1
|
Gaydarski L, Petrova K, Stanchev S, Pelinkov D, Iliev A, Dimitrova IN, Kirkov V, Landzhov B, Stamenov N. Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. Int J Mol Sci 2025; 26:4022. [PMID: 40362262 PMCID: PMC12071960 DOI: 10.3390/ijms26094022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Hypertension-induced cardiac remodeling is a complex process driven by interconnected molecular and cellular mechanisms that culminate in hypertensive myocardium, characterized by ventricular hypertrophy, fibrosis, impaired angiogenesis, and myocardial dysfunction. This review discusses the histomorphometric changes in capillary density, fibrosis, and mast cells in the hypertensive myocardium and delves into the roles of key regulatory systems, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathways, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling in the pathogenesis of hypertensive heart disease (HHD). Capillary rarefaction, a hallmark of HHD, contributes to myocardial ischemia and fibrosis, underscoring the importance of maintaining vascular integrity. Targeting capillary density (CD) through antihypertensive therapy or angiogenic interventions could significantly improve cardiac outcomes. Myocardial fibrosis, mediated by excessive collagen deposition and influenced by fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-β), plays a pivotal role in the structural remodeling of hypertensive myocardium. While renin-angiotensin-aldosterone system (RAAS) inhibitors show anti-fibrotic effects, more targeted therapies are needed to address fibrosis directly. Mast cells, though less studied in humans, emerge as critical regulators of cardiac remodeling through their release of pro-fibrotic mediators such as histamine, tryptase, and FGF-2. The apelinergic system emerges as a promising therapeutic target due to its vasodilatory, anti-fibrotic, and cardioprotective properties. The system counteracts the deleterious effects of the RAAS and has demonstrated efficacy in preclinical models of hypertension-induced cardiac damage. Despite its potential, human studies on apelin analogs remain limited, warranting further exploration to evaluate their clinical utility. VEGF signaling plays a dual role, facilitating angiogenesis and compensatory remodeling during the early stages of arterial hypertension (AH) but contributing to maladaptive changes when dysregulated. Modulating VEGF signaling through exercise or pharmacological interventions has shown promise in improving CD and mitigating hypertensive cardiac damage. However, VEGF inhibitors, commonly used in oncology, can exacerbate AH and endothelial dysfunction, highlighting the need for therapeutic caution. The NO/NOS pathway is essential for vascular homeostasis and the prevention of oxidative stress. Dysregulation of this pathway, particularly endothelial NOS (eNOS) uncoupling and inducible NOS (iNOS) overexpression, leads to endothelial dysfunction and nitrosative stress in hypertensive myocardium. Strategies to restore NO bioavailability, such as tetrahydrobiopterin (BH4) supplementation and antioxidants, hold potential for therapeutic application but require further validation. Future studies should adopt a multidisciplinary approach to integrate molecular insights with clinical applications, paving the way for more personalized and effective treatments for HHD. Addressing these challenges will not only enhance the understanding of hypertensive myocardium but also improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Kristina Petrova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Dimitar Pelinkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Iva N. Dimitrova
- Department of Cardiology, University Hospital “St. Ekaterina”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health ‘Prof. Dr. Tzekomir Vodenicharov’, Medical University of Sofia, 1527 Sofia, Bulgaria;
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| |
Collapse
|
2
|
Zhang X, Tian H, Xie C, Yang Y, Li P, Cheng J. The role and mechanism of vascular wall cell ion channels in vascular fibrosis remodeling. Channels (Austin) 2024; 18:2418128. [PMID: 39425532 PMCID: PMC11492694 DOI: 10.1080/19336950.2024.2418128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Fibrosis is usually the final pathological state of many chronic inflammatory diseases and may lead to organ malfunction. Excessive deposition of extracellular matrix (ECM) molecules is a characteristic of most fibrotic tissues. The blood vessel wall contains three layers of membrane structure, including the intima, which is composed of endothelial cells; the media, which is composed of smooth muscle cells; and the adventitia, which is formed by the interaction of connective tissue and fibroblasts. The occurrence and progression of vascular remodeling are closely associated with cardiovascular diseases, and vascular remodeling can alter the original structure and function of the blood vessel. Dysregulation of the composition of the extracellular matrix in blood vessels leads to the continuous advancement of vascular stiffening and fibrosis. Vascular fibrosis reaction leads to excessive deposition of the extracellular matrix in the vascular adventitia, reduces vessel compliance, and ultimately alters key aspects of vascular biomechanics. The pathogenesis of fibrosis in the vasculature and strategies for its reversal have become interesting and important challenges. Ion channels are widely expressed in the cardiovascular system; they regulate blood pressure, maintain cardiovascular function homeostasis, and play important roles in ion transport, cell differentiation, proliferation. In blood vessels, different types of ion channels in fibroblasts, smooth muscle cells and endothelial cells may be relevant mediators of the development of fibrosis in organs or tissues. This review discusses the known roles of ion channels in vascular fibrosis remodeling and discusses potential therapeutic targets for regulating remodeling and repair after vascular injury.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Hai Tian
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Sun M, Liu C, Gao K, Xu X, Chen K, Qiu L, Wang X. Qili Qiangxin capsule attenuates myocardial fibrosis by modulating collagen homeostasis post-infarction in rats. PLoS One 2024; 19:e0310897. [PMID: 39331597 PMCID: PMC11432860 DOI: 10.1371/journal.pone.0310897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Myocardial fibrosis (MF) is a major cause of morbidity and mortality worldwide. Qili Qiangxin capsule (QLQX) is a traditional Chinese medicine (TCM) formula used for treating MF, QLQX can affect ventricular remodeling by regulating collagen deposition; however, the specific mechanism by which QLQX modulates collagen homeostasis remains unclear. Thus, this study aimed to explore the effect of QLQX on collagen fibers and its mechanism of action in rats after myocardial infarction (MI). Rats were subjected to left anterior descending artery ligation and then were divided equally into five groups: sham, model, low-dose QLQX, high-dose QLQX and empagliflozin groups. QLQX treatment for 28 days significantly improved cardiac function, as evidenced by decreases in heart mass index, cardiac volume, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, N-terminal B-type natriuretic peptide levels, and high-sensitivity cardiac troponin I levels and increases in left ventricular ejection fraction and left ventricular fraction shortening. Hematoxylin and eosin, Masson, and Picrosirius red staining under a light microscope indicated that QLQX treatment suppressed fibrosis and promoted angiogenesis by decreasing the protein expression levels of proteins related to cardiac remodeling including transforming growth factor-β1, metalloproteinase-9 and α-smooth muscle actin and increasing the expression of tissue inhibitor of matrix metalloproteinase-1 concentration. Picrosirius red staining under the polarized light microscope and western blotting showed that MI increased the contents of collagen I and III, and reduced the contents of collagen II and IV. QLQX treatment improved cardiac function and attenuated MF by modulating collagen homeostasis and promoting angiogenesis. This study provides novel insights into the mechanism of action of QLQX in preventing MF after MI.
Collapse
Affiliation(s)
- Minyan Sun
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chunhua Liu
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Kehan Gao
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Xingming Xu
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Kunhan Chen
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liang Qiu
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Vascular Remodeling Related Diseases, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiaomin Wang
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Ciampi CM, Sultana A, Ossola P, Farina A, Fragasso G, Spoladore R. Current experimental and early investigational agents for cardiac fibrosis: where are we at? Expert Opin Investig Drugs 2024; 33:389-404. [PMID: 38426439 DOI: 10.1080/13543784.2024.2326024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Myocardial fibrosis (MF) is induced by factors activating pro-fibrotic pathways such as acute and prolonged inflammation, myocardial ischemic events, hypertension, aging process, and genetically-linked cardiomyopathies. Dynamics and characteristics of myocardial fibrosis development are very different. The broad range of myocardial fibrosis presentations suggests the presence of multiple potential targets. AREA COVERED Heart failure treatment involves medications primarily aimed at counteracting neurohormonal activation. While these drugs have demonstrated efficacy against MF, not all specifically target inflammation or fibrosis progression with some exceptions such as RAAS inhibitors. Consequently, new therapies are being developed to address this issue. This article is aimed to describe anti-fibrotic drugs currently employed in clinical practice and emerging agents that target specific pathways, supported by evidence from both preclinical and clinical studies. EXPERT OPINION Despite various preclinical findings suggesting the potential utility of new drugs and molecules for treating cardiac fibrosis in animal models, there is a notable scarcity of clinical trials investigating these effects. However, the pathology of damage and repair in the heart muscle involves a complex network of interconnected inflammatory pathways and various types of immune cells. Our comprehension of the positive and negative roles played by specific immune cells and cytokines is an emerging area of research.
Collapse
Affiliation(s)
- Claudio M Ciampi
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Farina
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| | - Gabriele Fragasso
- Heart Failure Unit Head, Division of Cardiology, IRCCS Vita-Salute San Raffaele University Hospital, Milan, Italy
| | - Roberto Spoladore
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| |
Collapse
|
5
|
Keefe JA, Garber R, McCauley MD, Wehrens XHT. Tachycardia and Atrial Fibrillation-Related Cardiomyopathies: Potential Mechanisms and Current Therapies. JACC. HEART FAILURE 2024; 12:605-615. [PMID: 38206235 DOI: 10.1016/j.jchf.2023.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Atrial fibrillation (AF) is associated with an increased risk of new-onset ventricular contractile dysfunction, termed arrhythmia-induced cardiomyopathy (AIC). Although cardioembolic stroke remains the most feared and widely studied complication of AF, AIC is also a clinically important consequence of AF that portends significant morbidity and mortality to patients with AF. Current treatments are aimed at restoring sinus rhythm through catheter ablation and rate and rhythm control, but these treatments do not target the underlying molecular mechanisms driving the progression from AF to AIC. Here, we describe the clinical features of the various AIC subtypes, discuss the pathophysiologic mechanisms driving the progression from AF to AIC, and review the evidence surrounding current treatment options. In this review, we aim to identify key knowledge gaps that will enable the development of more effective AIC therapies that target cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Rebecca Garber
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark D McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown VA Medical Center, Chicago, Illinois, USA.
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA; Departments of Pediatrics, Medicine, and Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
6
|
Siregar S, Rulianov R, Ksatriapraja RA, Stefanus D. The role of angiotensin receptor blocker (losartan) on decreasing fibrotic process of corpora cavernosa in priapism model of wistar rats. F1000Res 2024; 11:831. [PMID: 38046538 PMCID: PMC10690033 DOI: 10.12688/f1000research.123040.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 12/05/2023] Open
Abstract
Background Priapism induces regulation of Transforming Growth Factor-β1 (TGF-β1) expression and collagen-type-1 deposition. This will replace the normal corpora cavernosa with fibrotic tissue which eventually resulted in erectile dysfunction. It is also known that the fibrosis process of corpora cavernosa is related to Renin-Angiotensin II System (RAS). Angiotensin II receptor blockers (ARB), especially losartan, inhibit the inflammation process and fibrotic tissue formation. This study evaluated the effect of losartan in reducing fibrosis in priapism by evaluating TGF-β1 and collagen-type-1 in cavernous tissue and determined the effect of losartan in preventing fibrosis in priapism model of Wistar rats assessed by the metavir score. Methods A total of eighteen male Wistar rats mean were divided into five groups. For the priapism models, we applied negative pressure on the penis to make an artificial erection to mimic the priapism process. The control groups were observed and the treatment groups were orally given losartan 15 mg/kg/day. Corpora cavernosa was harvested for TGF-β1 and collagen-type-1 measurement using an enzyme-linked immunosorbent assay (ELISA). The fibrotic tissue of each rat was then collected and assessed histopathologically with the metavir scoring system. Results Penile TGF-β1 concentration in the losartan-treated group was not significantly different on day 10 and day 28 of observation (p10=0,30; p28=0,17). Meanwhile, collagen-type-1 concentration was significantly lower compared to control group (p10=0,002; p28=0,01). There was a significant difference in metavir scores in rats that received losartan and those who did not (p<0,05). Conclusion Losartan could suppress the fibrosis process in the priapism model. It could decrease the collagen type 1 deposition during corpora cavernosa tissue regeneration. Based on the metavir score, the group receiving losartan therapy was better than the control group.
Collapse
Affiliation(s)
- Safendra Siregar
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Rulianov Rulianov
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | | | - Dicky Stefanus
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| |
Collapse
|
7
|
Kunin M, Beckerman P. The Peritoneal Membrane—A Potential Mediator of Fibrosis and Inflammation among Heart Failure Patients on Peritoneal Dialysis. MEMBRANES 2022; 12:membranes12030318. [PMID: 35323792 PMCID: PMC8954812 DOI: 10.3390/membranes12030318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Peritoneal dialysis is a feasible, cost-effective, home-based treatment of renal replacement therapy, based on the dialytic properties of the peritoneal membrane. As compared with hemodialysis, peritoneal dialysis is cheaper, survival rate is similar, residual kidney function is better preserved, fluid and solutes are removed more gradually and continuously leading to minimal impact on hemodynamics, and risks related to a vascular access are avoided. Those features of peritoneal dialysis are useful to treat refractory congestive heart failure patients with fluid overload. It was shown that in such patients, peritoneal dialysis improves functional status and quality of life, reduces hospitalization rate, and may decrease mortality rate. High levels of serum proinflammatory cytokines and fibrosis markers, among other factors, play an important part in congestive heart failure pathogenesis and progression. We demonstrated that those levels decreased following peritoneal dialysis treatment in refractory congestive heart failure patients. The exact mechanism of beneficial effect of peritoneal dialysis in refractory congestive heart failure is currently unknown. Maintenance of fluid balance, leading to resetting of neurohumoral activation towards a more physiological condition, reduced remodeling due to the decrease in mechanical pressure on the heart, decreased inflammatory cytokine levels and oxidative stress, and a potential impact on uremic toxins could play a role in this regard. In this paper, we describe the unique characteristics of the peritoneal membrane, principals of peritoneal dialysis and its role in heart failure patients.
Collapse
Affiliation(s)
- Margarita Kunin
- Correspondence: ; Tel.: +97-235-302-581; Fax: 97-235-302-582
| | | |
Collapse
|
8
|
The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants (Basel) 2021; 10:antiox10040524. [PMID: 33801675 PMCID: PMC8066875 DOI: 10.3390/antiox10040524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Muscular aging is a complex process and underlying physiological mechanisms are not fully clear. In recent years, the participation of the NF-kB pathway and the NLRP3 inflammasome in the chronic inflammation process that accompanies the skeletal muscle's aging has been confirmed. microRNAs (miRs) form part of a gene regulatory machinery, and they control numerous biological processes including inflammatory pathways. In this work, we studied the expression of four miRs; three of them are considered as inflammatory-related miRs (miR-21, miR-146a, and miR-223), and miR-483, which is related to the regulation of melatonin synthesis, among other targets. To investigate the changes of miRs expression in muscle along aging, the impact of inflammation, and the role of melatonin in aged skeletal muscle, we used the gastrocnemius muscle of wild type (WT) and NLRP3-knockout (NLRP3-) mice of 3, 12, and 24 months-old, with and without melatonin supplementation. The expression of miRs and pro-caspase-1, caspase-3, pro-IL-1β, bax, bcl-2, and p53, was investigated by qRT-PCR analysis. Histological examination of the gastrocnemius muscle was also done. The results showed that age increased the expression of miR-21 (p < 0.01), miR-146a, and miR-223 (p < 0.05, for both miRs) in WT mice, whereas the 24-months-old mutant mice revealed decline of miR-21 and miR-223 (p < 0.05), compared to WT age. The lack of NLRP3 inflammasome also improved the skeletal muscle fibers arrangement and reduced the collagen deposits compared with WT muscle during aging. For the first time, we showed that melatonin significantly reduced the expression of miR-21, miR-146a, and miR-223 (p < 0.05 for all ones, and p < 0.01 for miR-21 at 24 months old) in aged WT mice, increased miR-223 in NLRP3- mice (p < 0.05), and induced miR-483 expression in both mice strains, this increase being significant at 24 months of age.
Collapse
|
9
|
Xin JJ, Dai QF, Lu FY, Zhao YX, Liu Q, Cui JJ, Xu DS, Bai WZ, Jing XH, Gao JH, Yu XC. Antihypertensive and Antifibrosis Effects of Acupuncture at PC6 Acupoints in Spontaneously Hypertensive Rats and the Underlying Mechanisms. Front Physiol 2020; 11:734. [PMID: 32982761 PMCID: PMC7480262 DOI: 10.3389/fphys.2020.00734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/08/2020] [Indexed: 01/24/2023] Open
Abstract
Long-term hypertension can lead to both structural and functional impairments of the myocardium. Reversing left ventricular (LV) myocardial fibrosis has been considered as a key goal for curing chronic hypertension and has been a hot field of research in recent years. The aim of the present work is to investigate the effect of electroacupuncture (EA) at PC6 on hypertension-induced myocardial fibrosis in spontaneously hypertensive rats (SHRs). Thirty SHRs were randomized into model, SHR + EA, and SHR + Sham EA groups with WKY rats as a normal control. EA was applied once a day for 8 consecutive weeks. The cardiac fibrosis as well as the underlying mechanisms were investigated. After 8 weeks of EA treatment at PC6, the enhanced myocardial fibrosis in SHRs was characterized by an increased ratio of left ventricular mass index (LVMI), collagen volume fraction (CVF), and elevated content of hydroxyproline (Hyp) as well as the upregulated expression of collagen I and collagen III in myocardium tissue of SHRs. All these abnormal alterations in the SHR + EA group were significantly lower compared to the model group. In addition, EA at PC6 significantly improved the pathological changes of myocardial morphology. Meanwhile, the increased levels of angiotensin II (Ang II) and tumor necrosis factor-α (TNFα) and expression of transforming growth factor β1 (TGF-β1), connective tissue growth factor (CTGF), matrix metalloproteinase (MMP)-2, and MMP-9 in the serum or heart tissue of SHRs were also markedly diminished by EA. These results suggest that EA at bilateral PC6 could ameliorate cardiac fibrosis in SHRs, which might be mediated by the regulation of the Ang II – TGF-β1 pathway.
Collapse
Affiliation(s)
- Juan-Juan Xin
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiu-Fu Dai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Yan Lu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Xue Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qun Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Jing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong-Sheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wan-Zhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun-Hong Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Chun Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Kochetkov AI, Lopukhina MV, Kotaeva EA, Kirichenko AA, Ostroumova OD. The Capabilities of Amlodipine/Lisinopril Single-Pill Combination in the Treatment of Newly Diagnosed Arterial Hypertension in a Middle-Aged Patient (Case Report). RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2020. [DOI: 10.20996/1819-6446-2020-03-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arterial hypertension (AH) is one of the most significant modifiable risk factors that increase cardiovascular morbidity and mortality worldwide, including Russia. The complex of structural and functional changes in the heart that occurs during AH consists not only in the formation of left ventricular (LV) myocardial hypertrophy, but also in the myocardial stiffness increasing due to collagen formation and cardiomyocytes apoptosis. These abnormalities are substrate for diastolic function disturbances, electrical myocardial instability and ischemia. The article provides a clinical case of amlodipine/lisinopril single-pill combination (A/L SPC) use in real clinical practice in a patient with stage II grade 2 newly diagnosed AH and its effect on blood pressure and echocardiographic myocardial fibrosis markers, including speckle tracking parameters The high antihypertensive efficacy of A/L SPC, a favorable effect on blood pressure circadian rhythm, as well as pronounced target-organ protective properties, in particular the ability to reduce LV and left atrial stiffness, were demonstrated. So, we conclude that A/L SPC improve the elastic properties of the left heart.
Collapse
Affiliation(s)
- A. I. Kochetkov
- Russian Medical Academy of Continuous Professional Education
| | | | | | | | - O. D. Ostroumova
- Russian Medical Academy of Continuous Professional Education;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
11
|
Andrade Gomes HJ, de Padua Vieira Alves V, Nacif MS. The Value of T1 Mapping Techniques in the Assessment of Myocardial Interstitial Fibrosis. Magn Reson Imaging Clin N Am 2019; 27:563-574. [PMID: 31279457 DOI: 10.1016/j.mric.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Cardiac fibrosis, characterized by net accumulation of extracellular matrix in the myocardium, is a common final pathway of heart failure. This myocardial fibrosis (MF) is not necessarily the primary cause of dysfunction; it often results from a reparative process activated in response to cardiomyocyte injury. In light of currently available treatments, late-identified MF could be definitive or irreversible, associated with worsening ventricular systolic function, abnormal cardiac remodeling, and increased ventricular stiffness and arrhythmia. T1 mapping should be used to detect incipient changes leading to myocardial damage in several clinical conditions and also in subclinical disease. This article reviews available techniques for MF detection, focusing on noninvasive quantification of diffuse fibrosis and clinical applications.
Collapse
Affiliation(s)
| | | | - Marcelo Souto Nacif
- Radiology Department, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil; Unidade de Radiologia Clínica, Hospital viValle (Rede D'or-São Luiz), São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
12
|
Effect of Peritoneal Dialysis on Serum Fibrosis Biomarkers in Patients with Refractory Congestive Heart Failure. Int J Mol Sci 2019; 20:ijms20112610. [PMID: 31141909 PMCID: PMC6600259 DOI: 10.3390/ijms20112610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Cardiac collagen remodeling is important in the progression of heart failure. Estimation of cardiac collagen turnover by serum levels of serological markers is used for monitoring cardiac tissue repair and fibrosis. Peritoneal dialysis (PD) is used for the long-term management of refractory congestive heart failure (CHF). In this study, we investigated the effect of PD treatment on circulating fibrosis markers levels in patients with refractory CHF and fluid overload. Methods: Twenty-five patients with refractory CHF treated with PD were prospectively enrolled in the study. Circulating fibrosis markers procollagen type III C-peptide (PIIINP), matrix metalloproteinase 2 (MMP-2), and tissue inhibitor of metalloproteinases I (TIMP-1) levels were checked at baseline and after three and six months of treatment. Results: The clinical benefit of PD manifested by improved NYHA functional class and reduced hospitalization rate. Serum brain natriuretic peptide (BNP) levels decreased significantly during the treatment. Serum MMP-2 and TIMP-1 decreased significantly on PD. Circulating PIIINP showed two patterns of change, either decreased or increased following PD treatment. Patients in whom circulating PIIINP decreased had significantly lower baseline serum albumin, lower baseline mean arterial blood pressure, higher serum CRP, and a less significant improvement in hospitalization rate compared to the patients in whom circulating PIIINP increased. Patients in whom all three markers decreased demonstrated a trend to longer survival compared to patients whose markers increased or did not change. Conclusion: In refractory CHF patients PD treatment was associated with a reduction in circulating fibrosis markers.
Collapse
|
13
|
Liu X, Shan X, Chen H, Li Z, Zhao P, Zhang C, Guo W, Xu M, Lu R. Stachydrine Ameliorates Cardiac Fibrosis Through Inhibition of Angiotensin II/Transformation Growth Factor β1 Fibrogenic Axis. Front Pharmacol 2019; 10:538. [PMID: 31178725 PMCID: PMC6538804 DOI: 10.3389/fphar.2019.00538] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, the leading cause of death worldwide, are tightly associated with the pathological myocardial fibrosis. Stachydrine (Sta), a major active compound in Chinese motherwort Leonurus heterophyllus, was reported to effectively attenuate cardiac fibrosis, but the cellular and molecular mechanism remains unclear. In this study, the anti-fibrotic effect of Sta and mechanism underlying were explored in a mouse model of pressure overload and AngII stimulated cardiac fibroblasts (CFs). Mice were randomly divided into sham, transverse aorta constriction with saline (TAC+Sal), TAC with telmisartan (TAC+Tel), and TAC with Sta (TAC+Sta) groups. Cardiac morphological and functional changes were evaluated by echocardiography and histological methods, and the molecular alterations were detected by western blotting. Primary cultured neonatal mouse CFs were treated with or without angiotensin II (AngII, 10−7 M), transformation growth factor β1 (TGFβ1, 10 ng/mL), and different dosage of Sta (10−6–10−4 M) for up to 96 h, and cell proliferation, cytotoxicity, morphology and related signals were also detected. The in vivo results revealed that TAC prominently induced cardiac dysfunction, left ventricular dilation, myocardial hypertrophy, and elevated myocardial collagen deposition, accompanied with increased fibrotic markers including α-smooth muscle actin (α-SMA) and periostin. However, Sta treatment partially reversed cardiac morphological and functional deteriorations, and significantly blunted cardiac fibrosis as well as Tel. Increments of myocardial angiotensinogen (AGT), angiotensin converting enzyme (ACE), AngII type 1 receptor (AT1R), and TGFβ1 transcripts, together with increased protein levels of ACE and AngII, after TAC were dramatically down-regulated by Sta treatment. Coincidently, in vitro experiments demonstrated that AngII stimulation in CFs led to up-regulation of AT1R and TGFβ1, and therefore promoted CFs trans-differentiating into hyper-activated myocardial fibroblasts (MFs) as evidenced by increased cell proliferation, collagen and fibrotic makers. On the contrary, Sta potently down-regulated but not directly inhibited AT1R, suppressed TGFβ1 production, and the pro-fibrotic effect of AngII in CFs. Moreover, activation of TGFβ1/Smads signal in the fibrotic process were observed both TAC model and in AngII stimulated CFs, which were also notably blunted by Sta. However, Sta failed to abolish the activation of CFs triggered by TGFβ1. Taken together, it was demonstrated in this study that Sta suppressed ACE/AngII/AT1R-TGFβ1 profibrotic axis, especially on the de novo production of AngII via down-regulating AGT/ACE and AT1R, and therefore inactivated CFs and blunted MFs transition, which ultimately prevented cardiac fibrosis.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Integrated Chinese and Western Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Shan
- Experimental Center, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihua Chen
- Department of Integrated Chinese and Western Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zan Li
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei Zhao
- Experimental Center, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Lu
- Department of Integrated Chinese and Western Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Fibrosis miocárdica: hacia una nueva aproximación. REVISTA COLOMBIANA DE CARDIOLOGÍA 2019. [DOI: 10.1016/j.rccar.2018.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Melo-Silva Junior O, Nunes CB, Corrêa TA, Silva MF, Freitas LB, Alberti LR. COMPARISON OF THE EFFICACY OF LOSARTAN, HYDROCORTISONE AND ACETYLSALICYLIC ACID (ASA) IN PREVENTING THE DEVELOPMENT OF FIBROUS SCAR TISSUE IN SKELETAL MUSCLE. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182406149841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT Objective: To analyze fibrous scar tissue inhibition capacity with the use of losartan, hydrocortisone and acetylsalicylic acid. Method: The sample consisted of 120 male heterogeneic Wistar rats with a muscle laceration model. The rats were divided into four groups of 30 animals each: control group, losartan group, ASA group and hydrocortisone group. The animals were anesthetized and a 2.5 cm longitudinal incision was made in the left thoracolumbar paravertebral region. The muscles were subjected to a Grade III lesion caused by applying Kelly hemostatic forceps for 60 seconds, followed by sectioning with scissors. The skin was sutured with 3-0 nylon monofilament thread. The animals were placed in individual cages with plenty of food and water. The losartan group received losartan diluted in water at a dose of 0.1 mg/mL (10 mg/kg/day), the ASA Group received a 3 mg/mL ASA solution (300 mg/kg/day), and the hydrocortisone group received a 0.2 mg/mL hydrocortisone solution (20 mg/kg/day). Results: The control, losartan, hydrocortisone and aspirin groups had a fibrotic area of 0.95 ± 0.35 mm, 0.55 ± 0.34 mm, 0.93 ± 0.33 mm, and 0.66 ± 0.36 mm, respectively. We observed a significantly smaller fibrotic area in the losartan group compared to the control (p=0.01) and hydrocortisone (p=0.01) groups. There were no significant differences among the other groups. Conclusion: The healing of striated skeletal muscle produced less fibrous scar tissue when exposed to losartan in comparison to the control group or the hydrocortisone group. Level of Evidence I; Randomized double-blind placebo-controlled study.
Collapse
|
16
|
Weber KT, Sun Y, Gerling IC, Guntaka RV. Regression of Established Cardiac Fibrosis in Hypertensive Heart Disease. Am J Hypertens 2017; 30:1049-1052. [PMID: 28379281 DOI: 10.1093/ajh/hpx054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023] Open
Abstract
Established cardiac fibrosis (ECF) with symptomatic heart failure preserved ejection fraction represents an ever-increasing segment of the hypertensive population. The regression of ECF with attendant improvement in myocardial stiffness and symptomatic failure represents an unmet health care need. Is the regression of ECF in hypertensive heart disease feasible and will stiffness and symptomatic failure be improved? What is the cellular/molecular signaling involved in its regression? What incremental knowledge is needed to proceed effectively? These issues are addressed in this Review.
Collapse
Affiliation(s)
- Karl T Weber
- Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yao Sun
- Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ivan C Gerling
- Division of Endocrinology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ramareddy V Guntaka
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Bulut M, Evlice M, Celik M, Eren H, Savluk ÖF, Acar RD, Tabakci M, Emiroglu MY, Otcu (Nurse) O, Kargin R, Balkanay M, Akcakoyun M. Atrial electromechanical delay in patients undergoing heart transplantation. J Arrhythm 2017; 33:122-126. [PMID: 28416978 PMCID: PMC5388059 DOI: 10.1016/j.joa.2016.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/24/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background We aimed to assess atrial electromechanical delay (AEMD) in patients who had undergone heart transplantation. Methods A total of 32 patients who underwent biatrial anastomosis heart transplantation (24 men, 8 women; mean age: 42±11 years) and 30 healthy volunteers (20 men, 10 women; mean age: 36±13 years) were included in the study. Atrial electromechanical coupling (PA), intra-AEMD, and inter-AEMD were measured. Results PA lateral (68±7 vs. 51±11 ms, p<0.01), PA septal (50±5 vs. 42±8 ms, p< 0.01) and PA tricuspid (39±6 vs. 36±9 ms, p<0.01), inter-AEMD (PA lateral–PA tricuspid) (27±7 vs. 10±4 ms, p<0.01), left intra-AEMD (PA lateral–PA septal) (18±7 vs. 10±4 ms, p<0.01), right intra-AEMD (PA septal–PA tricuspid) (13±5 vs. 5±3 ms, p<0.01) values were higher in patients who underwent heart transplantation than in a control population. Conclusion Inter-AEMD and intra-AEMD were prolonged in patients who underwent heart transplantation as compared to a control population. This may explain the increased atrial fibrillation and other atrial arrhythmia incidences associated with the biatrial anastomosis heart transplantation technique and may contribute to the treatment of atrial fibrillation in this special patient group.
Collapse
Affiliation(s)
- Mustafa Bulut
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Mert Evlice
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Celik
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Hayati Eren
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Ömer F. Savluk
- Department of Anesthesia, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Rezzan D. Acar
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Tabakci
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Y. Emiroglu
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Ozlem Otcu (Nurse)
- Department of Cardiovascular Surgery, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Ramazan Kargin
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Balkanay
- Department of Cardiovascular Surgery, Katip Celebi University and Ataturk Training and Research Hospital, Izmir, Turkey
| | - Mustafa Akcakoyun
- Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, Istanbul, Turkey
- Correspondence to: Department of Cardiology, Kartal Kosuyolu High Speciality Training and Research Hospital, 34846, Kartal, Istanbul, Turkey. Fax: +90 216 4596321.
| |
Collapse
|
18
|
Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites. Sci Rep 2017; 7:41865. [PMID: 28157237 PMCID: PMC5291109 DOI: 10.1038/srep41865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Excessive myocardial collagen deposition and cross-linking (CCL), a process regulated by lysyl oxidase (LOX), determines left ventricular (LV) stiffness and dysfunction. The angiotensin II antagonist losartan, metabolized to the EXP3179 and EXP3174 metabolites, reduces myocardial fibrosis and LV stiffness in hypertensive patients. Our aim was to investigate the differential influence of losartan metabolites on myocardial LOX and CCL in an experimental model of hypertension with myocardial fibrosis, and whether EXP3179 and EXP3174 modify LOX expression and activity in fibroblasts. In rats treated with NG-nitro-L-arginine methyl ester (L-NAME), administration of EXP3179 fully prevented LOX, CCL and connective tissue growth factor (CTGF) increase, as well as fibrosis, without normalization of blood pressure (BP). In contrast, administration of EXP3174 normalized BP and attenuated fibrosis but did not modify LOX, CCL and CTGF. In TGF-β1-stimulated fibroblasts, EXP3179 inhibited CTGF and LOX expression and activity with lower IC50 values than EXP3174. Our results indicate that, despite a lower antihypertensive effect, EXP3179 shows higher anti-fibrotic efficacy than EXP3174, likely through its ability to prevent the excess of LOX and CCL. It is suggested that the anti-fibrotic effect of EXP3179 may be partially mediated by the blockade of CTGF-induced LOX in fibroblasts.
Collapse
|
19
|
Clancy P, Koblar S, Golledge J. Involvement of Angiotensin II Type 1 and 2 Receptors in Gelatinase Regulation in Human Carotid Atheroma in vitro. J Atheroscler Thromb 2016; 23:773-91. [PMID: 26947595 DOI: 10.5551/jat.31401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM Matrix metalloproteinases (MMPs), angiotensin II (AII) and its receptors are implicated in atherosclerotic plaque instability, however the roles of the two receptor subtypes, ATR1 and ATR2, in MMP regulation remain uncertain. In this study, we investigated the effect of ATR1 and ATR2 blockade on the expression and activity of MMP-2, MMP-3 and MMP-9, in human carotid atheroma. METHODS Atheroma samples (n=36) were obtained from patients undergoing carotid endarterectomy. The effects of ATR1 (irbesartan), ATR2 (PD123319) and combined ATR1 and ATR2 blockade on the expression and activity of the MMPs and the expression of tissue inhibitors of metalloproteinases (TIMPs) were investigated in explant culture experiments. Paired atheroma samples were incubated with the intervention or media control for 4 days. Protein levels (MMP-2, MMP-3, MMP-9, TIMP-1, TIMP-2, TIMP-4, ATR1 and ATR2) were determined by ELISA. Overall gelatinase activity and specific activation were measured by chromogenic activity assays and zymography, respectively. RESULTS ATR1 blockade, but not ATR2 blockade significantly reduced TIMP-1, TIMP-2 and TIMP-4 expression in atheroma supernatant. Combined ATR1 and ATR2 blockade significantly reduced MMP-2, MMP-3 and MMP-9 expression. MMP-2 and MMP-9 relative activation, and overall MMP-9 catalytic capacity were significantly increased by ATR1 blockade. CONCLUSIONS Our findings suggest that ATR1 blockade reduces TIMP expression and increases gelatinase activity in human carotid atheroma.
Collapse
Affiliation(s)
- Paula Clancy
- Health practitioners And Researchers Together-Blood, Endothelium And Tissue (HART-BEAT), Biomedicine, Australian Institute for Tropical Health and Medicine, College of Public Health, Medical & Veterinary Sciences, James Cook University
| | | | | |
Collapse
|
20
|
Bomb R, Heckle MR, Sun Y, Mancarella S, Guntaka RV, Gerling IC, Weber KT. Myofibroblast secretome and its auto-/paracrine signaling. Expert Rev Cardiovasc Ther 2016; 14:591-8. [PMID: 26818589 DOI: 10.1586/14779072.2016.1147348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myofibroblasts (myoFb) are phenotypically transformed, contractile fibroblast-like cells expressing α-smooth muscle actin microfilaments. They are integral to collagen fibrillogenesis with scar tissue formation at sites of repair irrespective of the etiologic origins of injury or tissue involved. MyoFb can persist long after healing is complete, where their ongoing turnover of collagen accounts for a progressive structural remodeling of an organ (a.k.a. fibrosis, sclerosis or cirrhosis). Such persistent metabolic activity is derived from a secretome consisting of requisite components in the de novo generation of angiotensin (Ang) II. Autocrine and paracrine signaling induced by tissue AngII is expressed via AT1 receptor ligand binding to respectively promote: i) regulation of myoFb collagen synthesis via the fibrogenic cytokine TGF-β1-Smad pathway; and ii) dedifferentiation and protein degradation of atrophic myocytes immobilized and ensnared by fibrillar collagen at sites of scarring. Several cardioprotective strategies in the prevention of fibrosis and involving myofibroblasts are considered. They include: inducing myoFb apoptosis through inactivation of antiapoptotic proteins; AT1 receptor antagonist to interfere with auto-/paracrine myoFb signaling or to induce counterregulatory expression of ACE2; and attacking the AngII-AT1R-TGF-β1-Smad pathway by antibody or the use of triplex-forming oligonucleotides.
Collapse
Affiliation(s)
- Ritin Bomb
- a Division of Cardiovascular Diseases , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Mark R Heckle
- b Department of Medicine , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Yao Sun
- a Division of Cardiovascular Diseases , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Salvatore Mancarella
- c Department of Physiology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ramareddy V Guntaka
- d Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ivan C Gerling
- e Division of Endocrinology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Karl T Weber
- a Division of Cardiovascular Diseases , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
21
|
Bull S, Loudon M, Francis JM, Joseph J, Gerry S, Karamitsos TD, Prendergast BD, Banning AP, Neubauer S, Myerson SG. A prospective, double-blind, randomized controlled trial of the angiotensin-converting enzyme inhibitor Ramipril In Aortic Stenosis (RIAS trial). Eur Heart J Cardiovasc Imaging 2015; 16:834-41. [PMID: 25796267 PMCID: PMC4505792 DOI: 10.1093/ehjci/jev043] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/15/2015] [Indexed: 01/12/2023] Open
Abstract
Aims Angiotensin-converting enzyme (ACE) inhibitors improve left ventricular (LV) remodelling and outcome in heart failure and hypertensive heart disease. They may be similarly beneficial in patients with aortic stenosis (AS), but historical safety concerns have limited their use, and no prospective clinical trials exist. Methods and results We conducted a prospective, randomized, double-blind, placebo-controlled trial in 100 patients with moderate or severe asymptomatic AS to examine the physiological effects of ramipril, particularly LV mass (LVM) regression. Subjects were randomized to ramipril 10 mg daily (n = 50) or placebo (n = 50) for 1 year, and underwent cardiac magnetic resonance, echocardiography, and exercise testing at 0, 6, and 12 months, with follow-up data available in 77 patients. There was a modest but progressive reduction in LVM (the primary end point) in the ramipril group vs. the placebo group (mean change −3.9 vs. +4.5 g, respectively, P = 0.0057). There were also trends towards improvements in myocardial physiology: the ramipril group showed preserved tissue Doppler systolic velocity compared with placebo (+0.0 vs. −0.5 cm/s, P = 0.04), and a slower rate of progression of the AS (valve area 0.0 cm2 in the ramipril group vs. −0.2 cm2 in the placebo arm, P = 0.067). There were no significant differences in major adverse cardiac events. Conclusion ACE inhibition leads to a modest, but progressive reduction in LVM in asymptomatic patients with moderate–severe AS compared with placebo, with trends towards improvements in myocardial physiology and slower progression of valvular stenosis. A larger clinical outcome trial to confirm these findings and explore their clinical relevance is required.
Collapse
Affiliation(s)
- Sacha Bull
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Margaret Loudon
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Jane M Francis
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Jubin Joseph
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Stephen Gerry
- Centre for Statistics in Medicine, University of Oxford, Nuffield Orthopaedic Centre, Oxford OX3 7LD, UK
| | - Theodoros D Karamitsos
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Bernard D Prendergast
- Department of Cardiology, Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Adrian P Banning
- Department of Cardiology, Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Saul G Myerson
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK Department of Cardiology, Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
22
|
Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm. Pflugers Arch 2014; 467:1945-63. [PMID: 25385304 DOI: 10.1007/s00424-014-1644-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023]
Abstract
Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-L-arginine-methyl-ester (L-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress.
Collapse
|
23
|
Garg K, Corona BT, Walters TJ. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury. J Appl Physiol (1985) 2014; 117:1120-31. [PMID: 25257876 DOI: 10.1152/japplphysiol.00689.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Losartan is a Food and Drug Administration approved antihypertensive medication that is recently emerging as an antifibrotic therapy. Previously, losartan has been successfully used to reduce fibrosis and improve both muscle regeneration and function in several models of recoverable skeletal muscle injuries, such as contusion and laceration. In this study, the efficacy of losartan treatment in reducing fibrosis and improving regeneration was determined in a Lewis rat model of volumetric muscle loss (VML) injury. VML has been defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment. It is among the top 10 causes for wounded service members to be medically retired from the military. This study shows that, after several weeks of recovery, VML injury results in little to no muscle regeneration, but is marked by persistent inflammation, chronic upregulation of profibrotic markers and extracellular matrix (i.e., collagen type I), and fat deposition at the defect site, which manifest irrecoverable deficits in force production. Losartan administration at 10 mg·kg(-1)·day(-1) was able to modulate the gene expression of fibrotic markers and was also effective at reducing fibrosis (i.e., the deposition of collagen type I) in the injured muscle. However, there were no improvements in muscle regeneration, and deleterious effects on muscle function were observed instead. We propose that, in the absence of regeneration, reduction in fibrosis worsens the ability of the VML injured muscle to transmit forces, which ultimately results in decreased muscle function.
Collapse
Affiliation(s)
- Koyal Garg
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Benjamin T Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Thomas J Walters
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| |
Collapse
|
24
|
Barnes J, Pat B, Chen YW, Powell PC, Bradley WE, Zheng J, Karki A, Cui X, Guichard J, Wei CC, Collawn J, Dell'Italia LJ. Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy. Ther Adv Cardiovasc Dis 2014; 8:97-118. [PMID: 24692245 DOI: 10.1177/1753944714527490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Heart failure is typically preceded by myocardial hypertrophy and remodeling, which can be concentric due to pressure overload (PO), or eccentric because of volume overload (VO). The molecular mechanisms that underlie these differing patterns of hypertrophy are distinct and have yet to be fully elucidated. Thus, the goal of this work is to identify novel therapeutic targets for cardiovascular conditions marked by hypertrophy that have previously been resistant to medical treatment, such as a pure VO. METHODS Concentric or eccentric hypertrophy was induced in rats for 2 weeks with transverse aortic constriction (TAC) or aortocaval fistula (ACF), respectively. Hemodynamic and echocardiographic analysis were used to assess the development of left ventricular (LV) hypertrophy and functional differences between groups. Changes in gene expression were determined by microarray and further characterized with Ingenuity Pathway Analysis. RESULTS Both models of hypertrophy increased LV mass. Rats with TAC demonstrated concentric LV remodeling while rats with ACF exhibited eccentric LV remodeling. Microarray analysis associated eccentric remodeling with a more extensive alteration of gene expression compared with concentric remodeling. Rats with VO had a marked activation of extracellular matrix genes, promotion of cell cycle genes, downregulation of genes associated with oxidative metabolism, and dysregulation of genes critical to cardiac contractile function. Rats with PO demonstrated similar categorical changes, but with the involvement of fewer individual genes. CONCLUSIONS Our results indicate that eccentric remodeling is a far more complex process than concentric remodeling. This study highlights the importance of several key biological functions early in the course of VO, including regulation of matrix, metabolism, cell proliferation, and contractile function. Thus, the results of this analysis will inform the ongoing search for new treatments to prevent the progression to heart failure in VO.
Collapse
Affiliation(s)
- Justin Barnes
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USADepartment of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Betty Pat
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuan-Wen Chen
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pamela C Powell
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wayne E Bradley
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Junying Zheng
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amrit Karki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Guichard
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USADepartment of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chih-Chang Wei
- Birmingham Department of Veteran Affairs, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
25
|
Zhang DM, Qin Y, Lu XY, Wu AM, Zhu LQ, Wang SR, Jiang LD. [Effects of tetramethylpyrazine on angiotensin II -induced proliferation and type I collagen synthesis of rat cardiac fibroblasts]. ACTA ACUST UNITED AC 2014; 7:232-6. [PMID: 19284952 DOI: 10.3736/jcim20090307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To observe the effects of tetramethylpyrazine (TMP) on the proliferation and type I collagen synthesis of rat cardiac fibroblasts (CFBs) induced by angiotensin II (Ang II), and to explore the mechanism of TMP in treating myocardial fibrosis. METHODS CFBs were isolated from neonatal rats, and the fourth-passage CFBs were used in the entire test and were stimulated by 0.1 micromol/L Ang II in vivo. The CFB proliferation was measured by methyl thiazolyl tetrazolium (MTT) assay. Type I collagen in the cell culture supernatant was measured by enzyme-linked immunosorbent assay. The expression of mRNA of type I collagen was semi-quantitatively measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS (1) In MTT assay, the optical density of CFBs cultured with 0.1 micromol/L Ang II was higher than that of the blank control cultured with 2% fetal bovine serum-Dulbecco's modified Eagle's medium (FBS-DMEM). The difference was statistically significant (P < 0.05). Both optical densities of CFBs cultured with 0.1 micromol/L Ang II plus 800 microg/mL TMP and 0.1 micromol/L Ang II plus 600 microg/mL TMP were lower than that of CFBs cultured with 0.1 micromol/L Ang II, but only the difference between 0.1 micromol/L AngII plus 800 microg/mL TMP group and 0.1 micromol/L Ang II group was significant (P < 0.05). (2) The content of type I collagen secreted by CFBs cultured with 0.1 micromol/L Ang II was higher than that with 2% FBS-DMEM (P < 0.01). The content of type I collagen secreted by CFBs cultured with 0.1 micromol/L Ang II plus 800 microg/mL TMP was lower than that with 0.1 micromol/L Ang II (P < 0.05). (3) The level of type I collagen mRNA in 0.1 micromol/L Ang II group was higher than that in blank control group, and lower than that in 0.1 micromol/L Ang II plus 800 microg/mL TMP group. Both the differences between 0.1 micromol/L Ang II group and the blank control group and between 0.1 micromol/L Ang II group and 0.1 micromol/L Ang II plus 800 microg/mL TMP group were statistically significant (P < 0.05). CONCLUSION TMP can not only inhibit the proliferation of CFBs, but also decrease the secretion and the mRNA expression level of collagen I in cultured CFBs of rat which are increased by Ang II.
Collapse
Affiliation(s)
- Dong-mei Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yang GH, Zhou X, Ji WJ, Zeng S, Dong Y, Tian L, Bi Y, Guo ZZ, Gao F, Chen H, Jiang TM, Li YM. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 306:H598-609. [PMID: 24337460 DOI: 10.1152/ajpheart.00585.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent studies have shown that the tonicity-responsive enhancer binding protein (TonEBP)/vascular endothelial growth factor-C (VEGF-C) signaling pathway-induced lymphangiogenesis provides a buffering mechanism for high salt (HS) intake-induced elevation of blood pressure (BP). Moreover, blocking of TonEBP/VEGF-C signaling by mononuclear phagocyte depletion can induce salt-sensitive hypertension in rats. We hypothesized that HS intake could have an impact on cardiac lymphangiogenesis, and regulation of VEGF-C bioactivity, which is largely through the main receptor for VEGFR-3, may modulate HS intake-induced left ventricular remodeling. We demonstrated upregulation of TonEBP, increased macrophage infiltration, and enhanced lymphangiogenesis in the left ventricles of spontaneously hypertensive rats (SHR) that were fed a HS diet (8.0% NaCl). Then, retrovirus vectors capable of overexpression (ΔNΔC/VEGF-C/Cys152Ser, used for overexpressing VEGF-C) and blocking (VEGFR-3-Rg, used for trapping of bioactive VEGF-C) of VEGF-C and control vector (pLPCX) were intravenously administered to SHR from week 9 of a 12-wk HS loading period. At the end of the HS challenge, overexpression of VEGF-C led to enhanced cardiac lymphangiogenesis, decreased myocardial fibrosis, and macrophage infiltration, preserved left ventricular functions, as well as decreased blood pressure level compared with the HS group and the control vector-treated HS group. In contrast, systemic blocking of VEGF-C was associated with elevation of blood pressure level and an exacerbation of hypertensive left ventricular remodeling, as indicated by increased fibrosis and macrophage infiltration, and diminished lymphangiogenesis. Hence, our findings highlight that VEGF-C/VEGFR-3 is a promising therapeutic target to attenuate hypertensive left ventricular remodeling induced by HS intake, presumably via blood pressure-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Guo-Hong Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sarıkaya S, Şahin Ş, Öztürk S, Akyol L, Altunkaş F, Karaman K, Alcelik A, Keser Yılmaz Y. Detection of atrial electrical and mechanical dysfunction in non-dipper pre-hypertensive subjects. Clin Exp Hypertens 2013; 36:465-70. [DOI: 10.3109/10641963.2013.846362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Abstract
The syncytium of cardiomyocytes in the heart is tethered within a matrix composed principally of type I fibrillar collagen. The matrix has diverse mechanical functions that ensure the optimal contractile efficiency of this muscular pump. In the diseased heart, cardiomyocytes are lost to necrotic cell death, and phenotypically transformed fibroblast-like cells-termed 'myofibroblasts'-are activated to initiate a 'reparative' fibrosis. The structural integrity of the myocardium is preserved by this scar tissue, although at the expense of its remodelled architecture, which has increased tissue stiffness and propensity to arrhythmias. A persisting population of activated myofibroblasts turns this fibrous tissue into a living 'secretome' that generates angiotensin II and its type 1 receptor, and fibrogenic growth factors (such as transforming growth factor-β), all of which collectively act as a signal-transducer-effector signalling pathway to type I collagen synthesis and, therefore, fibrosis. Persistent myofibroblasts, and the resultant fibrous tissue they produce, cause progressive adverse myocardial remodelling, a pathological hallmark of the failing heart irrespective of its etiologic origin. Herein, we review relevant cellular, subcellular, and molecular mechanisms integral to cardiac fibrosis and consequent remodelling of atria and ventricles with a heterogeneity in cardiomyocyte size. Signalling pathways that antagonize collagen fibrillogenesis provide novel strategies for cardioprotection.
Collapse
|
29
|
Guimarães GG, Santos SHS, Oliveira ML, Pimenta-Velloso EP, Motta DF, Martins AS, Alenina N, Bader M, Santos RAS, Campagnole-Santos MJ. Exercise induces renin-angiotensin system unbalance and high collagen expression in the heart of Mas-deficient mice. Peptides 2012; 38:54-61. [PMID: 22921883 DOI: 10.1016/j.peptides.2012.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/25/2012] [Accepted: 05/27/2012] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system (RAS) is involved in the cardiac and vascular remodeling associated with cardiovascular diseases. Angiotensin (Ang) II/AT(1) axis is known to promote cardiac hypertrophy and collagen deposition. In contrast, Ang-(1-7)/Mas axis opposes Ang II effects in the heart producing anti-trophic and anti-fibrotic effects. Exercise training is known to induce cardiac remodeling with physiological hypertrophy without fibrosis. We hypothesize that cardiac remodeling induced by chronic exercise depends on the action of Ang-(1-7)/Mas axis. Thus, we evaluated the effect of exercise training on collagen deposition and RAS components in the heart of FVB/N mice lacking Mas receptor (Mas-KO). Male wild-type and Mas-KO mice were subjected to a moderate-intense swimming exercise training for 6 weeks. The left ventricle (LV) of the animals was sectioned and submitted to qRT-PCR and histological analysis. Circulating and tissue angiotensin peptides were measured by RIA. Sedentary Mas-KO presented a higher circulating Ang II/Ang-(1-7) ratio and an increased ACE2 expression in the LV. Physical training induced in Mas-KO and WT a similar cardiac hypertrophy accompanied by a pronounced increase in collagen I and III mRNA expression. Trained Mas-KO and trained WT presented increased Ang-(1-7) in the blood. However, only in trained-WT there was an increase in Ang-(1-7) in the LV. In summary, we showed that deletion of Mas in FVB/N mice produced an unbalance in RAS equilibrium increasing Ang II/AT(1) arm and inducing deleterious cardiac effects as deposition of extracellular matrix proteins. These data indicate that Ang-(1-7)/Mas axis is an important counter-regulatory mechanism in physical training mediate cardiac adaptations.
Collapse
Affiliation(s)
- Gislaine G Guimarães
- INCT NanoBioFar, Department of Physiology and Biophysics, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
OBJECTIVE To evaluate the effect of low-intensity chronic exercise training (ExT) on blood pressure (BP), as well as the cardiac alterations associated with hypertension in aging hypertensive rats. METHODS Male spontaneously hypertensive rats (SHR; 21 months old) and their normotensive control Wistar-Kyoto (WKY) rats were submitted to low-intensity training protocol for 13 weeks. BP, cardiac morphological and morphometric analysis, as well as gene expression of fibrotic and inflammatory factors were analyzed at the end of the training period. RESULTS ExT reduced BP and heart rate in aged SHR. Left ventricle hypertrophy, collagen volume fraction and wall-to-lumen ratio of myocardium arterioles were also decreased in trained SHR. However, ExT was unable to reverse the either reduced capillary density or the cardiac myocyte hypertrophy observed in SHR as compared with WKY rats. Trained SHR showed higher metalloproteinase-2/tissue inhibitor metalloproteinase-2 (MMP-2/TIMP-2) ratio and lower levels of α-smooth muscle actin, but similar levels of connective tissue growth factor, transforming growth factor beta or IL-1 beta to that of nontrained SHR. CONCLUSION Low to moderate-intensity chronic ExT reverses the cardiac alterations associated with hypertension: myocardial arteriole, left ventricle hypertrophy, collagen content and tachycardia. These changes could be consequence or cause of the reduction in BP observed in trained SHR. In addition, ExT does not worsen the underlying inflammatory burden associated with hypertension. Therefore, the data support a beneficial effect of ExT in aging SHR similar to that reported in young or middle-aged individuals, confirming that exercise is a healthy habit that induces cardiac improvements independently of age.
Collapse
|
31
|
Contribution of circulating biomarkers to unravel the role of extracellular matrix in hypertensive cardiac remodelling. J Hypertens 2012; 30:34-7. [DOI: 10.1097/hjh.0b013e32834e4bb0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Zhang Y, Gao F, Cao Y, Wang H, Duan H. Effects of the Supercritical Fluid Extraction of Dahurian Angelica Root and Szechwan Lovage Rhizome on Spontaneous Hypertension Rats. Chin Med 2012. [DOI: 10.4236/cm.2012.34030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Abstract
This article outlines the link between the renin angiotensin aldosterone system (RAAS) and various forms of cardiomyopathy, and also reviews the understanding of the effectiveness of RAAS intervention in this phase of ventricular dysfunction. The authors focus their discussion predominantly on patients who have had previous myocardial infarction or those who have left ventricular hypertrophy and also briefly discuss the role of RAAS activation and intervention in patients with alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Patrick Collier
- Heart Failure Unit, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | | |
Collapse
|
34
|
Spoto B, Testa A, Parlongo RM, Tripepi G, D'Arrigo G, Mallamaci F, Zoccali C. Tissue inhibitor of metalloproteinases (TIMP-1), genetic markers of insulin resistance and cardiomyopathy in patients with kidney failure. Nephrol Dial Transplant 2011; 27:2440-5. [DOI: 10.1093/ndt/gfr710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
Takano NK, Tsutsumi T, Suzuki H, Okamoto Y, Nakajima T. Time frequency power profile of QRS complex obtained with wavelet transform in spontaneously hypertensive rats. Comput Biol Med 2011; 42:205-12. [PMID: 22182969 DOI: 10.1016/j.compbiomed.2011.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 01/15/2023]
Abstract
We evaluated whether frequency analysis could detect the development of interstitial fibrosis in rats. SHR/Izm and age-matched WKY/Izm were used. Limb lead II electrocardiograms were recorded. Continuous wavelet transform (CWT) was applied for the time-frequency analysis. The integrated time-frequency power (ITFP) between QRS complexes was measured and compared between groups. The ITFP at low-frequency bands (≤125Hz) was significantly higher in SHR/Izm. The percent change of ITFP showed the different patterns between groups. Prominent interstitial fibrosis with an increase in TIMP-1 mRNA expression was also observed in SHR/Izm. These results were partly reproduced in a computer simulation.
Collapse
Affiliation(s)
- Nami K Takano
- Department of Ischemia Circulatory Physiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
36
|
Hlavačková L, Vranková S, Janega P, Pecháňová O, Babál P. The effect of indapamide on development of myocardial hypertrophy and fibrosis in L-NAME-induced hypertension in rat. Physiol Res 2011; 60:845-52. [PMID: 21995907 DOI: 10.33549/physiolres.932201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to analyze the effect of indapamide and its combination with ACE inhibitor (captopril) and antioxidant (Provinols™) on both myocardial hypertrophy and fibrosis. Wistar rats were treated with L-NAME (40 mg/kg/day, L); L-NAME plus indapamide (1 mg/kg/day), or captopril (10 mg/kg/day), or Provinols™ (40 mg/kg/day), or combination of indapamide with captopril, and indapamide with Provinols™ for 7 weeks. Blood pressure (BP), LV hypertrophy and fibrosis were determined. The content of collagens type I and III was evaluated morphometrically after picrosirius red staining. L-NAME treatment led to increased BP, LV hypertrophy, total fibrosis and relative content of collagens without the change in collagen type I/III ratio. Indapamide and captopril decreased BP, LV hypertrophy and the collagen ratio without affecting total fibrosis, while Provinols™ reduced BP, the collagen ratio and fibrosis without affecting LV hypertrophy. The combinations decreased all the parameters. Decrease of LV hypertrophy was achieved by drugs with the best reducing effect on BP, fibrosis reduction was reached by the antioxidant treatment with only partial effect on BP. Thus, the combination of antihypertensive and antioxidant treatment may represent a powerful tool in preventing myocardial remodeling induced by hypertension.
Collapse
Affiliation(s)
- L Hlavačková
- Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
37
|
Fernandes T, Soci U, Oliveira E. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res 2011; 44:836-47. [DOI: 10.1590/s0100-879x2011007500112] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/25/2011] [Indexed: 12/25/2022] Open
|
38
|
Mizuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Oki T. Telmisartan improves morphologic and functional changes in both left ventricular myocardium and carotid arterial wall in patients with hypertension: assessment by tissue Doppler imaging and carotid ultrasonography. Echocardiography 2011; 27:864-72. [PMID: 20456478 DOI: 10.1111/j.1540-8175.2010.01163.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The aim of the present study was to clarify the beneficial effects of telmisartan on the morphologic and functional changes in left ventricular (LV) myocardium and carotid arterial wall in patients with hypertension (HT) using tissue Doppler imaging and carotid ultrasonography. METHODS Telmisartan (20-40 mg daily) was administered to 35 previously untreated patients with HT. Conventional and pulsed tissue Doppler echocardiography were performed after medication had been continued for 1-2 months with normal values for blood pressure (BP) (phase I) and for 12 months (phase II). Subclinical atherosclerosis also was determined by measuring the intima-media thickness (IMT) and stiffness β of the left and right common carotid arteries using B- and M-mode ultrasonography. RESULTS In the phase II, the LV mass index and isovolumic relaxation time were lower, the peak systolic and early diastolic mitral annular motion velocities were greater compared to the phase I. The stiffness β and mean IMT were lower in the phase II than in the phase I. On multivariate regression analyses, age, BP, and LV diastolic variables emerged as stronger predictors of carotid arterial IMT and stiffness β. CONCLUSIONS The 1-year use of telmisartan improved LV hypertrophy, regional LV myocardial contraction and relaxation, and carotid atherosclerosis in patients with HT. Our results support cardio- and arterioprotective benefits from continuous long-term telmisartan monotherapy, and combined analysis of tissue Doppler imaging and carotid ultrasonography may be a useful tool for understanding ventriculoarterial coupling in patients with HT.
Collapse
Affiliation(s)
- Yukio Mizuguchi
- Cardiovascular Section, Higashi Tokushima National Hospital, National Hospital Organization, Tokushima, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Emiroglu MY, Bulut M, Sahin M, Acar G, Akcakoyun M, Kargin R, Kayancicek H, Karapinar H, Aung SM. Assessment of atrial conduction time in patients with essential hypertension. J Electrocardiol 2011; 44:251-6. [DOI: 10.1016/j.jelectrocard.2010.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Indexed: 11/16/2022]
|
40
|
Azoubel R, Torres GDV, Silva LWSD, Gomes FV, Reis LAD. Efeitos da terapia física descongestiva na cicatrização de úlceras venosas. Rev Esc Enferm USP 2010; 44:1085-92. [DOI: 10.1590/s0080-62342010000400033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objetivou-se neste estudo verificar os efeitos da terapia física descongestiva (TFD) na cicatrização de úlceras venosas. Trata-se de um estudo intervencionista, quase experimental, do qual participaram 20 clientes, divididos em 2 grupos: o grupo controle (n=10) e o grupo de intervenção (n=10). Os clientes do primeiro grupo foram tratados apenas com curativo convencional e os do segundo grupo, com curativo convencional e terapia física descongestiva (associação de técnicas: drenagem linfática manual, enfaixamento compressivo, elevação dos membros inferiores, exercícios miolinfocinéticos e cuidados com a pele). Ambos os grupos foram tratados durante seis meses. Os clientes submetidos à TFD apresentaram significante redução de edema e da dor, além de melhora no processo cicatricial. Os resultados permitiram verificar que a terapia descongestiva estimula o processo de cicatrização de úlceras venosas, melhorando a qualidade de vida dos indivíduos.
Collapse
Affiliation(s)
- Roberta Azoubel
- Universidade Estadual do Sudeste da Bahia; Universidade Federal do Rio Grande do Norte, Brasil
| | | | | | - Fabiano Veloso Gomes
- Universidade Estadual do Sudeste da Bahia; Cuidados Fisioterapêuticos nas Ulcerações dos Membros Inferiores, Brasil
| | - Luciana Araújo dos Reis
- Universidade Federal do Rio Grande do Norte; Universidade Estadual do Sudeste da Bahia, Brasil
| |
Collapse
|
41
|
Pei Z, Meng R, Li G, Yan G, Xu C, Zhuang Z, Ren J, Wu Z. Angiotensin-(1-7) ameliorates myocardial remodeling and interstitial fibrosis in spontaneous hypertension: role of MMPs/TIMPs. Toxicol Lett 2010; 199:173-81. [PMID: 20837116 DOI: 10.1016/j.toxlet.2010.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/31/2010] [Accepted: 08/31/2010] [Indexed: 01/27/2023]
Abstract
Angiotensin-(1-7) displays antihypertensive and antiproliferative properties although its effect on cardiac remodeling and hypertrophy in hypertension has not been fully elucidated. The present study was designed to examine the effect of chronic angiotensin-(1-7) treatment on myocardial remodeling, cardiac hypertrophy and underlying mechanisms in spontaneous hypertension. Adult male spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were treated with or without angiotensin-(1-7) or the angiotensin-(1-7) antagonist A-779 for 24 weeks. Mean arterial pressure, left ventricular geometry, expression of the hypertrophic markers ANP and β-MHC, collagen contents (type I and III), collagenase (MMP-1), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of MMPs-1 (TIMP-1) were evaluated in WKY and SHR rats with or without treatment. Our data revealed that chronic angiotensin-(1-7) treatment significantly suppressed hypertension, left ventricular hypertrophy, expression of ANP and β-MHC as well as myocardial fibrosis in SHR rats, the effects of which were nullified by the angiotensin-(1-7) receptor antagonist A-779. In addition, angiotensin-(1-7) treatment significantly counteracted hypertension-induced changes in the mRNA expression of MMP-2 and TIMP-1 and collagenase activity, the effects of which were blunted by A-779. In vitro study revealed that angiotensin-(1-7) directly increased the activity of MMP-2 and MMP-9 while decreasing the content of TIMP-1 and TIMP-2. Taken together, our results revealed a protective effect of angiotensin-(1-7) against cardiac hypertrophy and collagen deposition, which may be related to concerted changes in MMPs and TIMPs levels. These data indicated the therapeutic potential of angiotensin-(1-7) in spontaneous hypertension-induced cardiac remodeling.
Collapse
Affiliation(s)
- Zhaohui Pei
- Department of Cardiology, The Third Hospital, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsuruda T, Imamura T, Hatakeyama K, Asada Y, Kitamura K. Stromal cell biology--a way to understand the evolution of cardiovascular diseases. Circ J 2010; 74:1042-50. [PMID: 20378995 DOI: 10.1253/circj.cj-10-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stromal cells, composed of fibroblasts, microvascular endothelial cells, immune cells and inflammatory cells, are critical determinants of the mechanical properties and function of the heart and vasculature, and the mechanisms whereby these types of cells are activated are important to understand the progression of cardiovascular diseases. Emerging studies have suggested that the activation of autocrine and paracrine signaling pathways by stromal cell-derived growth factors, cytokines and bioactive molecules contributes to disease progression. Disruption of the stromal network will result in alterations in the geometry and function in these organs. Interventions targeting the stromal cells (eg, myofibroblasts, microvascular endothelial cells, inflammatory cells) by pharmacological agents or direct gene delivery/small interfering RNA would be potential novel therapeutic strategies to prevent/attenuate the progression of cardiovascular disorders.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
43
|
Synergistic attenuation of myocardial fibrosis in spontaneously hypertensive rats by joint treatment with benazepril and candesartan. J Cardiovasc Pharmacol 2009; 54:16-24. [PMID: 19487956 DOI: 10.1097/fjc.0b013e3181a98b31] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Benazepril, an angiotensin-converting enzyme inhibitor, and candesartan, an angiotensin receptor blocker, are common drugs for treating hypertension. This study aimed to investigate the enhanced attenuation of myocardial fibrosis in spontaneously hypertensive rats (SHRs) possibly induced by joint treatment with benazepril and candesartan and the possible involvement of transforming growth factor beta1 (TGF-beta1)-Smad signaling pathway. SHRs were treated with benazepril at 10 mg.kg.d, candesartan at 4 mg.kg.d, and a combination of 2 drugs at half dose, respectively, for 12 weeks. Echocardiography and histology indicated that joint treatment with 2 drugs more significantly inhibited myocardial fibrosis in SHRs than either monotherapy, as evidenced by the changes in cardiac structural parameters, ultrasonic integrated backscatters, collagen volume fraction, and perivascular collagen area. The collagen analyses further revealed that significant decreases in total collagen concentration, the ratio of collagen type I to type III, and collagen cross-linking were found after the enhanced attenuation of myocardial fibrosis. Western blot analysis showed that the protein expression of TGF-beta1 and Smad3 was significantly decreased after joint treatment with 2 drugs. We conclude that synergistic attenuation of myocardial fibrosis in SHRs is produced by combined use of benazepril and candesartan possibly through the modulation of TGF-beta/Smad signaling proteins.
Collapse
|
44
|
Jessup JA, Westwood BM, Chappell MC, Groban L. Dual ACE-inhibition and AT1 receptor antagonism improves ventricular lusitropy without affecting cardiac fibrosis in the congenic mRen2.Lewis rat. Ther Adv Cardiovasc Dis 2009; 3:245-57. [PMID: 19531557 PMCID: PMC2825563 DOI: 10.1177/1753944709338489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Hypertension and left ventricular (LV) hypertrophy often precede diastolic dysfunction and are risk factors for diastolic heart failure. Although pharmacologic inhibition of the renin-angiotensin system (RAS) improves diastolic function and functional capacity in hypertensive patients with LV hypertrophy, the effects of combination therapy with an angiotensin converting enzyme inhibitor (ACEi) and an angiotensin receptor blocker (ARB) are unclear. METHOD We assessed the effects of the combined 10-week administration of lisinopril (10 mg/kg/ day, p.o.) and losartan (10 mg/kg/day, p.o.) (LIS/LOS) on diastolic function and LV structure in seven young (5 weeks), prehypertensive congenic mRen2.Lewis male rat, a model of tissue renin overexpression and angiotensin II (Ang II)-dependent hypertension compared to vehicle (VEH) treated (n = 7), age-matched rats. RESULTS Systolic blood pressures were 64% lower with the combination therapy (p < 0.001), but there were no differences in heart rate or systolic function between groups. RAS inhibition increased myocardial relaxation, defined by tissue Doppler mitral annular descent (e') by 2.2 fold (p < 0.001). The preserved lusitropy in the LIS/LOS-treated rats was accompanied by a reduction in phospholamban-to-SERCA2 ratio (p < 0.001). Despite lower relative wall thicknesses (VEH: 1.56+/-0.17 versus LIS/LOS: 0.78+/-0.05) and filling pressures, defined by the transmitral Doppler-to-mitral annular descent ratio (E/e', VEH: 28.7+/-1.9 versus LIS/LOS: 17.96+/-1.5), no differences in cardiac collagen were observed. CONCLUSION We conclude that the lusitropic benefit of early dual RAS blockade may be due to improved vascular hemodynamics and/or cardiac calcium handling rather than effects on extracellular matrix reduction.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/administration & dosage
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin-Converting Enzyme Inhibitors/administration & dosage
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Animals
- Animals, Congenic
- Blood Pressure/drug effects
- Calcium-Binding Proteins/metabolism
- Collagen/metabolism
- Disease Models, Animal
- Drug Administration Schedule
- Drug Therapy, Combination
- Echocardiography, Doppler
- Fibrosis
- Heart Rate/drug effects
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/pathology
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Lisinopril/administration & dosage
- Lisinopril/pharmacology
- Losartan/administration & dosage
- Losartan/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocardium/pathology
- Rats
- Rats, Inbred Lew
- Rats, Transgenic
- Renin/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Jewell A. Jessup
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Brian M. Westwood
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Mark C. Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Leanne Groban
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
45
|
Matsuyama N, Tsutsumi T, Kubota N, Nakajima T, Suzuki H, Takeyama Y. Direct action of an angiotensin II receptor blocker on angiotensin II-induced left atrial conduction delay in spontaneously hypertensive rats. Hypertens Res 2009; 32:721-6. [DOI: 10.1038/hr.2009.89] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Fogari R, De Gasparo M. Addressing Those Two That Go Together: The Angiotensin II Receptors and their Role in Blood-flow Regulation. Blood Press 2009. [DOI: 10.1080/180-080370501750275839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Szmigielski C, Raczkowska M, Styczynski G, Pruszczyk P, Gaciong Z. Metabolism of collagen is altered in hypertensives with increased intima media thickness. Blood Press 2009; 15:157-63. [PMID: 16864157 DOI: 10.1080/08037050600835925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Increased intima media thickness (IMT) of common carotid arteries (CCAs) and left ventricular mass index (LVMI) are independent risk factors for vascular events and may be related to accumulation of extracellular proteins due to altered metabolism of collagen. METHODS IMT and LVMI were measured ultrasonographically in 50 males with newly diagnosed, untreated, essential hypertension (HTN, 37.7 +/- 13.1 years), and 14 controls (C, 32.6 +/- 9.7 years). Serum levels of procollagen type I carboxy-terminal propeptide (PICP), procollagen type III amino-terminal propeptide (PIIINP), carboxy-terminal telopeptide (ICTP), matrix metalloproteinase (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were determined using immunoassays. RESULTS IMT was significantly higher in HTN than in C (0.6 +/- 0.1 vs 0.4 +/- 0.1 mm, p < 0.001) as well as LVMI (119.5 +/- 39.9 vs 106.8+/-18.7 g/m2, p = 0.04) and serum TIMP-1 (in HNT 691.7 +/- 124.6 ng/ml; in C 577.5+/-70.8 ng/ml, p < 0.001). Other parameters did not differ between these groups. The sum of PICP and ICTP was higher in HTN (165.0 +/- 46.9 microg/l), than in C (147.1 +/- 26.0 microg/l, p = 0.03). TIMP-1 correlated with IMT (r = 0.33, p = 0.02) in hypertensives. CONCLUSIONS We suggest that the collagenase-anticollagenase system is abnormal in essential hypertension and contributes to cardiovascular remodeling. Increased IMT may be related to the accumulation of extracellular proteins due to altered metabolism of collagen.
Collapse
Affiliation(s)
- Cezary Szmigielski
- Department of Internal Medicine, Hypertension and Vascular Diseases, The Medical University of Warsaw, Warsaw, Poland, Banacha Street 1A, 02-097 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
48
|
Silva MB, Almeida AO, Fadel L, Ambrósio CE, Miglino MA. Influência do bloqueador de receptor de angiotensina (Losartana potássica) na função renal e pressão arterial em cães GRMD. PESQUISA VETERINÁRIA BRASILEIRA 2009. [DOI: 10.1590/s0100-736x2009000400008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A distrofia muscular de Duchenne (DMD) é uma alteração neuromuscular caracterizada por contínua necrose muscular e degeneração, com eventual fibrose e infiltração por tecido adiposo. O aumento progressivo da fibrose intersticial no músculo impede a migração das células miogênicas, necessárias para a formação muscular. O modelo canino constitui-se nas melhores fenocópias da doença em humanos, quando comparados com outros modelos animais com distrofia. O tratamento antifibrose de pacientes DMD, tendo como alvo os mediadores da citocina, TGF-beta, e o tratamento com antiinflamatórios, podem limitar a degeneração muscular e contribuir para a melhora do curso da doença. O presente estudo teve como objetivo observar os possíveis efeitos adversos na fisiologia renal, por meio de avaliação bioquímica sanguínea e da pressão arterial, verificando a viabilidade do uso do Losartan (um inibidor de TGF-beta) nos cães afetados pela distrofia muscular. Foram utilizados quatro cães adultos, sendo dois machos e duas fêmeas. Utilizou-se a dose de 50mg de Losartan, administrada via oral, uma vez ao dia. Os exames clínicos, bem como alterações na função renal, o nível do potássio sérico e a pressão arterial não evidenciaram reação adversa durante todo o período do experimento. O uso de Losartan, por um período de 9 semanas, mostrou-se como uma terapia segura para o tratamento antifibrótico em cães adultos, não afetando a função renal ou pressão arterial dos animais.
Collapse
|
49
|
Raizada V, Skipper B, Luo W, Griffith J. Intracardiac and intrarenal renin-angiotensin systems: mechanisms of cardiovascular and renal effects. J Investig Med 2008; 55:341-59. [PMID: 18062896 DOI: 10.2310/6650.2007.00020] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The renin-angiotensin system (RAS) is a hormonal system that controls body fluid volume, blood pressure, and cardiovascular function in both health and disease. Various tissues, including the heart and kidneys, possess individual locally regulated RASs. In each RAS, the substrate protein angiotensinogen is cleaved by the peptidases renin and angiotensin-converting enzyme to form the biologically active product angiotensin II, which acts as an intracrine cardiac and renal hormone. The components of each RAS, including aldosterone (ALDO), may be produced locally and/or may be delivered by or sequestered from the circulation. Overactivity of the cardiac RAS has been associated with cardiac diseases, including cardiac hypertrophy due to volume and/or pressure overload, heart failure, coronary artery disease with myocardial infarction, and hypertension. Overactivity of the renal RAS has been associated with various kidney diseases, including nephropathies and renal artery stenosis. The principal effects of an overactive RAS include the generation of reactive oxygen species, which leads to "oxidative stress," activation of the nuclear transcription factor kappaB, and stimulation of pathways and genes that promote vasoconstriction, endothelial dysfunction, cell hypertrophy, fibroblast proliferation, inflammation, excess extracellular matrix deposition, atherosclerosis, and thrombosis. It has been suggested that oxidative stress is the central mechanism underlying the pathogenesis of RAS-related and ALDO-related chronic cardiovascular and renal tissue injury and of cardiac arrhythmias and conduction disturbances.
Collapse
Affiliation(s)
- Veena Raizada
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | |
Collapse
|
50
|
Timonen P, Magga J, Risteli J, Punnonen K, Vanninen E, Turpeinen A, Tuomainen P, Kuusisto J, Vuolteenaho O, Peuhkurinen K. Cytokines, interstitial collagen and ventricular remodelling in dilated cardiomyopathy. Int J Cardiol 2008; 124:293-300. [PMID: 17442428 DOI: 10.1016/j.ijcard.2007.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is associated with myocardial fibrosis, and proinflammatory cytokines may play a role in this. METHODS N-terminal type I and III procollagen propeptides (PINP, PIIINP) and cross-linked telopeptide of type I collagen (ICTP) were measured from serum samples of 73 patients with DCM and 56 age and sex matched controls. Circulating cytokine levels were determined in DCM patients. RESULTS Serum levels of PINP and PIIINP were lower in patients than in controls (p<0.05 and p=0.001). In patients with DCM, the levels of PIIINP and ICTP correlated significantly with each other (p<0.01), and the proinflammatory cytokines, tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6), correlated positively with ICTP (p<0.001, p<0.05), PIIINP/PINP ratio (p<0.05, p<0.01) and left atrial size (p<0.01, p<0.05). Presence of atrial fibrillation was associated with lower serum PINP level and higher PIIINP/PINP ratio (p<0.05). CONCLUSIONS Our results suggest that interstitial myocardial collagen metabolism is altered in DCM patients and regulated by proinflammatory cytokines. These changes in collagen metabolism are associated with presence of atrial fibrillation, but do not reflect left ventricular remodelling. Treatment with beta-blockers and inhibitors of the renin angiotensin aldosterone system seem to effectively inhibit overall type I and III collagen syntheses.
Collapse
Affiliation(s)
- Pekka Timonen
- Department of Internal Medicine, Kuopio University Hospital and University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|