. Cardiovascular Autonomic Dysfunction in Chronic Kidney Disease: a Comprehensive Review. Curr Hypertens Rep 2016; 17:59. [PMID: 26071764 DOI: 10.1007/s11906-015-0571-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular autonomic dysfunction is a major complication of chronic kidney disease (CKD), likely contributing to the high incidence of cardiovascular mortality in this patient population. In addition to adrenergic overdrive in affected individuals, clinical and experimental evidence now strongly indicates the presence of impaired reflex control of both sympathetic and parasympathetic outflow to the heart and vasculature. Although the principal underlying mechanisms are not completely understood, potential involvements of altered baroreceptor, cardiopulmonary, and chemoreceptor reflex function, along with factors including but not limited to increased renin-angiotensin-aldosterone system activity, activation of the renal afferents and cardiovascular structural remodeling have been suggested. This review therefore analyzes potential mechanisms underpinning autonomic imbalance in CKD, covers results accumulated thus far on cardiovascular autonomic function studies in clinical and experimental renal failure, discusses the role of current interventional and therapeutic strategies in ameliorating autonomic deficits associated with chronic renal dysfunction, and identifies gaps in our knowledge of neural mechanisms driving cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Ibrahim M Salman
- The Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia,
| |
Collapse
|
26
|
Kobuch S, Fazalbhoy A, Brown R, Macefield VG. Inter-Individual Responses to Experimental Muscle Pain: Baseline Physiological Parameters Do Not Determine Whether Muscle Sympathetic Nerve Activity Increases or Decreases During Pain. Front Neurosci 2015; 9:471. [PMID: 26733786 PMCID: PMC4681770 DOI: 10.3389/fnins.2015.00471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/24/2015] [Indexed: 11/13/2022] Open
Abstract
We have previously reported that there are inter-individual differences in the cardiovascular responses to experimental muscle pain, which are consistent over time: intramuscular infusion of hypertonic saline, causing pain lasting ~60 min, increases muscle sympathetic nerve activity (MSNA)—as well as blood pressure and heart rate—in certain subjects, but decrease it in others. Here, we tested the hypothesis that baseline physiological parameters (resting MSNA, heart rate, blood pressure, heart rate variability) determine the cardiovascular responses to long-lasting muscle pain. MSNA was recorded from the common peroneal nerve, together with heart rate and blood pressure, during a 45-min intramuscular infusion of hypertonic saline solution into the tibialis anterior of 50 awake human subjects (25 females and 25 males). Twenty-four subjects showed a sustained increase in mean amplitude of MSNA (160.9 ± 7.3%), while 26 showed a sustained decrease (55.1 ± 3.5%). Between the increasing and decreasing groups there were no differences in baseline MSNA (19.0 ± 1.5 vs. 18.9 ± 1.2 bursts/min), mean BP (88.1 ± 5.2 vs. 88.0 ± 3.8 mmHg), HR (74.7 ± 2.0 vs. 72.8 ± 1.8 beats/min) or heart rate variability (LF/HF 1.8 ± 0.2 vs. 2.2 ± 0.3). Furthermore, neither sex nor body mass index had any effect on whether MSNA increased or decreased during tonic muscle pain. We conclude that the measured baseline physiological parameters cannot account for the divergent sympathetic responses during tonic muscle pain.
Collapse
Affiliation(s)
- Sophie Kobuch
- School of Medicine, Western Sydney University Sydney, NSW, Australia
| | - Azharuddin Fazalbhoy
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia; School of Health Sciences, RMIT UniversityBundoora, VIC, Australia
| | - Rachael Brown
- School of Medicine, Western Sydney University Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| |
Collapse
|
27
|
Chirico D, Liu J, Klentrou P, Shoemaker JK, O'Leary DD. The Effects of Sex and Pubertal Maturation on Cardiovagal Baroreflex Sensitivity. J Pediatr 2015; 167:1067-73. [PMID: 26340872 DOI: 10.1016/j.jpeds.2015.07.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/22/2015] [Accepted: 07/28/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To examine baroreflex sensitivity (BRS) across different stages of pubertal maturation in healthy children and adolescents. STUDY DESIGN This study was cross-sectional and included 104 participants (53 males and 51 females) aged 8-18 years old. Participants were organized into 5 pubertal groups based on the criteria of Tanner; prepubertal (Tanner 1, n = 19), early-pubertal (Tanner 2, n = 16), peripubertal (Tanner 3, n = 24), late-pubertal (Tanner 4, n = 23), and postpubertal (Tanner 5 and 6, n = 22). Adiposity (fat-free mass, fat mass, and body fat%), body mass index, and demographic variables were collected. Beat-by-beat blood pressure and R-R interval were collected during supine rest to determine BRS. BRS was assessed by transfer function analysis in the low frequency range (0.05-0.15 Hz). RESULTS The results demonstrated a sex-by-maturation interaction [F(4, 94) = 3.202, P = .019]. BRS decreased from early-to postpuberty in males (30 [7.1] vs 13.2 [7.8] ms/mm Hg), and remained unchanged in females. This led to significantly greater BRS in females compared with males, postpuberty (27 [7.3] vs 13.2 [7.8] ms/mm Hg). CONCLUSIONS Controlling for both sex and maturation when examining BRS in children and adolescents with cardiovascular disease risk factors will aid in interpreting abnormally high or low BRS values.
Collapse
Affiliation(s)
- Daniele Chirico
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Jian Liu
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
28
|
Sayk F, Wobbe I, Twesten C, Meusel M, Wellhöner P, Derad I, Dodt C. Prolonged blood pressure elevation following continuous infusion of angiotensin II-a baroreflex study in healthy humans. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1406-14. [PMID: 26400183 DOI: 10.1152/ajpregu.00111.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
ANG II interacts with the sympathetic nervous system at central nervous blood pressure-regulating structures, including the baroreflex. It is unknown whether prolonged BP elevation mediated by high ANG II plasma levels could induce a persistent shift of the central nervous baroreflex setpoint, lasting beyond the short ANG II plasmatic half time of a few seconds, thereby consolidating elevated BP and/or increased SNA in healthy humans. In a blinded crossover design, ANG II or placebo (saline) was infused for a 6-h period in 12 resting normotensive students (6 males, 6 females) raising BP to borderline hypertensive levels. Between 60 and 120 min after the infusion period, muscle sympathetic nerve activity (MSNA) was assessed microneurographically and correlated with oscillometric BP measurements and heart rate at supine rest (baseline) and during pharmacologic baroreceptor challenge. Infusion of ANG II increased BP to borderline-hypertensive levels, as intended, whereas heart rate remained unaltered. At baroreflex assessment (i.e., 60-120 min after end of infusion period), systolic BP was significantly higher compared with placebo (Δ8.4 ± 3.1 mmHg; P < 0.05), whereas diastolic values were nearly equal between conditions. Baseline MSNA was neither decreased nor increased, and baroreflex sensitivity to vasoactive drug challenge was not altered. Our results show that elevation of ANG II plasma levels over 6 h was able to increase systolic, but not diastolic, BP far beyond blood-mediated ANG II effects. MSNA or heart rate did not counter-regulate this BP elevation, indicating that ANG II had sustainably reset the central nervous BP threshold of sympathetic baroreflex function to accept elevated BP input signals without counter-regulatory response.
Collapse
Affiliation(s)
- Friedhelm Sayk
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; Department of Internal Medicine II, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany;
| | - Isabel Wobbe
- Institute of Radiology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Christoph Twesten
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Moritz Meusel
- Department of Internal Medicine II, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Peter Wellhöner
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Inge Derad
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christoph Dodt
- Department of Emergency Medicine, München-Bogenhausen Hospital, München, Germany
| |
Collapse
|
29
|
Charkoudian N, Wallin BG. Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Compr Physiol 2014; 4:825-50. [PMID: 24715570 DOI: 10.1002/cphy.c130038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The sympathetic nervous system is a ubiquitous, integrating controller of myriad physiological functions. In the present article, we review the physiology of sympathetic neural control of cardiovascular function with a focus on integrative mechanisms in humans. Direct measurement of sympathetic neural activity (SNA) in humans can be accomplished using microneurography, most commonly performed in the peroneal (fibular) nerve. In humans, muscle SNA (MSNA) is composed of vasoconstrictor fibers; its best-recognized characteristic is its participation in transient, moment-to-moment control of arterial blood pressure via the arterial baroreflex. This property of MSNA contributes to its typical "bursting" pattern which is strongly linked to the cardiac cycle. Recent evidence suggests that sympathetic neural mechanisms and the baroreflex have important roles in the long term control of blood pressure as well. One of the striking characteristics of MSNA is its large interindividual variability. However, in young, normotensive humans, higher MSNA is not linked to higher blood pressure due to balancing influences of other cardiovascular variables. In men, an inverse relationship between MSNA and cardiac output is a major factor in this balance, whereas in women, beta-adrenergic vasodilation offsets the vasoconstrictor/pressor effects of higher MSNA. As people get older (and in people with hypertension) higher MSNA is more likely to be linked to higher blood pressure. Skin SNA (SSNA) can also be measured in humans, although interpretation of SSNA signals is complicated by multiple types of neurons involved (vasoconstrictor, vasodilator, sudomotor and pilomotor). In addition to blood pressure regulation, the sympathetic nervous system contributes to cardiovascular regulation during numerous other reflexes, including those involved in exercise, thermoregulation, chemoreflex regulation, and responses to mental stress.
Collapse
Affiliation(s)
- N Charkoudian
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | |
Collapse
|
30
|
Hart ECJ, Charkoudian N. Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology (Bethesda) 2014; 29:8-15. [PMID: 24382867 DOI: 10.1152/physiol.00031.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sex and age have important influences on sympathetic neural control of blood pressure in humans. Young women are relatively protected against risk of hypertension due to greater peripheral vasodilator influences compared with young men and older people. This protective effect is lost at menopause. Older men and women have higher sympathetic nerve activity and tighter coupling between SNA and blood pressure, contributing to the increased risk of hypertension with aging.
Collapse
Affiliation(s)
- E C J Hart
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom; and
| | | |
Collapse
|
31
|
Central regulation of heart rate and the appearance of respiratory sinus arrhythmia: new insights from mathematical modeling. Math Biosci 2014; 255:71-82. [PMID: 25004397 DOI: 10.1016/j.mbs.2014.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/09/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
A minimal model for the neural control of heart rate (HR) has been developed with the aim of better understanding respiratory sinus arrhythmia (RSA)--a modulation of HR at the frequency of breathing. This model consists of two differential equations and is integrated into a previously-published model of gas exchange. The heart period is assumed to be affected primarily by the parasympathetic signal, with the sympathetic signal taken as a parameter in the model. We include the baroreflex, mechanical stretch-receptor feedback from the lungs, and central modulation of the cardiac vagal tone by the respiratory drive. Our model mimics a range of experimental observations and provides several new insights. Most notably, the model mimics the growth in the amplitude of RSA with decreasing respiratory frequency up to 7 breaths per minute (for humans). Our model then mimics the decrease in the amplitude of RSA at frequencies below 7 breaths per minute and predicts that this decrease is due to the baroreflex (we show this both numerically and analytically with a linear baroreflex). Another new prediction of the model is that the gating of the baroreflex leads to the dependency of RSA on mean vagal tone. The new model was also used to test two previously-suggested hypotheses regarding the physiological function of RSA and supports the hypothesis that RSA minimizes the work done by the heart while maintaining physiological levels of arterial CO2. These and other new insights the model provides extend our understanding of the integrative nature of vagal control of the heart.
Collapse
|
32
|
Should there be sex-specific criteria for the diagnosis and treatment of heart failure? J Cardiovasc Transl Res 2013; 7:139-55. [PMID: 24214112 PMCID: PMC3935102 DOI: 10.1007/s12265-013-9514-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
All-cause mortality from cardiovascular disease is declining in the USA. However, there remains a significant difference in risk factors for disease and in mortality between men and women. For example, prevalence and outcomes for heart failure with preserved ejection fraction differ between men and women. The reasons for these differences are multifactorial, but reflect, in part, an incomplete understanding of sex differences in the etiology of cardiovascular diseases and a failure to account for sex differences in pre-clinical studies including those designed to develop new diagnostic and treatment modalities. This review focuses on the underlying physiology of these sex differences and provides evidence that inclusion of female animals in pre-clinical studies of heart failure and in development of imaging modalities to assess cardiac function might provide new information from which one could develop sex-specific diagnostic criteria and approaches to treatment.
Collapse
|
33
|
Brunt VE, Miner JA, Kaplan PF, Halliwill JR, Strycker LA, Minson CT. Short-term administration of progesterone and estradiol independently alter carotid-vasomotor, but not carotid-cardiac, baroreflex function in young women. Am J Physiol Heart Circ Physiol 2013; 305:H1041-9. [PMID: 23873800 DOI: 10.1152/ajpheart.00194.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The individual effects of estrogen and progesterone on baroreflex function remain poorly understood. We sought to determine how estradiol (E2) and progesterone (P4) independently alter the carotid-cardiac and carotid-vasomotor baroreflexes in young women by using a hormone suppression and exogenous add-back design. Thirty-two young women were divided into two groups and studied under three conditions: 1) after 4 days of endogenous hormone suppression with a gonadotropin releasing hormone antagonist (control condition), 2) after continued suppression and 3 to 4 days of supplementation with either 200 mg/day oral progesterone (N = 16) or 0.1 to 0.2 mg/day transdermal 17β-estradiol (N = 16), and 3) after continued suppression and 3 to 4 days of supplementation with both hormones. Changes in heart rate (HR), mean arterial pressure (MAP), and femoral vascular conductance (FVC) were measured in response to 5 s of +50 mmHg external neck pressure to unload the carotid baroreceptors. Significant hormone effects on the change in HR, MAP, and FVC from baseline at the onset of neck pressure were determined using mixed model covariate analyses accounting for P4 and E2 plasma concentrations. Neither P4 (P = 0.95) nor E2 (P = 0.95) affected the HR response to neck pressure. Higher P4 concentrations were associated with an attenuated fall in FVC (P = 0.01), whereas higher E2 concentrations were associated with an augmented fall in FVC (P = 0.02). Higher E2 was also associated with an augmented rise in MAP (P = 0.01). We conclude that progesterone blunts whereas estradiol enhances carotid-vasomotor baroreflex sensitivity, perhaps explaining why no differences in sympathetic baroreflex sensitivity are commonly reported between low and high combined hormone phases of the menstrual cycle.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | | | | | | | | |
Collapse
|
34
|
Arzeno NM, Stenger MB, Lee SMC, Ploutz-Snyder R, Platts SH. Sex differences in blood pressure control during 6° head-down tilt bed rest. Am J Physiol Heart Circ Physiol 2013; 304:H1114-23. [PMID: 23396455 PMCID: PMC3625908 DOI: 10.1152/ajpheart.00391.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 02/04/2013] [Indexed: 11/22/2022]
Abstract
Spaceflight-induced orthostatic intolerance has been studied for decades. Although ∼22% of the astronaut corps are women, most mechanistic studies use mostly male subjects, despite known sex differences in autonomic control and postflight orthostatic intolerance. We studied adrenergic, baroreflex, and autonomic indexes during continuous infusions of vasoactive drugs in men and women during a 60-day head-down bed rest. Volunteers were tested before bed rest (20 men and 10 women) and around day 30 (20 men and 10 women) and day 60 (16 men and 8 women) of bed rest. Three increasing doses of phenylephrine (PE) and sodium nitroprusside were infused for 10 min after an infusion of normal saline. A 20-min rest period separated the phenylephrine and sodium nitroprusside infusions. Autonomic activity was approximated by spectral indexes of heart rate and blood pressure variability, and baroreflex sensitivity was measured by the spontaneous baroreflex slope. Parasympathetic modulation and baroreflex sensitivity decreased with bed rest, with women experiencing a larger decrease in baroreflex sensitivity by day 30 than men. The sympathetic activation of men and parasympathetic responsiveness of women in blood pressure control during physiological stress were preserved throughout bed rest. During PE infusions, women experienced saturation of the R-R interval at high frequency, whereas men did not, revealing a sex difference in the parabolic relationship between high-frequency R-R interval, a measurement of respiratory sinus arrhythmia, and R-R interval. These sex differences in blood pressure control during simulated microgravity reveal the need to study sex differences in long-duration spaceflight to ensure the health and safety of the entire astronaut corps.
Collapse
Affiliation(s)
- Natalia M Arzeno
- Wyle Science, Technology and Engineering Group, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
35
|
New insights into the effects of age and sex on arterial baroreflex function at rest and during dynamic exercise in humans. Auton Neurosci 2012; 172:13-22. [PMID: 23151515 DOI: 10.1016/j.autneu.2012.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The arterial baroreflex (ABR) performs an important role in regulating blood pressure (BP) both at rest and during exercise, by carefully orchestrating autonomic neural activity to the heart and blood vessels. Reduced ABR sensitivity (i.e., gain) has been associated with increased cardiovascular risk, cardiac electrical instability and orthostatic intolerance, while 'normal' ABR function during exercise is important for ensuring an appropriate cardiovascular response is elicited. Previous studies examining the influence of age and sex on resting ABR function in humans have primarily used pharmacological methods (e.g., modified Oxford technique) to change BP and alter baroreceptor input. With this approach only reflex control of heart rate and sympathetic nerve activity may be evaluated, and as such the influence of age and sex on ABR control of BP per se remains incompletely understood. Furthermore, the majority of previous studies examining ABR function during exercise have principally assessed young men. Whether these findings can be extrapolated to young women or older men and women remains unclear. Recently the potential for age and sex to modulate the integrative neural control of the cardiovascular system is becoming appreciated. This review article will provide a detailed update of such recent advances into our understanding of the effects of age and sex on ABR control of BP both at rest and during dynamic exercise in humans.
Collapse
|
36
|
Wenner MM, Stachenfeld NS. Blood pressure and water regulation: understanding sex hormone effects within and between men and women. J Physiol 2012; 590:5949-61. [PMID: 23027816 DOI: 10.1113/jphysiol.2012.236752] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death for both men and women. Hypertension is less prevalent in young women compared with young men, but menopausal women are at greater risk for hypertension compared with men of similar age. Despite these risks, women do not consistently receive first line treatment for the early stages of hypertension, and the greater morbidity in menopause reflects this neglect. This review focuses on ovarian hormone effects on the cardiovascular and water regulatory systems that are associated with blood pressure control in women. The study of ovarian hormones within young women is complex because these hormones fluctuate across the menstrual cycle, and these fluctuations can complicate conclusions regarding sex differences. To better isolate the effects of oestrogen and progesterone on the cardiovascular and water regulation systems, we developed a model to transiently suppress reproductive function followed by controlled hormone administration. Sex differences in autonomic regulation of blood pressure appear related to ovarian hormone exposure, and these hormonal differences contribute to sex differences in hypertension and orthostatic tolerance. Oestrogen and progesterone exposure are also associated with plasma volume expansion, and a leftward shift in the osmotic operating point for body fluid regulation. In young, healthy women, the shift in osmoregulation appears to have only a minor effect on overall body water balance. Our overarching conclusion is that ovarian hormone exposure is the important underlying factor contributing to differences in blood pressure and water regulation between women and men, and within women throughout the lifespan.
Collapse
|
37
|
Abstract
This article reviews microneurographic research on sympathetic neural control in women under both physiological and pathophysiological conditions across the lifespan. Specifically, the effects of sex, age, race, the menstrual cycle, oral contraceptives, estrogen replacement therapy, and normal pregnancy on neural control of blood pressure in healthy women are reviewed. In addition, sympathetic neural activity during neurally mediated (pre)syncope, the Postural Orthostatic Tachycardia Syndrome (POTS), obesity, the Polycystic Ovary Syndrome (PCOS), gestational hypertension, and preeclampsia, chronic essential hypertension, heart failure, and myocardial infarction in women are also reviewed briefly. It is suggested that microneurographic studies provide valuable information regarding autonomic circulatory control in women of different ages and in most cases, excessive sympathetic activation is associated with specific medical conditions regardless of age and sex. In some situations, sympathetic inhibition or withdrawal may be the underlying mechanism. Information gained from previous and recent microneurographic studies has significant clinical implications in women's health, and in some cases could be used to guide therapy if more widely available.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and UT Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
38
|
Barnes JN, Matzek LJ, Charkoudian N, Joyner MJ, Curry TB, Hart EC. Association of cardiac baroreflex sensitivity with blood pressure transients: influence of sex and menopausal status. Front Physiol 2012; 3:187. [PMID: 22701103 PMCID: PMC3369369 DOI: 10.3389/fphys.2012.00187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 11/13/2022] Open
Abstract
The magnitude of decrease in blood pressure (BP) during a vasoactive drug bolus may be associated with the calculated baroreflex sensitivity (BRS). The purpose of the present study was to evaluate whether sympathetic and/or cardiac BRS relates to the extent of change in BP and whether this was altered by sex hormones. Fifty-one young women (27 ± 1 years), 14 older women (58 ± 1 years), and 36 young men (27 ± 1 years) were studied. Heart rate, BP, and muscle sympathetic nerve activity (MSNA) were monitored. Sympathetic BRS was analyzed using the slope of the MSNA-diastolic blood pressure (DBP) relationship and cardiac BRS was analyzed using the R–R interval-systolic blood pressure (SBP) relationship. Young women and men had similar mean arterial pressures (MAP, 91 ± 1 vs. 90 ± 1 mmHg), cardiac BRS (19 ± 1 vs. 21 ± 2 ms/mmHg), and sympathetic BRS (−6 ± 1 vs. −7 ± 1 AU/beat/mmHg), respectively. Older women had higher MAP (104 ± 4 mmHg, p < 0.05) and lower cardiac BRS (7 ± 1 ms/mmHg, p < 0.05), but similar sympathetic BRS (−8 ± 1 AU/beat/mmHg). There was no association between BP transients with either cardiac or sympathetic BRS in young women. In the older women, the drop in SBP, DBP, and MAP were associated with cardiac BRS (r = 0.60, r = 0.59, and r = 0.70, respectively; p < 0.05), but not sympathetic BRS. The decrease in SBP was positively related to cardiac BRS in young men (r = 0.41; p < 0.05). However, there was no relationship between the decrease in BP and sympathetic BRS. This indicates that older women and young men with low cardiac BRS have larger transients in BP during nitroprusside. This suggests a more prominent role for cardiac (as opposed to sympathetic) BRS in responding to acute BP changes in young men and older women. The fact that these relationships do not exist in young women suggest that the female sex hormones influence baroreflex responses.
Collapse
Affiliation(s)
- Jill N Barnes
- Human Integrative Physiology Laboratory, Department of Anesthesiology, Mayo Clinic, Rochester MN, USA
| | | | | | | | | | | |
Collapse
|
39
|
Pinkham MI, Guild SJ, Malpas SC, Barrett CJ. Effects of sex and ovarian hormones on the initial renal sympathetic nerve activity response to myocardial infarction. Exp Physiol 2012; 97:1040-53. [DOI: 10.1113/expphysiol.2012.065615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Krapalis AF, Reiter J, Machleidt F, Iwen KA, Dodt C, Lehnert H, Sayk F. Ghrelin modulates baroreflex-regulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1305-12. [PMID: 22492814 DOI: 10.1152/ajpregu.00663.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ghrelin, a neuropeptide originally known for its growth hormone-releasing and orexigenic properties, exerts important pleiotropic effects on the cardiovascular system. Growing evidence suggests that these effects are mediated by the sympathetic nervous system. The present study aimed at elucidating the acute effect of ghrelin on sympathetic outflow to the muscle vascular bed (muscle sympathetic nerve activity, MSNA) and on baroreflex-mediated arterial blood pressure (BP) regulation in healthy humans. In a randomized double-blind cross-over design, 12 lean young men were treated with a single dose of either ghrelin 2 μg/kg iv or placebo (isotonic saline). MSNA, heart rate (HR), and BP were recorded continuously from 30 min before until 90 min after substance administration. Sensitivity of arterial baroreflex was repeatedly tested by injection of vasoactive substances based on the modified Oxford protocol. Early, i.e., during the initial 30 min after ghrelin injection, BP significantly decreased together with a transient increase of MSNA and HR. In the course of the experiment (>30 min), BP approached placebo level, while MSNA and HR were significantly lower compared with placebo. The sensitivity of vascular arterial baroreflex significantly increased at 30-60 min after intravenous ghrelin compared with placebo, while HR response to vasoactive drugs was unaltered. Our findings suggest two distinct phases of ghrelin action: In the immediate phase, BP is decreased presumably due to its vasodilating effects, which trigger baroreflex-mediated counter-regulation with increases of HR and MSNA. In the delayed phase, central nervous sympathetic activity is suppressed, accompanied by an increase of baroreflex sensitivity.
Collapse
Affiliation(s)
- Alexander F Krapalis
- Univ. of Luebeck, Dept. of Internal Medicine I, Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Okada Y, Galbreath MM, Shibata S, Jarvis SS, VanGundy TB, Meier RL, Vongpatanasin W, Levine BD, Fu Q. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in elderly men and women. Hypertension 2011; 59:98-104. [PMID: 22106403 DOI: 10.1161/hypertensionaha.111.176560] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous human studies have shown that large-artery stiffness contributes to an age-related decrease in cardiovagal baroreflex sensitivity. Whether this is also true with sympathetic baroreflex sensitivity is unknown. We tested the hypothesis that sympathetic baroreflex sensitivity is associated with the stiffness of baroreceptor segments (the carotid artery and the aorta) in elderly individuals and that sex affects this relationship. Sympathetic baroreflex sensitivity was assessed from the spontaneous changes in beat-by-beat diastolic pressure and corresponding muscle sympathetic nerve activity (microneurography) during supine rest in 30 men (mean±SEM: 69±1 years) and 31 women (68±1 years). Carotid artery stiffness (B-mode ultrasonography) and aortic stiffness (MRI) were also determined. We found that elderly women had lower sympathetic baroreflex sensitivity than elderly men (-2.33±0.25 versus -3.32±0.25 bursts · 100 beats(-1) · mm Hg(-1); P=0.007). β-Stiffness indices of the carotid artery and the aorta were greater in elderly women than in men (6.68±0.48 versus 5.10±0.50 and 4.03±0.47 versus 2.68±0.42; both P<0.050). Sympathetic baroreflex sensitivity was inversely correlated with carotid artery stiffness in both men and women (r=0.49 and 0.50; both P<0.05), whereas this relation was shifted in parallel upward (toward a reduced sensitivity) in women with no changes in the slope (0.26 versus 0.24 arbitrary units). Sympathetic baroreflex sensitivity and aortic stiffness showed similar trends. Thus, barosensory artery stiffness seems to be one independent determinant of sympathetic baroreflex sensitivity in elderly men and women. The lower sympathetic baroreflex sensitivity in elderly women may predispose them to an increased prevalence of hypertension.
Collapse
Affiliation(s)
- Yoshiyuki Okada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hart EC, Charkoudian N. Sympathetic neural mechanisms in human blood pressure regulation. Curr Hypertens Rep 2011; 13:237-43. [PMID: 21293977 DOI: 10.1007/s11906-011-0191-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sympathetic neural function is essential to human blood pressure regulation, and overactivity of sympathetic nerves may have an important role in the development of hypertension and related cardiovascular disorders. Importantly, there is extensive interindividual variability in sympathetic vasoconstrictor nerve activity, even among healthy, young, normotensive people. Therefore, the relevance of each person's level of sympathetic nerve activity for his or her blood pressure must be evaluated in the context of other factors contributing to the overall level of blood pressure, including cardiac output and vascular adrenergic responsiveness. We include evidence showing that the balance of factors contributing to normal blood pressure in young people is influenced by sex. Hypertension itself can be multifactorial, but it is often associated with elevated sympathetic nerve activity, which can be reversed by some pharmacologic antihypertensive treatments. Although much work remains to be done in this area, an appropriate recognition of the complexity of integrated physiological regulation and of the importance of interindividual variability will be key factors in moving forward to even better understanding and treatment.
Collapse
Affiliation(s)
- Emma C Hart
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
43
|
Squatting test: a dynamic postural manoeuvre to study baroreflex sensitivity. Clin Auton Res 2011; 22:35-41. [DOI: 10.1007/s10286-011-0140-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022]
|
44
|
Dutoit AP, Hart EC, Charkoudian N, Wallin BG, Curry TB, Joyner MJ. Cardiac baroreflex sensitivity is not correlated to sympathetic baroreflex sensitivity within healthy, young humans. Hypertension 2010; 56:1118-23. [PMID: 21060001 DOI: 10.1161/hypertensionaha.110.158329] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to evaluate the relationship between the cardiac and sympathetic baroreflex sensitivities within healthy, young humans. The sensitivities of the cardiac and sympathetic baroreflexes were compared in 53 normotensive individuals (28 men and 25 women; age: 24.0 ± 0.9 years; body mass index: 24.0 ± 0.3 cm/kg², mean ± SEM). Heart rate, arterial blood pressure, and peroneal muscle sympathetic nerve activity were recorded under resting conditions (heart rate: 58 ± 1 bpm; systolic blood pressure: 126 ± 2 mm Hg; diastolic blood pressure: 72 ± 1 mm Hg; mean arterial blood pressure: 89 ± 1 mm Hg; muscle sympathetic nerve activity: 18 ± 1 bursts per min) and during rapid changes in blood pressure induced by sequential boluses of nitroprusside and phenylephrine. Cardiac and sympathetic baroreflex sensitivities were analyzed using the slopes of the linear portions of the muscle sympathetic nerve activity-diastolic blood pressure and R-R interval-systolic blood pressure relationships, respectively. When individual cardiac baroreflex sensitivity was compared with sympathetic baroreflex sensitivity, no correlation (R-R interval: r = -0.13; heart rate: r = 0.21) was observed when studied as a group. Analysis by sex unveiled a correlation in women between the cardiac and sympathetic baroreflex sensitivities (R-R interval: r = -0.54; P = 0.01; no correlation with hazard ratio: r = 0.29). No relationship was found in men (R-R interval: r = 0.17; heart rate: r = 0.12). These results indicate that, although both cardiac and sympathetic efferents function in baroreflex control of arterial pressure, there is no correlation in their sensitivities within healthy normotensive humans. However, sex-stratified data indicate that sex-based differential correlations might exist.
Collapse
Affiliation(s)
- Andrea P Dutoit
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
45
|
Trigonometric regressive spectral analysis reliably maps dynamic changes in baroreflex sensitivity and autonomic tone: the effect of gender and age. PLoS One 2010; 5:e12187. [PMID: 20808439 PMCID: PMC2922332 DOI: 10.1371/journal.pone.0012187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/22/2010] [Indexed: 11/19/2022] Open
Abstract
Background The assessment of baroreflex sensitivity (BRS) has emerged as prognostic tool in cardiology. Although available computer-assisted methods, measuring spontaneous fluctuations of heart rate and blood pressure in the time and frequency domain are easily applicable, they do not allow for quantification of BRS during cardiovascular adaption processes. This, however, seems an essential criterion for clinical application. We evaluated a novel algorithm based on trigonometric regression regarding its ability to map dynamic changes in BRS and autonomic tone during cardiovascular provocation in relation to gender and age. Methodology/Principal Findings We continuously recorded systemic arterial pressure, electrocardiogram and respiration in 23 young subjects (25±2 years) and 22 middle-aged subjects (56±4 years) during cardiovascular autonomic testing (metronomic breathing, Valsalva manoeuvre, head-up tilt). Baroreflex- and spectral analysis was performed using the algorithm of trigonometric regressive spectral analysis. There was an age-related decline in spontaneous BRS and high frequency oscillations of RR intervals. Changes in autonomic tone evoked by cardiovascular provocation were observed as shifts in the ratio of low to high frequency oscillations of RR intervals and blood pressure. Respiration at 0.1 Hz elicited an increase in BRS while head-up tilt and Valsalva manoeuvre resulted in a downregulation of BRS. The extent of autonomic adaption was in general more pronounced in young individuals and declined stronger with age in women than in men. Conclusions/Significance The trigonometric regressive spectral analysis reliably maps age- and gender-related differences in baroreflex- and autonomic function and is able to describe adaption processes of baroreceptor circuit during cardiovascular stimulation. Hence, this novel algorithm may be a useful screening tool to detect abnormalities in cardiovascular adaption processes even when resting values appear to be normal.
Collapse
|
46
|
Postexercise hypotension in an endurance-trained population of men and women following high-intensity interval and steady-state cycling. Am J Hypertens 2010; 23:358-67. [PMID: 20057359 DOI: 10.1038/ajh.2009.269] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The acute effect of high-intensity interval exercise (HI) on blood pressure (BP) is unknown although this type of exercise has similar or greater cardiovascular benefits compared to steady-state aerobic exercise (SS). This study examined postexercise hypotension (PEH) and potential mechanisms of this response in endurance-trained subjects following acute SS and HI. Sex differences were also evaluated. METHODS A total of 25 endurance-trained men (n = 15) and women (n = 10) performed a bout of HI and a bout of SS cycling in randomized order on separate days. Before exercise, 30 min postexercise, and 60 min postexercise, we measured brachial and aortic BP. Cardiac output (CO), stroke volume (SV), end diastolic volume (EDV), end systolic volume (ESV), and left ventricular wall-velocities were measured using ultrasonography with tissue Doppler capabilities. Ejection fraction and fractional shortening (FS), total peripheral resistance (TPR), and calf vascular resistance were calculated from the above variables and measures of leg blood flow. RESULTS BP, ejection fraction, and FS decreased by a similar magnitude following both bouts but changes in CO, heart rate (HR), TPR, and calf vascular resistance were greater in magnitude following HI than following SS. Men and women responded similarly to HI. Although men and women exhibited a similar PEH following SS, they showed differential changes in SV, EDV, and TPR. CONCLUSIONS HI acutely reduces BP similarly to SS. The mechanistic response to HI appears to differ from that of SS, and endurance-trained men and women may exhibit differential mechanisms for PEH following SS but not HI.
Collapse
|
47
|
Jackson DN, Ellis CG, Shoemaker JK. Estrogen modulates the contribution of neuropeptide Y to baseline hindlimb blood flow control in female Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1351-7. [PMID: 20219870 DOI: 10.1152/ajpregu.00420.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the role of estrogen in neuropeptide Y (NPY) and Y(1) receptor (Y(1)R)-mediated vascular responses in female rats. Based on earlier work from our laboratory that female rats lacked an NPY contribution to hindlimb vascular conductance relative to males, we tested the hypothesis that estrogen modulates Y(1)R-mediated hindlimb blood flow control. Thus it was expected that ovariectomy would: 1) increase skeletal muscle Y(1)R expression, 2) decrease skeletal muscle Y(2) receptor (Y(2)R) expression, 3) decrease peptidase activity, and/or 4) increase overall skeletal muscle NPY concentration. Separate groups of control (CTL), ovariectomized (OVX), and OVX + 17beta-estradiol replacement (OVX + E(2); 21-day pellet) rats were studied. Animals were anesthetized and given localized hindlimb delivery of BIBP-3226 (Y(1)R antagonist), while femoral artery blood flow and blood pressure were recorded. Tissue samples from the white and red vastus lateralis muscle were extracted to examine Y(1)R and Y(2)R expression, peptidase activity, and NPY concentration. We found that Y(1)R blockade resulted in increased baseline hindlimb blood flow and vascular conductance in OVX rats, whereas no change was noted in CTL or OVX + E(2) groups (P < 0.05). This enhanced functional effect in the OVX group aligned with greater skeletal muscle Y(1)R expression in white vastus muscle and a substantial increase in NPY concentration in both white and red vastus muscle compared with CTL and OVX + E(2) groups. There was no change in Y(2)R expression or peptidase activity among the groups. These data support the hypothesis that estrogen blunts Y(1)R activation in the rat hindlimb through an effect on Y(1)R expression and NPY concentration.
Collapse
Affiliation(s)
- Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
48
|
Wehrwein EA, Joyner MJ, Hart ECJ, Wallin BG, Karlsson T, Charkoudian N. Blood pressure regulation in humans: calculation of an "error signal" in control of sympathetic nerve activity. Hypertension 2009; 55:264-9. [PMID: 20026765 DOI: 10.1161/hypertensionaha.109.141739] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Within an individual, diastolic blood pressure (DBP) is negatively related to sympathetic burst incidence, such that lower pressure is associated with high burst incidence. Our goal was to explore the use of a calculation of a DBP "error signal" in the control of muscle sympathetic nerve activity in men and women. Baseline muscle sympathetic nerve activity was measured in healthy young men (n=22) and women (n=28). Women had significantly lower muscle sympathetic nerve activity than men (29+/-3 versus 43+/-2 bursts per 100 heartbeats; P<0.05). For each individual, the DBP at which there is a 50% likelihood of a muscle sympathetic nerve activity burst, the "T50" value, was calculated. Mean DBP was subtracted from the T50 blood pressure as an approximate error signal for burst activation. Error signal was negative in both sexes, indicating that DBP in both sexes was higher than the DBP value associated with a 50% burst likelihood. However, average error signal was significantly larger in women (-4+/-2 mm Hg) than in men (-1+/-0 mm Hg; P<0.05 versus women). We conclude that women operate at a mean DBP greater than their T50 compared with men, and this may be a contributing factor to low basal muscle sympathetic nerve activity in women. The relationship between error signal and burst incidence may provide important insight into the control of muscle sympathetic nerve activity across sexes and in various populations.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Departments of Anesthesiology, Mayo Clinic, Rochester, Minn 55904, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Sayk F, Teckentrup C, Becker C, Heutling D, Wellhöner P, Lehnert H, Dodt C. Effects of selective slow-wave sleep deprivation on nocturnal blood pressure dipping and daytime blood pressure regulation. Am J Physiol Regul Integr Comp Physiol 2009; 298:R191-7. [PMID: 19907004 DOI: 10.1152/ajpregu.00368.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nocturnal blood pressure (BP) decline or "dipping" is an active, central, nervously governed process, which is important for BP regulation during daytime. It is, however, not known whether the sleep process itself or, more specifically, slow-wave sleep (SWS) is important for normal dipping. Therefore, in the present study, healthy subjects (6 females, 5 males) were selectively deprived of SWS by EEG-guided acoustic arousals. BP and heart rate (HR) were monitored during experimental nights and the following day. Additionally, nocturnal catecholamine excretion was determined, and morning baroreflex function was assessed by microneurographic measurements of muscle sympathetic nerve activity (MSNA) and heart rate variability (HRV). Data were compared with a crossover condition of undisturbed sleep. SWS was successfully deprived leading to significantly attenuated mean arterial BP dipping during the first half (P < 0.05), but not during the rapid-eye-movement-dominated second half of total sleep; however, dipping still evolved even in the absence of SWS. No differences were found for nighttime catecholamine excretion. Moreover, daytime resting and ambulatory BP and HR were not altered, and morning MSNA and HRV did not differ significantly, indicating that baroreflex-mediated sympathoneural BP regulation was not affected by the preceding SWS deprivation. We conclude that in healthy humans the magnitude of nocturnal BP dipping is significantly affected by sleep depth. Deprivation of SWS during one night does not modulate the morning threshold and sensitivity of the vascular and cardiac baroreflex and does not alter ambulatory BP during daytime.
Collapse
Affiliation(s)
- Friedhelm Sayk
- First Dept. of Medicine, Univ. of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Arain FA, Kuniyoshi FH, Abdalrhim AD, Miller VM. Sex/gender medicine. The biological basis for personalized care in cardiovascular medicine. Circ J 2009; 73:1774-82. [PMID: 19729858 DOI: 10.1253/circj.cj-09-0588] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sex differences in morbidity and mortality associated with cardiovascular disease have been recognized by the medical community for decades. Investigation into the underlying biological basis of these differences was largely neglected by the scientific community until a report released by the Institute of Medicine in the United States in 2001 "Exploring the Biological Contributions to Human Health: Does Sex Matter?" Recommendations from this report included the need for more accurate use of the terms "sex" and "gender", better tools and resources to study the biological basis of sex differences, integration of findings from different levels of biological organization and continued synergy between basic and clinical researchers. Ten years after the Institute's report, this review evaluates some of the sex differences in cardiovascular disease, reviews new approaches to study sex differences and emphasizes areas where further research is required. In the era of personalized medicine, the study of the biological basis of sex differences promises to optimize preventive, diagnostic and therapeutic strategies for cardiovascular disease in men and women, but will require diligence by the scientific and medical communities to remember that sex does matter.
Collapse
Affiliation(s)
- Faisal A Arain
- Department of General Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|