1
|
Bubb KJ, Tang O, Gentile C, Moosavi SM, Hansen T, Liu CC, Di Bartolo BA, Figtree GA. FXYD1 Is Protective Against Vascular Dysfunction. Hypertension 2021; 77:2104-2116. [PMID: 33934624 DOI: 10.1161/hypertensionaha.120.16884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kristen J Bubb
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia (K.J.B.)
| | - Owen Tang
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.)
| | - Carmine Gentile
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,University of Technology Sydney, Ultimo, NSW, Australia (C.G., S.M.M.)
| | - Seyed M Moosavi
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,University of Technology Sydney, Ultimo, NSW, Australia (C.G., S.M.M.)
| | - Thomas Hansen
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.)
| | - Chia-Chi Liu
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.).,Heart Research Institute, Newtown, NSW, Australia (C.-C.L.)
| | - Belinda A Di Bartolo
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.)
| | - Gemma A Figtree
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.)
| |
Collapse
|
2
|
TEWARI SHIVENDRAG. STOCHASTIC SIMULATION OF A DIMER SODIUM PUMP. J BIOL SYST 2012. [DOI: 10.1142/s0218339011003920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sodium pump is known to play an important role in almost all organs of our human body like heart, kidney, liver, brain, etc. A number of mechanisms for sodium pumping have been proposed till date, with Albers–Post Model being most widely used. Recently, Clarke proposed a two-gear dimer sodium pump model to replace the classical Albers–Post Model. This dimer model has two gears of sodium pumping depending upon the available adenosine triphosphate (ATP) concentrations. The mathematical model governing the two gears of sodium pumping overestimated the total fluorescence change of sodium pump labeled with voltage-sensitve probe RH421, which responds to electrogenic reactions of the pump, for ATP concentrations lesser than 25 μM. In this article, a modification has been proposed to the existing dimer mathematical model. Also, it is well known that stochastic chemical kinetics of enzymes has a stronger physical basis than classical reaction rate equations. Hence, the modified mathematical model is simulated using STochastic Engine for Pathway Simulation (STEPS). The stochastic results are used to perform comparative analysis with experimental and deterministic results to validate the modified model and consequently the dimeric nature of sodium pump. The modified model gave a better prediction of total fluorescence change for over all possible range of ATP concentrations. Similar approach can be used to stochastically simulate other ion pumping processes.
Collapse
Affiliation(s)
- SHIVENDRA G. TEWARI
- Systems Science and Informatics Unit, Indian Statistical Institute, Bangalore — 560 059, India
| |
Collapse
|
3
|
Ferreira JCB, Mochly-Rosen D, Boutjdir M. Regulation of cardiac excitability by protein kinase C isozymes. Front Biosci (Schol Ed) 2012. [PMID: 22202075 DOI: 10.2741/283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac excitability and electrical activity are determined by the sum of individual ion channels, gap junctions and exchanger activities. Electrophysiological remodeling during heart disease involves changes in membrane properties of cardiomyocytes and is related to higher prevalence of arrhythmia-associated morbidity and mortality. Pharmacological and genetic manipulation of cardiac cells as well as animal models of cardiovascular diseases are used to identity changes in electrophysiological properties and the molecular mechanisms associated with the disease. Protein kinase C (PKC) and several other kinases play a pivotal role in cardiac electrophysiological remodeling. Therefore, identifying specific therapies that regulate these kinases is the main focus of current research. PKC, a family of serine/threonine kinases, has been implicated as potential signaling nodes associated with biochemical and biophysical stress in cardiovascular diseases. In this review, we describe the role of PKC isozymes that are involved in cardiac excitability and discuss both genetic and pharmacological tools that were used, their attributes and limitations. Selective and effective pharmacological interventions to normalize cardiac electrical activities and correct cardiac arrhythmias will be of great clinical benefit.
Collapse
|
4
|
Tulloch LB, Howie J, Wypijewski KJ, Wilson CR, Bernard WG, Shattock MJ, Fuller W. The inhibitory effect of phospholemman on the sodium pump requires its palmitoylation. J Biol Chem 2011; 286:36020-36031. [PMID: 21868384 DOI: 10.1074/jbc.m111.282145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (PLM), the principal sarcolemmal substrate for protein kinases A and C in the heart, regulates the cardiac sodium pump. We investigated post-translational modifications of PLM additional to phosphorylation in adult rat ventricular myocytes (ARVM). LC-MS/MS of tryptically digested PLM immunoprecipitated from ARVM identified cysteine 40 as palmitoylated in some peptides, but no information was obtained regarding the palmitoylation status of cysteine 42. PLM palmitoylation was confirmed by immunoprecipitating PLM from ARVM loaded with [(3)H]palmitic acid and immunoblotting following streptavidin affinity purification from ARVM lysates subjected to fatty acyl biotin exchange. Mutagenesis identified both Cys-40 and Cys-42 of PLM as palmitoylated. Phosphorylation of PLM at serine 68 by PKA in ARVM or transiently transfected HEK cells increased its palmitoylation, but PKA activation did not increase the palmitoylation of S68A PLM-YFP in HEK cells. Wild type and unpalmitoylatable PLM-YFP were all correctly targeted to the cell surface membrane, but the half-life of unpalmitoylatable PLM was reduced compared with wild type. In cells stably expressing inducible PLM, PLM expression inhibited the sodium pump, but PLM did not inhibit the sodium pump when palmitoylation was inhibited. Hence, palmitoylation of PLM controls its turnover, and palmitoylated PLM inhibits the sodium pump. Surprisingly, phosphorylation of PLM enhances its palmitoylation, probably through the enhanced mobility of the phosphorylated intracellular domain increasing the accessibility of cysteines for the palmitoylating enzyme, with interesting theoretical implications. All FXYD proteins have conserved intracellular cysteines, so FXYD protein palmitoylation may be a universal means to regulate the sodium pump.
Collapse
Affiliation(s)
- Lindsay B Tulloch
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Jacqueline Howie
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Krzysztof J Wypijewski
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Catherine R Wilson
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - William G Bernard
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Michael J Shattock
- Cardiovascular Division, The Rayne Institute, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - William Fuller
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom.
| |
Collapse
|
5
|
Ojaimi C, Kinugawa S, Recchia FA, Hintze TH. Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism. Cardiovasc Diabetol 2010; 9:43. [PMID: 20735837 PMCID: PMC2936363 DOI: 10.1186/1475-2840-9-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022] Open
Abstract
Background The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM) have not been defined completely. We have shown in conscious dogs with DM that: 1) baseline coronary blood flow (CBF) was significantly decreased, 2) endothelium-dependent (ACh) coronary vasodilation was impaired, and 3) reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes. Methods Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv) over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4). Results The array data revealed that 797 genes were differentially expressed (P < 0.01; fold change of at least ±2). 150 genes were expressed at significantly greater levels in diabetic dogs and 647 were significantly reduced. There was no change in eNOS mRNA. There was up regulation of some components of the NADPH oxidase subunits (gp91 by 2.2 fold, P < 0.03), and down-regulation of SOD1 (3 fold, P < 0.001) and decrease (4 - 40 fold) in a large number of genes encoding mitochondrial enzymes. In addition, there was down-regulation of Ca2+ cycling genes (ryanodine receptor; SERCA2 Calcium ATPase), structural proteins (actin alpha). Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase), which were markedly down regulated. Conclusion our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.
Collapse
Affiliation(s)
- Caroline Ojaimi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
6
|
Bibert S, Roy S, Schaer D, Horisberger JD, Geering K. Phosphorylation of phospholemman (FXYD1) by protein kinases A and C modulates distinct Na,K-ATPase isozymes. J Biol Chem 2007; 283:476-486. [PMID: 17991751 DOI: 10.1074/jbc.m705830200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (FXYD1), mainly expressed in heart and skeletal muscle, is a member of the FXYD protein family, which has been shown to decrease the apparent K(+) and Na(+) affinity of Na,K-ATPase ( Crambert, G., Fuzesi, M., Garty, H., Karlish, S., and Geering, K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11476-11481 ). In this study, we use the Xenopus oocyte expression system to study the role of phospholemman phosphorylation by protein kinases A and C in the modulation of different Na,K-ATPase isozymes present in the heart. Phosphorylation of phospholemman by protein kinase A has no effect on the maximal transport activity or on the apparent K(+) affinity of Na,K-ATPase alpha1/beta1 and alpha2/beta1 isozymes but increases their apparent Na(+) affinity, dependent on phospholemman phosphorylation at Ser(68). Phosphorylation of phospholemman by protein kinase C affects neither the maximal transport activity of alpha1/beta1 isozymes nor the K(+) affinity of alpha1/beta1 and alpha2/beta1 isozymes. However, protein kinase C phosphorylation of phospholemman increases the maximal Na,K-pump current of alpha2/beta1 isozymes by an increase in their turnover number. Thus, our results indicate that protein kinase A phosphorylation of phospholemman has similar functional effects on Na,K-ATPase alpha1/beta and alpha2/beta isozymes and increases their apparent Na(+) affinity, whereas protein kinase C phosphorylation of phospholemman modulates the transport activity of Na,K-ATPase alpha2/beta but not of alpha1/beta isozymes. The complex and distinct regulation of Na,K-ATPase isozymes by phosphorylation of phospholemman may be important for the efficient control of heart contractility and excitability.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Sophie Roy
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Danièle Schaer
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Jean-Daniel Horisberger
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Käthi Geering
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland.
| |
Collapse
|