1
|
A Narrative Review of Cardiovascular Abnormalities After Spontaneous Intracerebral Hemorrhage. J Neurosurg Anesthesiol 2019; 31:199-211. [PMID: 29389729 DOI: 10.1097/ana.0000000000000493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The recommended cardiac workup of patients with spontaneous intracerebral hemorrhage (ICH) includes an electrocardiogram (ECG) and cardiac troponin. However, abnormalities in other cardiovascular domains may occur. We reviewed the literature to examine the spectrum of observed cardiovascular abnormalities in patients with ICH. METHODS A narrative review of cardiovascular abnormalities in ECG, cardiac biomarkers, echocardiogram, and hemodynamic domains was conducted on patients with ICH. RESULTS We searched PubMed for articles using MeSH Terms "heart," "cardiac," hypertension," "hypotension," "blood pressure," "electro," "echocardio," "troponin," "beta natriuretic peptide," "adverse events," "arrhythmi," "donor," "ICH," "intracerebral hemorrhage." Using Covidence software, 670 articles were screened for title and abstracts, 482 articles for full-text review, and 310 extracted. A total of 161 articles met inclusion and exclusion criteria, and, included in the manuscript. Cardiovascular abnormalities reported after ICH include electrocardiographic abnormalities (56% to 81%) in form of prolonged QT interval (19% to 67%), and ST-T changes (19% to 41%), elevation in cardiac troponin (>0.04 ng/mL), and beta-natriuretic peptide (BNP) (>156.6 pg/mL, up to 78%), echocardiographic abnormalities in form of regional wall motion abnormalities (14%) and reduced ejection fraction. Location and volume of ICH affect the prevalence of cardiovascular abnormalities. Prolonged QT interval, elevated troponin-I, and BNP associated with increased in-hospital mortality after ICH. Blood pressure control after ICH aims to preserve cerebral perfusion pressure and maintain systolic blood pressure between 140 and 179 mm Hg, and avoid intensive blood pressure reduction (110 to 140 mm Hg). The recipients of ICH donor hearts especially those with reduced ejection fraction experience increased early mortality and graft rejection. CONCLUSIONS Various cardiovascular abnormalities are common after spontaneous ICH. The workup of patients with spontaneous ICH should involve 12-lead ECG, cardiac troponin-I, as well as BNP, and echocardiogram to evaluate for heart failure. Blood pressure control with preservation of cerebral perfusion pressure is a cornerstone of hemodynamic management after ICH. The perioperative implications of hemodynamic perturbations after ICH warrant urgent further examination.
Collapse
|
2
|
Gyöngyösi M, Winkler J, Ramos I, Do QT, Firat H, McDonald K, González A, Thum T, Díez J, Jaisser F, Pizard A, Zannad F. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail 2017; 19:177-191. [PMID: 28157267 PMCID: PMC5299507 DOI: 10.1002/ejhf.696] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/07/2016] [Accepted: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Myocardial fibrosis refers to a variety of quantitative and qualitative changes in the interstitial myocardial collagen network that occur in response to cardiac ischaemic insults, systemic diseases, drugs, or any other harmful stimulus affecting the circulatory system or the heart itself. Myocardial fibrosis alters the architecture of the myocardium, facilitating the development of cardiac dysfunction, also inducing arrhythmias, influencing the clinical course and outcome of heart failure patients. Focusing on myocardial fibrosis may potentially improve patient care through the targeted diagnosis and treatment of emerging fibrotic pathways. The European Commission funded the FIBROTARGETS consortium as a multinational academic and industrial consortium with the primary aim of performing a systematic and collaborative search of targets of myocardial fibrosis, and then translating these mechanisms into individualized diagnostic tools and specific therapeutic pharmacological options for heart failure. This review focuses on those methodological and technological aspects considered and developed by the consortium to facilitate the transfer of the new mechanistic knowledge on myocardial fibrosis into potential biomedical applications.
Collapse
Affiliation(s)
| | | | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT), Bizkaia, Spain
| | | | | | | | - Arantxa González
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Germany.,National Heart and Lung Institute, Imperial College London, UK
| | - Javier Díez
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, University of Navarra, Pamplona, Spain
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France
| | - Anne Pizard
- UMRS U1116 Inserm, CIC 1433, Pierre Drouin, CHU, Université de Lorraine, Nancy, France
| | - Faiez Zannad
- UMRS U1116 Inserm, CIC 1433, Pierre Drouin, CHU, Université de Lorraine, Nancy, France
| |
Collapse
|
3
|
Sidorova TN, Mace LC, Wells KS, Yermalitskaya LV, Su PF, Shyr Y, Atkinson JB, Fogo AB, Prinsen JK, Byrne JG, Petracek MR, Greelish JP, Hoff SJ, Ball SK, Glabe CG, Brown NJ, Barnett JV, Murray KT. Hypertension is associated with preamyloid oligomers in human atrium: a missing link in atrial pathophysiology? J Am Heart Assoc 2014; 3:e001384. [PMID: 25468655 PMCID: PMC4338732 DOI: 10.1161/jaha.114.001384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Increasing evidence indicates that proteotoxicity plays a pathophysiologic role in experimental and human cardiomyopathy. In organ‐specific amyloidoses, soluble protein oligomers are the primary cytotoxic species in the process of protein aggregation. While isolated atrial amyloidosis can develop with aging, the presence of preamyloid oligomers (PAOs) in atrial tissue has not been previously investigated. Methods and Results Atrial samples were collected during elective cardiac surgery in patients without a history of atrial arrhythmias, congestive heart failure, cardiomyopathy, or amyloidosis. Immunohistochemistry was performed for PAOs using a conformation‐specific antibody, as well as for candidate proteins identified previously in isolated atrial amyloidosis. Using a myocardium‐specific marker, the fraction of myocardium colocalizing with PAOs (PAO burden) was quantified (green/red ratio). Atrial samples were obtained from 92 patients, with a mean age of 61.7±13.8 years. Most patients (62%) were male, 23% had diabetes, 72% had hypertension, and 42% had coronary artery disease. A majority (n=62) underwent aortic valve replacement, with fewer undergoing coronary artery bypass grafting (n=34) or mitral valve replacement/repair (n=24). Immunostaining detected intracellular PAOs in a majority of atrial samples, with a heterogeneous distribution throughout the myocardium. Mean green/red ratio value for the samples was 0.11±0.1 (range 0.03 to 0.77), with a value ≥0.05 in 74 patients. Atrial natriuretic peptide colocalized with PAOs in myocardium, whereas transthyretin was located in the interstitium. Adjusting for multiple covariates, PAO burden was independently associated with the presence of hypertension. Conclusion PAOs are frequently detected in human atrium, where their presence is associated with clinical hypertension.
Collapse
Affiliation(s)
- Tatiana N Sidorova
- Department of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (T.N.S., L.C.M., L.V.Y., J.K.P., N.J.B., J.V.B., K.T.M.)
| | - Lisa C Mace
- Department of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (T.N.S., L.C.M., L.V.Y., J.K.P., N.J.B., J.V.B., K.T.M.)
| | - K Sam Wells
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN (S.W.)
| | - Liudmila V Yermalitskaya
- Department of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (T.N.S., L.C.M., L.V.Y., J.K.P., N.J.B., J.V.B., K.T.M.)
| | - Pei-Fang Su
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN (P.F.S., Y.S.)
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN (P.F.S., Y.S.)
| | - James B Atkinson
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN (J.B.A., A.B.F.)
| | - Agnes B Fogo
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN (J.B.A., A.B.F.)
| | - Joseph K Prinsen
- Department of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (T.N.S., L.C.M., L.V.Y., J.K.P., N.J.B., J.V.B., K.T.M.)
| | - John G Byrne
- Department of Cardiac Surgery, Vanderbilt University School of Medicine, Nashville, TN (J.G.B., M.R.P., J.P.G., S.J.H., S.K.B.)
| | - Michael R Petracek
- Department of Cardiac Surgery, Vanderbilt University School of Medicine, Nashville, TN (J.G.B., M.R.P., J.P.G., S.J.H., S.K.B.)
| | - James P Greelish
- Department of Cardiac Surgery, Vanderbilt University School of Medicine, Nashville, TN (J.G.B., M.R.P., J.P.G., S.J.H., S.K.B.)
| | - Steven J Hoff
- Department of Cardiac Surgery, Vanderbilt University School of Medicine, Nashville, TN (J.G.B., M.R.P., J.P.G., S.J.H., S.K.B.)
| | - Stephen K Ball
- Department of Cardiac Surgery, Vanderbilt University School of Medicine, Nashville, TN (J.G.B., M.R.P., J.P.G., S.J.H., S.K.B.)
| | | | - Nancy J Brown
- Department of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (T.N.S., L.C.M., L.V.Y., J.K.P., N.J.B., J.V.B., K.T.M.)
| | - Joey V Barnett
- Department of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (T.N.S., L.C.M., L.V.Y., J.K.P., N.J.B., J.V.B., K.T.M.)
| | - Katherine T Murray
- Department of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (T.N.S., L.C.M., L.V.Y., J.K.P., N.J.B., J.V.B., K.T.M.)
| |
Collapse
|
4
|
Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2403-13. [DOI: 10.1016/j.bbadis.2013.07.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
|
5
|
Bartels ED, Nielsen JM, Bisgaard LS, Goetze JP, Nielsen LB. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice. Endocrinology 2010; 151:5218-25. [PMID: 20844006 DOI: 10.1210/en.2010-0355] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma B-type natriuretic peptide (BNP) and proBNP are established markers of cardiac dysfunction. Even though obesity increases the risk of cardiovascular disease, obese individuals have reduced plasma concentrations of natriuretic peptides. The underlying mechanism is not established. We used cultured cardiomyocytes and three different mouse models to examine the impact of obesity and cardiac lipid accumulation on cardiac natriuretic peptide expression. The cardiac ventricular expression of atrial natriuretic peptide (ANP) and BNP mRNA and ANP peptide was decreased 36-72% in obese ob/ob, db/db, and fat-fed C57BL/6 mice as compared with their respective controls. The db/db and ob/ob mice displayed impaired cardiac function, whereas the fat-fed mice had almost normal cardiac function. Moreover, the ventricular expression of hypertrophic genes (α- and β-myosin heavy chain and α-actin) and natriuretic peptide receptor genes were not consistently altered by obesity across the three mouse models. In contrast, cardiac ventricular triglycerides were similarly increased by 60-115% in all three obese mouse models and incubation with oleic acid caused triglyceride accumulation and an approximately 35% (P < 0.005) depression of ANP mRNA expression in cultured HL-1 atrial myocytes. The data suggest that obesity and altered cardiac lipid metabolism are associated with reduced production of ANP and BNP in the cardiac ventricles in the setting of normal as well as impaired cardiac function.
Collapse
Affiliation(s)
- Emil Daniel Bartels
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
6
|
Shah A, Gul R, Yuan K, Gao S, Oh YB, Kim UH, Kim SH. Angiotensin-(1-7) stimulates high atrial pacing-induced ANP secretion via Mas/PI3-kinase/Akt axis and Na+/H+ exchanger. Am J Physiol Heart Circ Physiol 2010; 298:H1365-74. [PMID: 20190099 DOI: 10.1152/ajpheart.00608.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin-(1-7) [ANG-(1-7)], one of the bioactive peptides produced in the renin-angiotensin system, plays a pivotal role in cardiovascular physiology by providing a counterbalance to the function of ANG II. Recently, it has been considered as a potential candidate for therapeutic use in the treatment of various types of cardiovascular diseases. The aim of the present study is to explain the modulatory role of ANG-(1-7) in atrial natriuretic peptide (ANP) secretion and investigate the functional relationship between two peptides to induce cardiovascular effects using isolated perfused beating rat atria and a cardiac hypertrophied rat model. ANG-(1-7) (0.01, 0.1, and 1 muM) increased ANP secretion and ANP concentration in a dose-dependent manner at high atrial pacing (6.0 Hz) with increased cGMP production. However, at low atrial pacing (1.2 Hz), ANG-(1-7) did not cause changes in atrial parameters. Pretreatment with an antagonist of the Mas receptor or with inhibitors of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), or nitric oxide synthase blocked the augmentation of high atrial pacing-induced ANP secretion by ANG-(1-7). A similar result was observed with the inhibition of the Na(+)/H(+) exchanger-1 and Ca(2+)/calmodulin-dependent kinase II (CaMKII). ANG-(1-7) did not show basal intracellular Ca(2+) signaling in quiescent atrial myocytes. In an in vivo study using an isoproterenol-induced cardiac hypertrophy animal model, an acute infusion of ANG-(1-7) increased the plasma concentration of ANP by twofold without changes in blood pressure and heart rate. A chronic administration of ANG-(1-7) increased the plasma ANP level and attenuated isoproterenol-induced cardiac hypertrophy. The antihypertrophic effect was abrogated by a cotreatment with the natriuretic peptide receptor-A antagonist. These results suggest that 1) ANG-(1-7) increased ANP secretion at high atrial pacing via the Mas/PI3K/Akt pathway and the activation of Na(+)/H(+) exchanger-1 and CaMKII and 2) ANG-(1-7) decreased cardiac hypertrophy which might be mediated by ANP.
Collapse
Affiliation(s)
- Amin Shah
- Department of Physiology, Chonbuk National University Medical School, 2-20 Keum-Am-Dong-San, Jeonju, Korea.
| | | | | | | | | | | | | |
Collapse
|
7
|
Nakao K, Kuze K, Abe H, Takahashi T, Doi T. Evaluation of atrial and brain natriuretic polypeptides in association with angiotensin-converting enzyme gene polymorphism in Japanese non-diabetic hemodialysis patients. SCANDINAVIAN JOURNAL OF UROLOGY AND NEPHROLOGY 2007; 41:149-54. [PMID: 17454955 DOI: 10.1080/00365590600918154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Insertion (I)/deletion (D) polymorphisms in the angiotensin-converting enzyme (ACE) gene have the potential to serve as a marker for an increased risk of cardiovascular events. Increased plasma levels of human atrial natriuretic polypeptide (ANP) and brain natriuretic polypeptide (BNP) are important indexes of cardiac function. The aim of this study was to examine possible relationships between I/D polymorphisms and the myocardial release of ANP and BNP in Japanese hemodialysis (HD) patients (n=131). MATERIAL AND METHODS We studied 131 non-diabetic hemodialysis patients. The genotype of ACE gene was determined by polymerase chain reaction with a set of specific timers. ANP and BNP levels were measured before HD. RESULTS The plasma levels of ANP and BNP were significantly lower in the DD genotype group compared to those in the II group. Corresponding levels in the ID genotype group were intermediate between those in the DD and II groups. ACE polymorphism was associated with neither ejection fraction nor left ventricular mass/height index (LVMI), as evidenced by echocardiographic findings (n=107). Plasma levels of ANP were significantly correlated with left atrial diameter (LAD) in patients as a whole, but this correlation was only observed in the II genotype group, and not in the DD or ID groups. Plasma levels of BNP were significantly correlated with LAD, left ventricular end systolic diameter and LVMI in patients as a whole, but these correlations were seen only in the II genotype group. CONCLUSION The results suggest that the plasma levels of these natriuretic peptides should be evaluated on the basis of ACE polymorphism for assessing cardiac diseases due to volume overload in Japanese HD patients.
Collapse
|
8
|
Walther T, Klostermann K, Heringer-Walther S, Schultheiss HP, Tschöpe C, Stepan H. Fibrosis rather than blood pressure determines cardiac BNP expression in mice. ACTA ACUST UNITED AC 2004; 116:95-100. [PMID: 14599720 DOI: 10.1016/j.regpep.2003.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Since first reports demonstrated interactions between the natriuretic peptide (NPS) and renin-angiotensin system (RAS), our experiments should clarify whether cardiac brain natriuretic peptide (BNP) is regulated in mice genetically altered for components of the RAS. METHODS AND RESULTS The study was carried out in hypotensive AT1- and angiotensinogen (ANG)-, and normotensive AT2-knockout mice, and in hypertensive animals overexpressing ANG and wildtype controls of each genotype. Ventricular BNP expression was analyzed by RNase-protection assay (RPA) (n=6). Cardiac fibrosis was visualized by Sirius red staining. While ANG overexpression increases cardiac BNP-mRNA expression (1035+/-210 vs. wildtype: 405+/-95 in PSL/mm(2), P<0.01), its deficiency had no influence. Both AT1- and AT2-knockouts showed significantly decreased BNP-mRNA concentrations (AT1: 21+/-6 vs. wildtype: 139+/-28 in PSL/mm(2), P<0.001; AT2: 8+/-2 vs. 19+/-3 in PSL/mm(2), P<0.05). These alterations correlate to reduced cardiac fibrosis in AT2-deficient animals, and an unchanged matrix content in ANG knockouts. CONCLUSIONS Increased BNP-mRNA levels in hypertensive ANG-overexpressing mice and decreased BNP in hypotensive AT1-deficient animals suggest that this mRNA expression is blood pressure-dependent. However, the observed alterations of fibrosis and the unchanged BNP in hypotensive ANG knockouts and impaired BNP-mRNA expression in normotensive AT2-deficient mice demonstrate a direct interaction of the RAS and NPS that is fibrosis- rather than blood pressure-dependent.
Collapse
Affiliation(s)
- Thomas Walther
- Department of Cardiology and Pneumology, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, D-12200, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
In patients with heart failure, plasma levels of atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and the N-terminal fragments of their prohormones (N-ANP and N-BNP) are elevated, because the cardiac hormonal system is activated by increased wall stretch due to increased volume and pressure overload. Patients suspected of having heart failure can be selected for further investigations on the basis of having an elevated plasma concentration of N-ANP, BNP, and N-BNP. High levels of cardiac hormones identify those at greatest risk for future serious cardiovascular events. Moreover, adjusting heart failure treatment to reduce plasma levels of N-BNP may improve outcome. Cardiac hormones are most useful clinically as a rule-out test. In acutely symptomatic patients, a very high negative predictive value is coupled with a relatively high positive predictive value. Measurement of cardiac hormones in patients with heart failure may reduce the need for hospitalizations and for more expensive investigations such as echocardiography. However, there have also been conflicting reports on the diagnostic value of cardiac hormones, they are not specific for any disease, and the magnitude of the effects of age and gender on BNP in the normal subgroup suggests that these parameters need to be considered when interpreting cardiac hormone levels.
Collapse
Affiliation(s)
- Heikki Ruskoaho
- Department of Pharmacology and Toxicology, Biocenter Oulu, FIN-90014 University of Oulu, Finland.
| |
Collapse
|
10
|
Suo M, Kalliovalkama J, Pörsti I, Jolma P, Tolvanen JP, Vuolteenaho O, Ruskoaho H. N(G)-nitro-L-arginine methyl ester-induced hypertension and natriuretic peptide gene expression: inhibition by angiotensin II type 1 receptor antagonism. J Cardiovasc Pharmacol 2002; 40:478-86. [PMID: 12198334 DOI: 10.1097/00005344-200209000-00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined the role of angiotensin II in the increase of blood pressure, activation of cardiac natriuretic peptide gene expression, left ventricular hypertrophy, and vascular changes in nitric oxide-deficient hypertension. N(G)-nitro->L-arginine methyl ester (>L-NAME, 20 mg/kg/d), angiotensin II type 1 receptor (AT ) antagonist losartan (20 mg/kg/d), or their combination were administered orally for 8 weeks in Wistar rats. >L-NAME elevated systolic blood pressure, which reached its maximum within 4 weeks (200 +/- 4 mm Hg). Despite hypertension, >L-NAME administration for 8 weeks did not induce left ventricular hypertrophy. Losartan treatment significantly decreased the development of hypertension induced by >L-NAME and decreased left ventricular hypertrophy in untreated rats. In contrast, losartan did not prevent the hypertrophic remodeling of the mesenteric resistance arteries induced by >L-NAME. >L-NAME treatment increased ventricular atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) mRNA levels and immunoreactive BNP levels significantly. Losartan therapy decreased the >l-NAME-induced ventricular ANP gene expression by 69% (p < 0.05) and also reduced ventricular BNP mRNA levels so that it did not differ from control. Losartan treatment alone decreased ventricular immunoreactive ANP and BNP levels by 30% (p < 0.05). These results show that ventricular ANP and BNP gene expression are dissociated from the increased ventricular mass in nitric oxide deficiency-induced hypertension. Results suggest that >l-NAME-induced hypertension and the associated activation of ventricular ANP and BNP gene expression are, at least in part, mediated by angiotensin II, whereas the resistance vessel hypertrophy following nitric oxide synthase inhibition is angiotensin II independent.
Collapse
Affiliation(s)
- Maria Suo
- Department of Pharmacology, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
11
|
Marttila M, Hautala N, Paradis P, Toth M, Vuolteenaho O, Nemer M, Ruskoaho H. GATA4 mediates activation of the B-type natriuretic peptide gene expression in response to hemodynamic stress. Endocrinology 2001; 142:4693-700. [PMID: 11606434 DOI: 10.1210/endo.142.11.8468] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify the mechanisms that couple hemodynamic stress to alterations in cardiac gene expression, DNA constructs containing the rat B-type natriuretic peptide (BNP) promoter were injected into the myocardium of rats, which underwent bilateral nephrectomy or were sham-operated. Ventricular BNP mRNA levels were induced about 4-fold; and the BNP reporter construct containing the proximal 2200 bp, 5-fold, in response to 1-d nephrectomy. Deletion of sequences between bp -2200 and -114 did not affect basal or inducible activity of the BNP promoter. An activator protein-1-like site and two tandem GATA elements are located within this 114-bp sequence. Both deletion and mutation of the AP-1-like motif decreased basal activity but did not abolish the response to nephrectomy. In contrast, mutation or deletion of -90 bp GATA-sites abrogated the response to hemodynamic stress. The importance of these GATA elements to BNP promoter activation was further confirmed by the corresponding 38-bp oligonucleotide conferring hemodynamic stress responsiveness to a minimal BNP promoter. In gel mobility shift assays, nephrectomy increased left ventricular BNP GATA4 binding activity significantly. In conclusion, GATA elements are necessary and sufficient to confer transcriptional activation of BNP gene in response to hemodynamic stress.
Collapse
Affiliation(s)
- M Marttila
- Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
12
|
Zenteno-Savin T, Sada-Ovalle I, Ceballos G, Rubio R. Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors. Eur J Pharmacol 2000; 410:15-23. [PMID: 11134652 DOI: 10.1016/s0014-2999(00)00853-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arginine vasopressin induces vascular, inotropic and arrhythmogenic effects in the heart. Existing evidence, obtained indirectly, suggests that these effects occur through paracrine endothelial mechanisms. To demonstrate this, vasopressin was confined to the intravascular space by covalent coupling to high molecular weight (2x10(6) Da, vasopresin-dextran) dextran. Isolated guinea pig hearts were infused with equivalent concentrations of vasopressin and vasopressin-dextran. The negative inotropic and coronary vasopressor effects of vasopressin-dextran were similar to those evoked by vasopressin; in both cases effects were reversible. Free dextran had no effect on vascular resistance nor in ventricular developed pressure. The inotropic and vascular effects of both vasopressin and vasopressin-dextran were blocked by the vasopressin receptor antagonist [Adamantaneacetyl(1), o-Et-D-Tyr(2), Val(4), Aminobutyryl(6), Arg(8,9)]vasopressin (Adam-vasopressin), indicating that the effects of the two agonists were vasopressin receptor-mediated. To elucidate possible endothelial intermediaries of these effects, isolated guinea pig hearts were infused simultaneously with vasopressin or vasopressin-dextran and several inhibitors either of synthesis or blockers of receptors of possible endothelial mediators. Only reactive blue 2, a P(2y) purinoceptor antagonist, and suramin, a P(2y) and a P(2x) purinoceptor antagonist, caused a total reversal of vascular and inotropic effects of vasopressin and vasopressin-dextran. Pyridoxalphosphate-6-Azophenyl-2'-4'disulphonic acid, a P(2x) purinoceptor antagonist, was without effect. Our results provide direct evidence that the short-term cardiac effects of vasopressin are due to selective activation of intravascular purinoceptors and suggest that an intermediary of these effects is ATP.
Collapse
Affiliation(s)
- T Zenteno-Savin
- Departamento de Fisiologia y Farmacologia, Facultad de Medicina, UASLP, Av. V. Carranza # 2405, Col. Los Filtros, SLP, CP 78210, San Luis Potosi, Mexico
| | | | | | | |
Collapse
|
13
|
Magga J, Kalliovalkama J, Romppanen H, Vuolteenaho O, Pörsti I, Kähönen M, Tolvanen JP, Ruskoaho H. Differential regulation of cardiac adrenomedullin and natriuretic peptide gene expression by AT1 receptor antagonism and ACE inhibition in normotensive and hypertensive rats. J Hypertens 1999; 17:1543-52. [PMID: 10608466 DOI: 10.1097/00004872-199917110-00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To study the effects of long-term treatment with the type 1 angiotensin (AT1) receptor antagonist losartan and the angiotensin-converting enzyme (ACE) inhibitor enalapril, on cardiac adrenomedullin (ADM), atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) gene expression. METHODS Spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were given losartan (15 mg/kg per day) or enalapril (4 mg/kg per day) orally for 10 weeks. The effects of drugs on systolic blood pressure, cardiac hypertrophy, ANP, BNP and ADM mRNA and immunoreactive-ANP (IR)-ANP, IR-BNP and IR-ADM levels in the left ventricle and atria were compared. RESULTS Losartan and enalapril treatments completely inhibited the increase of systolic blood pressure occurring with ageing in SHR. The ratio of heart to body weight was reduced in both losartan- and enalapril-treated SHR and WKY rats. Treatment with losartan or enalapril reduced left ventricular ANP mRNA and IR-ANP in both strains, and ventricular BNP mRNA levels in SHR rats. Inhibition of ACE, AT1 receptor antagonism, changes in blood pressure or cardiac mass had no effect on left ventricular ADM gene expression in SHR and WKY rats. In addition, atrial IR-ANP and IR-ADM levels increased in SHR whereas IR-BNP levels decreased in WKY and SHR rats in response to drug treatments. CONCLUSIONS Our results show that ventricular ADM synthesis is an insensitive marker of changes in haemodynamic load or cardiac hypertrophy. Furthermore, the expression of ADM, ANP and BNP genes is differently regulated both in the left ventricle and atria in response to AT1 receptor antagonism and ACE inhibition.
Collapse
Affiliation(s)
- J Magga
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Globig S, Witte K, Lemmer B. Urinary excretion of nitric oxide, cyclic GMP, and catecholamines during rest and activity period in transgenic hypertensive rats. Chronobiol Int 1999; 16:305-14. [PMID: 10373100 DOI: 10.3109/07420529909116860] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dysregulation of the system of nitric oxide (NO)-cyclic 3',5'-guanosine monophosphate (cGMP) might be involved in the development of hypertension in transgenic hypertensive TGR(mREN2)27 (TGR) rats. The present study was performed to determine possible differences in the day-night pattern and the urinary excretion rates of NO and cGMP in TGR rats in comparison to normotensive Sprague-Dawley (SPRD) controls. In addition, the urinary excretion of creatinine and catecholamines was measured in both rat strains. The day-night excretion patterns of NO, cGMP, catecholamines, and creatinine were preserved in TGR rats. Urinary excretion of NO was significantly decreased in TGR rats, whereas cGMP, the second messenger of NO, was elevated in the transgenic animals. Catecholamines and creatinine excretion rates did not differ between the strains. In conclusion, data suggest that a reduced NO synthesis could contribute to the increased blood pressure in the severely hypertensive rats. However, these data make it unlikely that the disturbances in the nitric oxide-cGMP system and the sympathetic nervous system are mainly responsible for the inverse circadian blood pressure rhythm in TGR rats.
Collapse
Affiliation(s)
- S Globig
- Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim, Ruprecht-Karls-Universität Heidelberg, Germany
| | | | | |
Collapse
|