1
|
Goto K, Kitazono T. Chloride Ions, Vascular Function and Hypertension. Biomedicines 2022; 10:biomedicines10092316. [PMID: 36140417 PMCID: PMC9496098 DOI: 10.3390/biomedicines10092316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Blood pressure is determined by cardiac output and systemic vascular resistance, and mediators that induce vasoconstriction will increase systemic vascular resistance and thus elevate blood pressure. While peripheral vascular resistance reflects a complex interaction of multiple factors, vascular ion channels and transporters play important roles in the regulation of vascular tone by modulating the membrane potential of vascular cells. In vascular smooth muscle cells, chloride ions (Cl−) are a type of anions accumulated by anion exchangers and the anion–proton cotransporter system, and efflux of Cl− through Cl− channels depolarizes the membrane and thereby triggers vasoconstriction. Among these Cl− regulatory pathways, emerging evidence suggests that upregulation of the Ca2+-activated Cl− channel TMEM16A in the vasculature contributes to the increased vascular contractility and elevated blood pressure in hypertension. A robust accumulation of intracellular Cl− in vascular smooth muscle cells through the increased activity of Na+–K+–2Cl− cotransporter 1 (NKCC1) during hypertension has also been reported. Thus, the enhanced activity of both TMEM16A and NKCC1 could act additively and sequentially to increase vascular contractility and hence blood pressure in hypertension. In this review, we discuss recent findings regarding the role of Cl− in the regulation of vascular tone and arterial blood pressure and its association with hypertension, with a particular focus on TMEM16A and NKCC1.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence:
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Yartsev VN. Effect of Nephrectomy on Arterial Reactivity in Spontaneously Hypertensive Rats. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Hamad A, Ozkan MH, Uma S. Trimethylamine-N-oxide (TMAO) Selectively Disrupts Endothelium-Dependent Hyperpolarization-Type Relaxations in a Time-Dependent Manner in Rat Superior Mesenteric Artery. Biol Pharm Bull 2021; 44:1220-1229. [PMID: 34471050 DOI: 10.1248/bpb.b20-00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vascular action of trimethylamine-N-oxide (TMAO)-the gut microbiota-derived metabolite-in contributing cardiovascular disease is a controversial topic. A recent study has shown that acute exposure of TMAO at moderate concentrations inhibits endothelium-dependent hyperpolarization (EDH)-type relaxations selectively in rat isolated femoral arteries, but not in mesenteric arteries. Here we determined the efficacy of higher TMAO concentrations with longer exposure times on vascular reactivity in rat isolated superior mesenteric arteries. Acetylcholine-induced EDH-type relaxations were examined before and after incubation with TMAO (0.1-10 mM) at increasing exposure times (1-24 h). One- and 4-h-incubations with TMAO at 0.1-3 mM did not cause any change in EDH-type relaxations. However, when the incubation time was increased to 24 h, responses to acetylcholine were reduced in arteries incubated with 1-3 mM TMAO. In addition, at higher TMAO concentration (10 mM) the decrease in EDH relaxations could be detected both in 4-h- and 24-h-incubations. The EDH-relaxations were preserved in rings incubated with 10 mM TMAO for 24 h in the presence of SKA-31 (10 µM), the small (SKCa)- and intermediate (IKCa)-conductance calcium-activated potassium channel activator. Contractile responses to phenylephrine increased in arteries exposed to 10 mM TMAO for 24 h. Interestingly, nitric oxide (NO)-mediated relaxations remained unchanged in arteries treated for 24 h at any TMAO concentration. Our study revealed that TMAO selectively disrupted EDH-type relaxations time-dependently without interfering with NO-induced vasodilation in rat isolated mesenteric arteries. Disruption of these relaxations may help explain the causal role of elevated TMAO levels in certain vascular diseases.
Collapse
Affiliation(s)
- Abdelrahman Hamad
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University
| | | | - Serdar Uma
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University
| |
Collapse
|
4
|
Vechi G, de Souza P, da Silva LM, de Andrade SF, Filho VC, Da Silva RDCMVDA. Mechanisms underlying Eugenia mattosii D. Legrand leaves extract, fractions and compounds induce relaxation of the aorta from normotensive and hypertensive rats. 3 Biotech 2019; 9:445. [PMID: 31763123 DOI: 10.1007/s13205-019-1973-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 10/29/2019] [Indexed: 01/24/2023] Open
Abstract
The present study aimed to verify the effect of methanolic extract, fractions, and phenolic compounds of Eugenia mattosii D. Legrand leaves on the aorta relaxation. Isometric tensions were measured on the aorta of normotensive (NTR) and spontaneously hypertensive rats (SHR). The results showed that both methanolic extracts of leaves and stems, as well as, fractions obtained from leaves were able to induce a concentration-dependent relaxation in both endothelium-intact and -denuded aortas. The methanolic extract of leaves (ME-leaves) was the most effective since the maximal relaxation (≈ 83%) obtained was at the concentration of 300 μg/mL. As the endothelium-dependent relaxation was more significant, we investigated the mechanisms by which ME-leaves induced this effect. After the pretreatment with LNAME, ME-leaves-induced relaxation was decreased in the aorta of NTR and SHR. However, the pretreatment with methylene blue only reduced the relaxation in the aorta of NTR. Furthermore, pretreatment with ME-leaves decreased phenylephrine-induced contraction in preparation Ca2+-free only in aortic rings from NTR. This study also reveals that both compounds, cryptostrobin isolated from chloroform fraction and catechin from the ethyl acetate fraction induced a marked relaxation in endotheliumintact aortic rings of NTR. In conclusion, ME-leaves induces relaxation in the rat aorta involves the modulation of NO/cGMP dependent signaling pathway, this mechanism may at least, in part, explain the endothelium-dependent relaxation. Furthermore, cryptostrobin and catechin also induced relaxation, which may contribute synergistically to the vasorelaxation effect of the ME-leaves.
Collapse
|
5
|
Khaddaj Mallat R, Mathew John C, Mishra RC, Kendrick DJ, Braun AP. Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat. Int J Mol Sci 2019; 20:ijms20143481. [PMID: 31315169 PMCID: PMC6678254 DOI: 10.3390/ijms20143481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Systemic hypertension is a major risk factor for the development of cardiovascular disease and is often associated with endothelial dysfunction. KCa2.3 and KCa3.1 channels are expressed in the vascular endothelium and contribute to stimulus-evoked vasodilation. We hypothesized that acute treatment with SKA-31, a selective activator of KCa2.x and KCa3.1 channels, would improve endothelium-dependent vasodilation and transiently lower mean arterial pressure (MAP) in male, spontaneously hypertensive rats (SHRs). Isolated vascular preparations exhibited impaired vasodilation in response to bradykinin (i.e., endothelial dysfunction) compared with Wistar controls, which was associated with decreased bradykinin receptor expression in mesenteric arteries. In contrast, similar levels of endothelial KCa channel expression were observed, and SKA-31 evoked vasodilation was comparable in vascular preparations from both strains. Addition of a low concentration of SKA-31 (i.e., 0.2–0.3 μM) failed to augment bradykinin-induced vasodilation in arteries from SHRs. However, responses to acetylcholine were enhanced. Surprisingly, acute bolus administration of SKA-31 in vivo (30 mg/kg, i.p. injection) modestly elevated MAP compared with vehicle injection. In summary, pharmacological targeting of endothelial KCa channels in SHRs did not readily reverse endothelial dysfunction in situ, or lower MAP in vivo. SHRs thus appear to be less responsive to endothelial KCa channel activators, which may be related to their vascular pathology.
Collapse
Affiliation(s)
- Rayan Khaddaj Mallat
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Cini Mathew John
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Dylan J Kendrick
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Andrew P Braun
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
6
|
Chen H, Vanhoutte PM, Leung SWS. Acute activation of endothelial AMPK surprisingly inhibits endothelium-dependent hyperpolarization-like relaxations in rat mesenteric arteries. Br J Pharmacol 2019; 176:2905-2921. [PMID: 31116877 DOI: 10.1111/bph.14716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelium-dependent hyperpolarizations (EDHs) contribute to the regulation of peripheral resistance. They are initiated through opening of endothelial calcium-activated potassium channels (KCa ); the potassium ions released then diffuse to the underlying smooth muscle cells, causing hyperpolarization and thus relaxation. The present study aimed to examine whether or not AMPK modulates EDH-like relaxations in rat mesenteric arteries. EXPERIMENTAL APPROACH Arterial rings were isolated for isometric tension recording. AMPK activity and protein level were measured by ELISA and western blotting respectively. KEY RESULTS The AMPK activator, AICAR, reduced ACh-induced EDH-like relaxations and increased AMPK activity in preparations with endothelium; these responses were prevented by compound C, an AMPK inhibitor. AICAR inhibited relaxations induced by SKA-31 (opener of endothelial KCa ) but did not affect potassium-induced, hyperpolarization-attributable relaxations or increase AMPK activity in preparations without endothelium. A769662, another AMPK activator, not only caused a similar inhibition of relaxations to ACh and SKA-31 in preparations with endothelium but also inhibited hyperpolarization-attributable relaxations and augmented AMPK activity in rings without endothelium. Protein levels of total AMPKα, AMPKα1, or AMPKβ1/2 were comparable between preparations with and without endothelium. CONCLUSIONS AND IMPLICATIONS Activation of endothelial AMPK, by either AICAR or A769662, acutely inhibits EDH-like relaxations of rat mesenteric arteries. Furthermore, A769662 inhibits signalling downstream of smooth muscle hyperpolarization. In view of the major blunting effect of AMPK activation on EDH-like relaxations, caution should be applied when administering therapeutic agents that activate AMPK in patients with endothelial dysfunction characterized by reduced production and/or bioavailability of NO.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
7
|
Boudaka A, Al-Suleimani M, Al-Lawati I, Baomar H, Al-Siyabi S, Zadjali F. Downregulation of endothelial transient receptor potential vanilloid type 4 channel underlines impaired endothelial nitric oxide-mediated relaxation in the mesenteric arteries of hypertensive rats. Physiol Res 2019; 68:219-231. [PMID: 30628831 DOI: 10.33549/physiolres.933952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The endothelium contributes to the maintenance of vasodilator tone by releasing endothelium-derived relaxing factors, including nitric oxide (NO). In hypertension, endothelial nitric oxide synthase (eNOS) produces less NO and could be one of the contributing factors to the increased peripheral vascular resistance. Agonist-induced Ca(2+) entry is essential for the activation of eNOS. The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca(2+)-permeant cation channel, is expressed in the endothelial cells and involved in the regulation of vascular tone. The present study aimed to investigate the role of TRPV4 channel in endothelium-dependent NO-mediated relaxation of the resistance artery in hypertensive rats. Using a wire myograph, relaxation response to the TRPV4 activator, 4alpha-phorbol-12,13-didecanoate (4alphaPDD) was assessed in mesenteric arteries obtained from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs). Compared to WKY, SHR demonstrated a significantly attenuated 4alphaPDD-induced endothelium-dependent NO-mediated relaxation. Immunohistochemical analysis revealed positive staining for TRPV4 in the endothelium of mesenteric artery sections in both WKY and SHR. Furthermore, TRPV4 mRNA and protein expressions in SHR were significantly lower than their expression levels in WKY rats. We conclude that 4alphaPDD-induced endothelium-dependent NO-mediated vasorelaxation is reduced in SHR and downregulation of TRPV4 could be one of the contributing mechanisms.
Collapse
Affiliation(s)
- A Boudaka
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Sultanate of Oman.
| | | | | | | | | | | |
Collapse
|
8
|
Morgan RG, Walker AE, Trott DW, Machin DR, Henson GD, Reihl KD, Cawthon RM, Denchi EL, Liu Y, Bloom SI, Phuong TT, Richardson RS, Lesniewski LA, Donato AJ. Induced Trf2 deletion leads to aging vascular phenotype in mice associated with arterial telomere uncapping, senescence signaling, and oxidative stress. J Mol Cell Cardiol 2018; 127:74-82. [PMID: 30502348 DOI: 10.1016/j.yjmcc.2018.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Age-related vascular dysfunction in large elastic and resistance arteries is associated with reductions in microvascular perfusion and elevations in blood pressure. Recent evidence indicates that telomere uncapping-induced senescence in vascular cells may be an important source of oxidative stress and vascular dysfunction in aging, but the causal relationship between these processes has yet to be elucidated. To test this important unexplored hypothesis, we measured arterial senescence signaling and oxidative stress, carotid and mesenteric artery endothelium-dependent vasodilatory capacity, markers of mesenteric microvascular perfusion and endothelial glycocalyx deterioration, and blood pressure in a novel mouse model of Cre-inducible whole body Trf2 deletion and telomere uncapping. Trf2 deletion led to a 320% increase in arterial senescence signaling (P < .05). There was a concurrent 29% and 22% reduction in peak endothelium-dependent vasodilation in carotid and mesenteric arteries, respectively, as well as a 63% reduction in mesenteric microvascular endothelial glycocalyx thickness (all P ≤ .01). Mesenteric microvascular perfusion was reduced by 8% and systolic blood pressure was increased by 9% following Trf2 deletion (both P < .05). Trf2 deletion also led to a pro-oxidative arterial phenotype characterized by increased in NADPH oxidase gene expression; a 210% increase in superoxide levels that was partly dependent on NADPH oxidase activity; and an oxidative stress mediated reduction in carotid artery vasodilation (all P ≤ .05). Collectively, our findings demonstrate that induced Trf2 deletion leads to telomere uncapping, increased senescence signaling, and oxidative stress mediated functional impairments in the vasculature similar to those seen in human aging.
Collapse
Affiliation(s)
- R Garrett Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ashley E Walker
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Daniel W Trott
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Daniel R Machin
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Grant D Henson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Kelly D Reihl
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Richard M Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Eros L Denchi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Yu Liu
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Samuel I Bloom
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tam T Phuong
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Endothelial modulation of a nitric oxide donor complex-induced relaxation in normotensive and spontaneously hypertensive rats. Life Sci 2018; 201:130-140. [DOI: 10.1016/j.lfs.2018.03.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
|
10
|
Goto K, Ohtsubo T, Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int J Mol Sci 2018; 19:E315. [PMID: 29361737 PMCID: PMC5796258 DOI: 10.3390/ijms19010315] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general consensus that the opening of small- and intermediate-conductance Ca2+-activated K⁺ channels (SKCa and IKCa) is the initial mechanistic step for the generation of EDH. In animal models and humans, EDH and EDH-mediated relaxations are impaired during hypertension, and anti-hypertensive treatments restore such impairments. However, the underlying mechanisms of reduced EDH and its improvement by lowering blood pressure are poorly understood. Emerging evidence suggests that alterations of endothelial ion channels such as SKCa channels, inward rectifier K⁺ channels, Ca2+-activated Cl- channels, and transient receptor potential vanilloid type 4 channels contribute to the impaired EDH during hypertension. In this review, we attempt to summarize the accumulating evidence regarding the pathophysiological role of endothelial ion channels, focusing on their relationship with EDH during hypertension.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
11
|
Seki T, Goto K, Kansui Y, Ohtsubo T, Matsumura K, Kitazono T. Angiotensin II Receptor-Neprilysin Inhibitor Sacubitril/Valsartan Improves Endothelial Dysfunction in Spontaneously Hypertensive Rats. J Am Heart Assoc 2017; 6:e006617. [PMID: 29042424 PMCID: PMC5721864 DOI: 10.1161/jaha.117.006617] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have previously demonstrated that antihypertensive treatment with renin-angiotensin system inhibitors restores the impaired endothelium-dependent hyperpolarization (EDH)-mediated responses in spontaneously hypertensive rats (SHRs). Herein, we investigated whether the angiotensin II receptor-neprilysin inhibitor sacubitril/valsartan (LCZ696) would improve reduced EDH-mediated responses and whether LCZ696 would exert additional effects on endothelium-dependent and endothelium-independent vasorelaxation compared with an angiotensin II type 1 receptor blocker alone during hypertension. METHODS AND RESULTS SHRs were treated for 3 months with either LCZ696 or valsartan, from the age of 8 to 11 months. Age-matched, untreated SHRs and Wistar-Kyoto rats served as controls. Membrane potentials and contractile responses were recorded from the isolated superior mesenteric arteries. Acetylcholine-induced, EDH-mediated responses were impaired in untreated SHRs compared with Wistar-Kyoto rats. EDH-mediated responses were similarly improved in the LCZ696- and valsartan-treated SHRs. No difference was observed in acetylcholine-induced, nitric oxide-mediated relaxations among the 4 groups. Endothelium-independent relaxations in response to a nitric oxide donor, sodium nitroprusside, and those to levcromakalim, an ATP-sensitive K+-channel opener, were similar among the 4 groups; however, the sensitivities to levcromakalim were significantly higher in both LCZ696- and valsartan-treated SHRs. CONCLUSIONS LCZ696 appears to be as effective as valsartan in improving the impaired EDH-mediated responses during hypertension. LCZ696 and valsartan exert similar beneficial effects on endothelium-independent relaxation via enhanced sensitivity of the ATP-sensitive K+ channel. However, the dual blockade of renin-angiotensin system and neutral endopeptidase with LCZ696 does not appear to provide additional benefit over valsartan alone on vasomotor function in mesenteric arteries of SHRs.
Collapse
Affiliation(s)
- Takunori Seki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuo Kansui
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Matsumura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Yang X, Orgah J, Wang D, Fan G, Jingyang H, Han J, Qin G, Gao X, Zhu Y. Danhong injection reduces vascular remodeling and up-regulates the Kallikrein-kinin system in spontaneously hypertensive rats. Sci Rep 2017; 7:4308. [PMID: 28655904 PMCID: PMC5487322 DOI: 10.1038/s41598-017-04661-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
Abstract
Although Danhong injection (DHI) is one of the most prescribed cardiovascular medicines in China, its therapeutic indications and mechanisms remain partially defined. We now identify molecular targets of DHI in resistance vasculatures and demonstrate its role in vascular function and blood pressure (BP) regulation. BP was determined in DHI, Losartan, and placebo- treated Spontaneously Hypertensive Rats (SHR) by both noninvasive and invasive measurements. Vasorelaxation was examined both in conduit and resistance vasculature by ex vivo aortic rings. Microarray analysis was performed and gene expression changes were verified by RT-qPCR and ELISA. Diastolic, systolic and mean BPs were significantly lower in DHI-treated SHR than controls by both tail-cuff and invasive BP measurements. In ex vivo rings, aortic and mesenteric vessels from SHR treated with DHI exhibited significantly greater acetylcholine-mediated relaxation. Among the 282 genes that are differentially expressed in microarray analysis, DHI treatment up-regulated the expression of kallikrein and plasma kallikrein B genes. DHI also significantly increased serum kallikrein content in SHR. Treatment with DHI significantly increased the ratio of aortic lumen to outer diameter. Therefore, the reduction of vascular remodeling and the up-regulation of Kallikrein-kinin system contribute, at least in part, to the antihypertensive effect of DHI in SHR.
Collapse
Affiliation(s)
- Xiaohu Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, P. R. China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, P. R. China.,Department of Pharmacy, Zhejiang Hospital, 12 Lingyin Road, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
| | - John Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, P. R. China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, P. R. China
| | - Dandan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, P. R. China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, P. R. China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, P. R. China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, P. R. China
| | - Hu Jingyang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, P. R. China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, P. R. China
| | - Jihong Han
- College of Life Sciences, Nankai University, Tianjin, 300193, P. R. China
| | - Gangjian Qin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, P. R. China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, P. R. China.,Feinberg Cardiovascular Research Institute, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, P. R. China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, P. R. China. .,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, P. R. China. .,Molecular Cardiology Research Institute, Tufts Medical Center, 750 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
13
|
Leung SWS, Vanhoutte PM. Endothelium-dependent hyperpolarization: age, gender and blood pressure, do they matter? Acta Physiol (Oxf) 2017; 219:108-123. [PMID: 26548576 DOI: 10.1111/apha.12628] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Under physiological conditions, the endothelium generates vasodilator signals [prostacyclin, nitric oxide NO and endothelium-dependent hyperpolarization (EDH)], for the regulation of vascular tone. The relative importance of these two signals depends on the diameter of the blood vessels: as the diameter of the arteries decreases, the contribution of EDH to the regulation of vascular tone increases. The mechanism involved in EDH varies with species and blood vessel types; nevertheless, activation of endothelial intermediate- and small-conductance calcium-activated potassium channels (IKCa and SKCa , respectively) is characteristic of the EDH pathway. IKCa - and SKCa -mediated EDH are reduced with endothelial dysfunction, which develops with ageing and hypertension, and is less pronounced in female than in age-matched male until after menopause. Impaired EDH-mediated relaxation is related to a reduced involvement of SKCa , so that the response becomes more dependent on IKCa . The latter depends on the activation of adenosine monophosphate-activated protein kinase (AMPK) and silent information regulator T1 (SIRT1), proteins associated with the process of cellular senescence and vascular signalling in response to the female hormone. An understanding of the role of AMPK and/or SIRT1 in EDH-like responses may help identifying effective pharmacological strategies to prevent the development of vascular complications of different aetiologies.
Collapse
Affiliation(s)
- S. W. S. Leung
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| | - P. M. Vanhoutte
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| |
Collapse
|
14
|
Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function. J Hypertens 2016; 34:1556-69. [DOI: 10.1097/hjh.0000000000000943] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
|
16
|
Little R, Cartwright EJ, Neyses L, Austin C. Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension. Pharmacol Ther 2016; 159:23-34. [PMID: 26820758 DOI: 10.1016/j.pharmthera.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The incidence of hypertension, the major modifiable risk factor for cardiovascular disease, is increasing. Thus, there is a pressing need for the development of new and more effective strategies to prevent and treat hypertension. Development of these relies on a continued evolution of our understanding of the mechanisms which control blood pressure (BP). Resistance arteries are important in the regulation of total peripheral resistance and BP; changes in their structure and function are strongly associated with hypertension. Anti-hypertensives which both reduce BP and reverse changes in resistance arterial structure reduce cardiovascular risk more than therapies which reduce BP alone. Hence, identification of novel potential vascular targets which modify BP is important. Hypertension is a multifactorial disorder which may include a genetic component. Genome wide association studies have identified ATP2B1, encoding the calcium pump plasma membrane calcium ATPase 1 (PMCA1), as having a strong association with BP and hypertension. Knockdown or reduced PMCA1 expression in mice has confirmed a physiological role for PMCA1 in BP and resistance arterial regulation. Altered expression or inhibition of PMCA4 has also been shown to modulate these parameters. The mechanisms whereby PMCA1 and 4 can modulate vascular function remain to be fully elucidated but may involve regulation of intracellular calcium homeostasis and/or comprise a structural role. However, clear physiological links between PMCA and BP, coupled with experimental studies directly linking PMCA1 and 4 to changes in BP and arterial function, suggest that they may be important targets for the development of new pharmacological modulators of BP.
Collapse
Affiliation(s)
- Robert Little
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | | | - Ludwig Neyses
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | - Clare Austin
- Faculty of Health and Social Care, Edge Hill University, UK.
| |
Collapse
|
17
|
Quek KJ, Boyd R, Ameer OZ, Zangerl B, Butlin M, Murphy TV, Avolio AP, Phillips JK. Progressive vascular remodelling, endothelial dysfunction and stiffness in mesenteric resistance arteries in a rodent model of chronic kidney disease. Vascul Pharmacol 2016; 81:42-52. [PMID: 26771067 DOI: 10.1016/j.vph.2015.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 12/25/2022]
Abstract
Chronic kidney disease (CKD) and hypertension are co-morbid conditions both associated with altered resistance artery structure, biomechanics and function. We examined these characteristics in mesenteric artery together with renal function and systolic blood pressure (SBP) changes in the Lewis polycystic kidney (LPK) rat model of CKD. Animals were studied at early (6-weeks), intermediate (12-weeks), and late (18-weeks) time-points (n=21), relative to age-matched Lewis controls (n=29). At 12 and 18-weeks, LPK arteries exhibited eutrophic and hypertrophic inward remodelling characterised by thickened medial smooth muscle, decreased lumen diameter, and unchanged or increased media cross-sectional area, respectively. At these later time points, endothelium-dependent vasorelaxation was also compromised, associated with impaired endothelium-dependent hyperpolarisation and reduced nitric oxide synthase activity. Stiffness, elastic-modulus/stress slopes and collagen/elastin ratios were increased in 6 and 18-week-old-LPK, in contrast to greater arterial compliance at 12weeks. Multiple linear regression analysis highlighted SBP as the main predictor of wall-lumen ratio (r=0.536, P<0.001 n=46 pairs). Concentration-response curves revealed increased sensitivity to phenylephrine but not potassium chloride in 18-week-LPK. Our results indicate that impairment in LPK resistance vasculature is evident at 6weeks, and worsens with hypertension and progression of renal disease.
Collapse
Affiliation(s)
- K J Quek
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - R Boyd
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - O Z Ameer
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - B Zangerl
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; Centre for Eye Health, University of New South Wales, Sydney, Australia.
| | - M Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - T V Murphy
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | - A P Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - J K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
18
|
Moreira MCDS, Pinto ISDJ, Mourão AA, Fajemiroye JO, Colombari E, Reis ÂADS, Freiria-Oliveira AH, Ferreira-Neto ML, Pedrino GR. Does the sympathetic nervous system contribute to the pathophysiology of metabolic syndrome? Front Physiol 2015; 6:234. [PMID: 26379553 PMCID: PMC4548210 DOI: 10.3389/fphys.2015.00234] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome (MS), formally known as syndrome X, is a clustering of several risk factors such as obesity, hypertension, insulin resistance, and dislypidemia which could lead to the development of diabetes and cardiovascular diseases (CVD). The frequent changes in the definition and diagnostic criteria of MS are indications of the controversy and the challenges surrounding the understanding of this syndrome among researchers. Obesity and insulin resistance are leading risk factors of MS. Moreover, obesity and hypertension are closely associated to the increase and aggravation of oxidative stress. The recommended treatment of MS frequently involves change of lifestyles to prevent weight gain. MS is not only an important screening tool for the identification of individuals at high risk of CVD and diabetes but also an indicator of suitable treatment. As sympathetic disturbances and oxidative stress are often associated with obesity and hypertension, the present review summarizes the role of sympathetic nervous system and oxidative stress in the MS.
Collapse
Affiliation(s)
- Marina C Dos Santos Moreira
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Izabella S de Jesus Pinto
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Aline A Mourão
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - James O Fajemiroye
- Laboratory of Pharmacology of Natural Products, Federal University of Goiás Goiânia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista Araraquara, Brazil
| | - Ângela A da Silva Reis
- Department of Biochemistry and Molecular Biology, Federal University of Goiás Goiânia, Brazil
| | - André H Freiria-Oliveira
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| | - Marcos L Ferreira-Neto
- Laboratory of Experimental Physiology, Faculty of Physical Education, Federal University of Uberlândia Uberlândia, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goiás Goiânia, Brazil
| |
Collapse
|
19
|
Palmitoylethanolamide treatment reduces blood pressure in spontaneously hypertensive rats: involvement of cytochrome p450-derived eicosanoids and renin angiotensin system. PLoS One 2015; 10:e0123602. [PMID: 25951330 PMCID: PMC4423982 DOI: 10.1371/journal.pone.0123602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Palmitoylethanolamide (PEA), a peroxisome proliferator-activated receptor-α agonist, has been demonstrated to reduce blood pressure and kidney damage secondary to hypertension in spontaneously hypertensive rat (SHR). Currently, no information is available concerning the putative effect of PEA on modulating vascular tone. Here, we investigate the mechanisms underpinning PEA blood pressure lowering effect, exploring the contribution of epoxyeicosatrienoic acids, CYP-dependent arachidonic acid metabolites, as endothelium-derived hyperpolarizing factors (EDHF), and renin angiotensin system (RAS) modulation. To achieve this aim SHR and Wistar-Kyoto rats were treated with PEA (30 mg/kg/day) for five weeks. Functional evaluations on mesenteric bed were performed to analyze EDHF-mediated vasodilation. Moreover, mesenteric bed and carotid were harvested to measure CYP2C23 and CYP2J2, the key isoenzymes in the formation of epoxyeicosatrienoic acids, and the soluble epoxide hydrolase, which is responsible for their degradation in the corresponding diols. Effect of PEA on RAS modulation was investigated by analyzing angiotensin converting enzyme and angiotensin receptor 1 expression. Here, we showed that EDHF-mediated dilation in response to acetylcholine was increased in mesenteric beds of PEA-treated SHR. Western blot analysis revealed that the increase in CYP2C23 and CYP2J2 observed in SHR was significantly attenuated in mesenteric beds of PEA-treated SHR, but unchanged in the carotids. Interestingly, in both vascular tissues, PEA significantly decreased the soluble epoxide hydrolase protein level, accompanied by a reduced serum concentration of its metabolite 14-15 dihydroxyeicosatrienoic acid, implying a reduction in epoxyeicosatrienoic acid hydrolisis. Moreover, PEA treatment down-regulated angiotensin receptor 1 and angiotensin converting enzyme expression, indicating a reduction in angiotensin II-mediated effects. Consistently, a damping of the activation of angiotensin receptor 1 underlying pathways in mesenteric beds was shown in basal conditions in PEA-treated SHR. In conclusion, our data demonstrate the involvement of epoxyeicosatrienoic acids and renin angiotensin system in the blood pressure lowering effect of PEA.
Collapse
|
20
|
Kang KT. Endothelium-derived Relaxing Factors of Small Resistance Arteries in Hypertension. Toxicol Res 2014; 30:141-8. [PMID: 25343007 PMCID: PMC4206740 DOI: 10.5487/tr.2014.30.3.141] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Abstract
Endothelium-derived relaxing factors (EDRFs), including nitric oxide (NO), prostacyclin (PGI2), and endothelium-derived hyperpolarizing factor (EDHF), play pivotal roles in regulating vascular tone. Reduced EDRFs cause impaired endothelium-dependent vasorelaxation, or endothelial dysfunction. Impaired endothelium-dependent vasorelaxation in response to acetylcholine (ACh) is consistently observed in conduit vessels in human patients and experimental animal models of hypertension. Because small resistance arteries are known to produce more than one type of EDRF, the mechanism(s) mediating endothelium-dependent vasorelaxation in small resistance arteries may be different from that observed in conduit vessels under hypertensive conditions, where vasorelaxation is mainly dependent on NO. EDHF has been described as one of the principal mediators of endothelium-dependent vasorelaxation in small resistance arteries in normotensive animals. Furthermore, EDHF appears to become the predominant endothelium-dependent vasorelaxation pathway when the endothelial NO synthase (NOS3)/NO pathway is absent, as in NOS3-knockout mice, whereas some studies have shown that the EDHF pathway is dysfunctional in experimental models of hypertension. This article reviews our current knowledge regarding EDRFs in small arteries under normotensive and hypertensive conditions.
Collapse
Affiliation(s)
- Kyu-Tae Kang
- College of Pharmacy, Duksung Women's University, Seoul, Korea ; Innovative Drug Center, Duksung Women's University, Seoul, Korea
| |
Collapse
|
21
|
Albarwani S, Al-Siyabi S, Al-Husseini I, Al-Ismail A, Al-Lawati I, Al-Bahrani I, Tanira MO. Lisinopril alters contribution of nitric oxide and K(Ca) channels to vasodilatation in small mesenteric arteries of spontaneously hypertensive rats. Physiol Res 2014; 64:39-49. [PMID: 25194131 DOI: 10.33549/physiolres.932780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To investigate lisinopril effect on the contribution of nitric oxide (NO) and K(Ca) channels to acetylcholine (ACh)-induced relaxation in isolated mesenteric arteries of spontaneously hypertensive rats (SHRs). Third branch mesenteric arteries isolated from lisinopril treated SHR rats (20 mg/kg/day for ten weeks, SHR-T) or untreated (SHR-UT) or normotensive WKY rats were mounted on tension myograph and ACh concentration-response curves were obtained. Westernblotting of eNOS and K(Ca) channels was performed. ACh-induced relaxations were similar in all groups while L-NMMA and indomethacin caused significant rightward shift only in SHR-T group. Apamin and TRAM-34 (SK(Ca) and IK(Ca) channels blockers, respectively) significantly attenuated ACh-induced maximal relaxation by similar magnitude in vessels from all three groups. In the presence of L-NMMA, indomethacin, apamin and TRAM-34 further attenuated ACh-induced relaxation only in SHR-T. Furthermore, lisinopril treatment increased expression of eNOS, SK(Ca) and BK(Ca) proteins. Lisinopril treatment increased expression of eNOS, SK(Ca), BK(Ca) channel proteins and increased the contribution of NO to ACh-mediated relaxation. This increased role of NO was apparent only when EDHF component was blocked by inhibiting SK(Ca) and IK(Ca) channels. Such may suggest that in mesenteric arteries, non-EDHF component functions act as a reserve system to provide compensatory vasodilatation if (and when) hyperpolarization that is mediated by SK(Ca) and IK(Ca) channels is reduced.
Collapse
Affiliation(s)
- S Albarwani
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman.
| | | | | | | | | | | | | |
Collapse
|
22
|
Waeckel L, Bertin F, Clavreul N, Damery T, Köhler R, Paysant J, Sansilvestri-Morel P, Simonet S, Vayssettes-Courchay C, Wulff H, Verbeuren TJ, Félétou M. Preserved regulation of renal perfusion pressure by small and intermediate conductance KCa channels in hypertensive mice with or without renal failure. Pflugers Arch 2014; 467:817-31. [DOI: 10.1007/s00424-014-1542-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022]
|
23
|
Yang C, Yang J, Xu X, Yan S, Pan S, Pan X, Zhang C, Leung GP. Vasodilatory effect of 14,15-epoxyeicosatrienoic acid on mesenteric arteries in hypertensive and aged rats. Prostaglandins Other Lipid Mediat 2014; 112:1-8. [PMID: 24880050 DOI: 10.1016/j.prostaglandins.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 01/22/2023]
Abstract
The objective of this study was to investigate the 14,15-epoxyeicosatrienoic acid (14,15-EET)-induced vasodilatations as well as the underlying signaling pathways in rat mesenteric arteries from young, adult and old normotensive (WKY) and hypertensive rats. Protein expressions for prostaglandin EP(1-4) receptors, large conductance Ca(2+)-activated K(+) (BK(Ca)) channels, and adenylate cyclase (AC) were determined together with 14,15-EET-induced vasodilatations in primary- versus secondary-branches of the mesenteric artery. Responses to 14,15-EET were greater in the smaller secondary- versus primary-branches (and also more sensitive with lower EC50) and were reduced in vessels from old (80 weeks) rats as well as from vessels from the spontaneous hypertensive rats (SHR). Regardless of age or hypertension responses to 14,15-EET were inhibited by the EP2 antagonist AH6809, BK(Ca) channel inhibitor iberiotoxin, or 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) pathway antagonists. These data indicate 14,15-EET-induced vasodilatation is mediated via the activation of EP2 receptors and opening of BK(Ca) channels. The expressions of the EP2 receptor and AC were markedly reduced in vessels from SHR as well as old rats, whereas BK(Ca) expression was reduced in old WKY and SHR, but not adult SHR. Furthermore, expression of the p53 protein, an indicator of cell senescence and apoptosis, was elevated in adult and old SHR as well as in old WKY. In summary, attenuated 14,15-EET-induced vasodilatation in mesenteric arteries from old normotensive WKY as well as adult and old SHR is associated with reduced expression of EP2 receptors and AC.
Collapse
Affiliation(s)
- Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Jinyan Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Xiangting Xu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Sanmei Yan
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Shitian Pan
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Xiaoxia Pan
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Changhong Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - George Pakheng Leung
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
24
|
Seo EY, Kim HJ, Zhao ZH, Jang JH, Jin CZ, Yoo HY, Zhang YH, Kim SJ. Low K+ current in arterial myocytes with impaired K+-vasodilation and its recovery by exercise in hypertensive rats. Pflugers Arch 2014; 466:2101-11. [DOI: 10.1007/s00424-014-1473-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
25
|
Abstract
Endothelium-derived hyperpolarizing factors (EDHFs) regulate vascular tone by contributing to the vasorelaxations to shear stress and endothelial agonists such as bradykinin and acetylcholine. 15(S)-Hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA) and 11(R),12(S),15(S)-trihydroxyeicosatrienoic acid (11,12,15-THETA) are endothelial metabolites of the 15-lipoxygenase (15-LO) pathway of arachidonic acid metabolism and are EDHFs. 11,12,15-THETA activates small conductance, calcium-activated potassium channels on smooth muscle cells causing membrane hyperpolarization, and relaxation. Expression levels of 15-LO in the endothelium regulate the activity of the 15-LO/15-H-11,12-EETA/11,12,15-THETA pathway and its contribution to vascular tone. Regulation of its expression is by transcriptional, translational, and epigenetic mechanisms. Hypoxia, hypercholesterolemia, atherosclerosis, anemia, estrogen, interleukins, and possibly other hormones increase 15-LO expression. An increase in 15-LO results in increased synthesis of 15-H-11,12-EETA and 11,12,15-THETA, increased membrane hyperpolarization, and enhanced contribution to relaxation by endothelial agonists. Thus, the 15-LO pathway represents the first example of an inducible EDHF. In addition to 15-LO metabolites, a number of chemicals have been identified as EDHFs and their contributions to vascular tone vary with species and vascular bed. The reason for multiple EDHFs has evaded explanation. However, EDHF functioning as constitutive EDHFs or inducible EDHFs may explain the need for chemically and biochemically distinct pathways for EDHF activity and the variation in EDHFs between species and vascular beds. This new EDHF classification provides a framework for understanding EDHF activity in physiological and pathological conditions.
Collapse
|
26
|
|
27
|
Simonet S, Isabelle M, Bousquenaud M, Clavreul N, Félétou M, Vayssettes-Courchay C, Verbeuren TJ. KCa 3.1 channels maintain endothelium-dependent vasodilatation in isolated perfused kidneys of spontaneously hypertensive rats after chronic inhibition of NOS. Br J Pharmacol 2013; 167:854-67. [PMID: 22646737 DOI: 10.1111/j.1476-5381.2012.02062.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The purpose of the study was to investigate renal endothelium-dependent vasodilatation in a model of severe hypertension associated with kidney injury. EXPERIMENTAL APPROACH Changes in perfusion pressure were measured in isolated, perfused kidneys taken from 18-week-old Wistar-Kyoto rat (WKY), spontaneously hypertensive rats (SHR) and SHR treated for 2 weeks with N(ω) -nitro-L-arginine methyl ester in the drinking water (L-NAME-treated SHR, 6 mg·kg(-1) ·day(-1) ). KEY RESULTS Acetylcholine caused similar dose-dependent renal dilatation in the three groups. In vitro administration of indomethacin did not alter the vasodilatation, while the addition of N(w) -nitro-L-arginine (L-NA) produced a differential inhibition of the vasodilatation, (inhibition in WKY > SHR > L-NAME-treated SHR). Further addition of ODQ, an inhibitor of soluble guanylyl cyclase, abolished the responses to sodium nitroprusside but did not affect the vasodilatation to acetylcholine. However, the addition of TRAM-34 (or charybdotoxin) inhibitors of Ca(2+) -activated K(+) channels of intermediate conductance (K(Ca) 3.1), blocked the vasodilatation to acetylcholine, while apamin, an inhibitor of Ca(2+) -activated K(+) channels of small conductance (K(Ca) 2.3), was ineffective. Dilatation induced by an opener of K(Ca) 3.1/K(Ca) 2.3 channels, NS-309, was also blocked by TRAM-34, but not by apamin. The magnitude and duration of NS-309-induced vasodilatation and the renal expression of mRNA for K(Ca) 3.1, but not K(Ca) 2.3, channels followed the same ranking order (WKY < SHR < L-NAME-treated SHR). CONCLUSIONS AND IMPLICATIONS In SHR kidneys, an EDHF-mediated response, involving activation of K(Ca) 3.1 channels, contributed to the mechanism of endothelium-dependent vasodilatation. In kidneys from L-NAME-treated SHR, up-regulation of this pathway fully compensated for the decrease in NO availability.
Collapse
|
28
|
Oniki H, Goto K, Fujii K, Kansui Y, Murakami N, Ohtsubo T, Matsumura K, Kitazono T. Effects of the superoxide dismutase mimetic tempol on impaired endothelium-dependent and endothelium-independent relaxations in type II diabetic rats. Clin Exp Hypertens 2012; 35:112-9. [PMID: 22783963 DOI: 10.3109/10641963.2012.702829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF)-mediated hyperpolarization and relaxation, and endothelium-independent relaxations to the nitric oxide donor sodium nitroprusside and the adenosine 5'-triphosphate (ATP)-sensitive K(+)-channel opener levcromakalim were both impaired in mesenteric arteries of type II diabetic Goto-Kakizaki rats. The treatment with the superoxide dismutase mimetic tempol or its combination with the angiotensin II type 1 receptor blocker candesartan failed to improve EDHF-mediated responses, although both treatments partially improved endothelium-independent relaxations. These findings suggest that increased oxidative stress may in part account for the impaired endothelium-independent relaxations in diabetes, while it does not play a major role in the impaired EDHF-mediated responses.
Collapse
Affiliation(s)
- Hideyuki Oniki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Goto K, Kansui Y, Oniki H, Ohtsubo T, Matsumura K, Kitazono T. Upregulation of endothelium-derived hyperpolarizing factor compensates for the loss of nitric oxide in mesenteric arteries of dahl salt-sensitive hypertensive rats. Hypertens Res 2012; 35:849-54. [DOI: 10.1038/hr.2012.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Kapela A, Nagaraja S, Parikh J, Tsoukias NM. Modeling Ca2+ signaling in the microcirculation: intercellular communication and vasoreactivity. Crit Rev Biomed Eng 2012; 39:435-60. [PMID: 22196162 DOI: 10.1615/critrevbiomedeng.v39.i5.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A network of intracellular signaling pathways and complex intercellular interactions regulate calcium mobilization in vascular cells, arteriolar tone, and blood flow. Different endothelium-derived vasoreactive factors have been identified and the importance of myoendothelial communication in vasoreactivity is now well appreciated. The ability of many vascular networks to conduct signals upstream also is established. This phenomenon is critical for both short-term changes in blood perfusion as well as long-term adaptations of a vascular network. In addition, in a phenomenon termed vasomotion, arterioles often exhibit spontaneous oscillations in diameter. This is thought to improve tissue oxygenation and enhance blood flow. Experimentation has begun to reveal important aspects of the regulatory machinery and the significance of these phenomena for the regulation of local perfusion and oxygenation. Mathematical modeling can assist in elucidating the complex signaling mechanisms that participate in these phenomena. This review highlights some of the important experimental studies and relevant mathematical models that provide the current understanding of these mechanisms in vasoreactivity.
Collapse
Affiliation(s)
- Adam Kapela
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
31
|
Aqueous-methanolic extract of sweet flag (Acorus calamus) possesses cardiac depressant and endothelial-derived hyperpolarizing factor-mediated coronary vasodilator effects. J Nat Med 2011; 66:119-26. [DOI: 10.1007/s11418-011-0561-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/14/2011] [Indexed: 12/21/2022]
|
32
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
|
34
|
Garland CJ. Compromised vascular endothelial cell SK(Ca) activity: a fundamental aspect of hypertension? Br J Pharmacol 2010; 160:833-5. [PMID: 20590582 DOI: 10.1111/j.1476-5381.2010.00692.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Smooth muscle hyperpolarization originating in the endothelium and commonly referred to as the EDHF (endothelium-derived hyperpolarizing factor) response provides a very significant drive to vasodilatation particularly in small resistance arteries. Together with other endothelium-dependent dilator pathways 'EDHF' hyperpolarization is compromised by cardiovascular disease, including hypertension. However, although attenuated vascular hyperpolarization has been described in animal models of hypertension, the underlying mechanisms are not fully understood. In the current issue of the British Journal of Pharmacology, Weston et al. combine classic pharmacological approaches with electrophysiological and molecular techniques to suggest that attenuated endothelium-dependent hyperpolarization (and as a consequence vasodilatation) reflects major disruption of pathways associated with the activation of endothelial small conductance Ca(2+)-activated K-channels (SK(Ca)) in mesenteric arteries from spontaneously hypertensive rats. In addition to reductions in SK(Ca) and K(IR) proteins, changes in caveolin-1 isomers were also detected, possibly indicating channel realignment within plasmalemmal structures.
Collapse
|
35
|
Weston AH, Porter EL, Harno E, Edwards G. Impairment of endothelial SK(Ca) channels and of downstream hyperpolarizing pathways in mesenteric arteries from spontaneously hypertensive rats. Br J Pharmacol 2010; 160:836-43. [PMID: 20233221 DOI: 10.1111/j.1476-5381.2010.00657.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that endothelium-dependent hyperpolarization of myocytes is reduced in resistance arteries from spontaneously hypertensive rats (SHRs). The aim of the present study was to determine whether this reflects down-regulation of endothelial K(+) channels or their associated pathways. EXPERIMENTAL APPROACH Changes in vascular K(+) channel responses and expression were determined by a combination of membrane potential recordings and Western blotting. KEY RESULTS Endothelium-dependent myocyte hyperpolarizations induced by acetylcholine, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) (opens small- and intermediate-conductance calcium-sensitive K(+) channels, SK(Ca) and IK(Ca), respectively) or cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (SK(Ca) opener) were reduced in mesenteric arteries from SHRs. After blocking SK(Ca) channels with apamin, hyperpolarizations to acetylcholine and NS309 in SHR arteries were similar to those of controls. Hyperpolarization to 5 mM KCl was reduced in SHR arteries due to loss of the Ba(2+)-sensitive, inward-rectifier channel (K(IR)) component; the contribution of ouabain-sensitive, Na(+)/K(+)-ATPases was unaffected. Protein expression of both SK(Ca) and K(IR) channels was reduced in SHR arteries; the caveolin-1 monomer/dimer ratio was increased. CONCLUSIONS AND IMPLICATIONS In SHRs, the distinct pathway that generates endothelium-dependent hyperpolarization in vascular myocyte by activation of IK(Ca) channels and Na(+)/K(+)-ATPases remains intact. The second pathway, initiated by endothelial SK(Ca) channel activation and amplified by K(IR) opening on both endothelial cells and myocytes is compromised in SHRs due to down-regulation of both SK(Ca) and K(IR) and to changes in caveolin-1 oligomers. These impairments in the SK(Ca)-K(IR) pathway shed new light on vascular control mechanisms and on the underlying vascular changes in hypertension.
Collapse
Affiliation(s)
- A H Weston
- Faculty of Life Sciences, Core Technology Facility, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
36
|
Tzemos N, Lim PO, MacDonald TM. Valsartan improves endothelial dysfunction in hypertension: a randomized, double-blind study. Cardiovasc Ther 2009; 27:151-8. [PMID: 19604249 PMCID: PMC2948429 DOI: 10.1111/j.1755-5922.2009.00085.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Endothelial dysfunction can predict cardiac outcomes in hypertension and reversing this abnormality has become an attractive therapeutic objective. We tested the hypothesis that blocking the angiotensin type 1 (AT1) receptor with valsartan in comparison with amlodipine would lead to an improvement in forearm resistance artery endothelial dysfunction. In total, 25 hypertensive subjects (mean age 60 years, SD 8) with a mean daytime ambulatory blood pressure (BP) of 154 (10)/97 (6) mmHg were randomized following a 3-week placebo run-in period to a double-blind, crossover trial of 16-week treatment periods with either valsartan or amlodipine, separated by a 3-week washout period. Intra-arterial infusions of acetylcholine (ACh) and NG-monomethyl-L-arginine (L-NMMA) were used to assess stimulated and basal endothelium-dependent nitric oxide (NO) release, respectively. Coinfusion of ACh and L-NMMA was employed to investigate the existence of an NO-independent vasodilatory pathway. Valsartan and amlodipine each lowered the clinical BP to the same extent (139 [7]/87 [6] and 139 [11]/89 [4] mmHg, respectively). The vasodilatory response to ACh was significantly increased with valsartan (maximal percentage change in forearm blood flow (max. ΔFBF%) 301 [47] vs. 185 [34], mean [SEM]; P < 0.05) as compared with placebo, but remained unchanged with amlodipine. Both valsartan and amlodipine similarly increased the vasoconstrictive response to L-NMMA (max. ΔFBF%–43 [5], −42 [5], respectively, vs. –26 [3] baseline; P < 0.001). The vasodilatory response after coinfusion of ACh and L-NMMA was significantly (P < 0.05) enhanced only with valsartan. Valsartan reserved peripheral endothelial dysfunction through both NO-dependent and -independent pathways, while for the same degree of BP control, amlodipine had only a partial effect on NO bioactivity.
Collapse
Affiliation(s)
- Nikolaos Tzemos
- Hypertension Research Centre, Division of Medicine and Therapeutics, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | | | | |
Collapse
|
37
|
|
38
|
Kansui Y, Goto K, Fujii K, Oniki H, Matsumura K, Iida M. CILOSTAMIDE PRODUCES HYPERPOLARIZATION ASSOCIATED WITH KATPCHANNEL ACTIVATION, BUT DOES NOT AUGMENT ENDOTHELIUM-DERIVED HYPERPOLARIZATION IN RAT MESENTERIC ARTERIES. Clin Exp Pharmacol Physiol 2009; 36:729-33. [DOI: 10.1111/j.1440-1681.2009.05142.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Effects of pomace olive oil-enriched diets on endothelial function of small mesenteric arteries from spontaneously hypertensive rats. Br J Nutr 2009; 102:1435-44. [DOI: 10.1017/s0007114509990754] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pomace olive oil (POM), an olive oil subproduct traditionally used in Spain, is a good source of minor components from the unsaponifiable fraction such as triterpenoids, mainly in the form of oleanolic acid, which induces vascular protection and vasodilatation. Our aim was to evaluate the effects of long-term intake of diets enriched in POM with high concentration in oleanolic acid on endothelial dysfunction associated to hypertension in small mesenteric arteries (SMA) from spontaneously hypertensive rats (SHR). During 12 weeks, rats (six rats per group) were fed either a control 2 % maize oil diet (BD), or high-fat diets containing 15 % refined olive oil (OL), pomace olive oil (POM), or pomace olive oil supplemented in oleanolic acid (POMO; up to 800 parts per million). Endothelial and vascular functions were assessed by relaxing or contracting responses to acetylcholine (ACh) or phenylephrine, respectively. The involvement of endothelium-derived relaxing factors in these responses was evaluated. In contrast to BD, SHR fed high-fat diets showed a biphasic response to ACh related to changes in eicosanoid metabolism. POM enhanced the endothelial function in SMA from SHR by increasing the endothelium-derived hyperpolarising factor (EDHF)-type component, whereas administration of POMO resulted in a similar contribution of NO/EDHF in the endothelial response to ACh. The present study shows that despite the lack of changes in blood pressure, consumption of POM improves endothelial function in SMA from SHR by improving the agonist-mediated EDHF/NO response. Thus, triterpenoids confer a protective role to POM against endothelial dysfunction in hypertension.
Collapse
|
40
|
Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis 2009; 202:330-44. [DOI: 10.1016/j.atherosclerosis.2008.06.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/16/2008] [Accepted: 06/11/2008] [Indexed: 12/20/2022]
|
41
|
Dal-Ros S, Bronner C, Schott C, Kane MO, Chataigneau M, Schini-Kerth VB, Chataigneau T. Angiotensin II-induced hypertension is associated with a selective inhibition of endothelium-derived hyperpolarizing factor-mediated responses in the rat mesenteric artery. J Pharmacol Exp Ther 2009; 328:478-86. [PMID: 18984652 DOI: 10.1124/jpet.108.145326] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Hypertension has been shown to be associated with impaired endothelium-derived hyperpolarizing factor (EDHF)-mediated arterial relaxation and hyperpolarization. Treatments of hypertensive rats with inhibitors of the renin-angiotensin system have been shown to restore both EDHF-mediated responses and the expression of connexins involved in the intercellular transfer of the hyperpolarization in mesenteric arteries. The present study was designed to determine whether chronic treatment of rats with angiotensin II impairs EDHF-mediated responses and the expression of connexins in the mesenteric arterial wall. Male Wistar rats were treated with angiotensin II (0.4 mg/kg/day) for 21 days using osmotic minipumps. Arterial pressure was measured by tail-cuff plethysmography. Contractile responses and membrane potential were measured in isolated mesenteric arteries. The expression of the three connexins (Cxs), Cx37, Cx40, and Cx43, was quantified in segments of mesenteric arteries by immunohistochemistry and quantitative real-time reverse transcriptase-polymerase chain reaction. Angiotensin II administration increased the mean systolic blood pressure. EDHF-mediated relaxation and hyperpolarization to acetylcholine and red wine polyphenols were significantly impaired in mesenteric arteries from angiotensin II-treated rats in comparison with control animals, whereas nitric oxide-mediated relaxation was unaltered. The expression of connexins Cx37, Cx40, and Cx43 was significantly decreased in the mesenteric artery from angiotensin II-treated rats. These findings indicate that angiotensin II-induced hypertension is associated with a selective impairment of EDHF-mediated relaxation and hyperpolarization in the rat mesenteric artery. The inhibition of EDHF-mediated responses is due, at least in part, to a decreased expression of connexins Cx37, Cx40, and Cx43 in the arterial wall.
Collapse
Affiliation(s)
- Stéphanie Dal-Ros
- Département de Pharmacologie et Physicochimie, Unité Mixte de Recherche 7175 Centre National de Recherche Scientifique/Université Louis Pasteur (Strasbourg I), Faculté de Pharmacie 74, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Félétou M, Verbeuren TJ, Vanhoutte PM. Endothelium-dependent contractions in SHR: a tale of prostanoid TP and IP receptors. Br J Pharmacol 2009; 156:563-74. [PMID: 19154435 DOI: 10.1111/j.1476-5381.2008.00060.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the aorta of spontaneously hypertensive rats (SHR), the endothelial dysfunction is due to the release of endothelium-derived contracting factors (EDCFs) that counteract the vasodilator effect of nitric oxide, with no or minor alteration of its production. The endothelium-dependent contractions elicited by acetylcholine (ACh) involve an increase in endothelial [Ca(2+)](i), the production of reactive oxygen species, the activation of endothelial cyclooxygenase-1, the diffusion of EDCF and the subsequent stimulation of smooth muscle cell TP receptors. The EDCFs released by ACh have been identified as PGH(2) and paradoxically prostacyclin. Prostacyclin generally acts as an endothelium-derived vasodilator, which, by stimulating IP receptors, produces hyperpolarization and relaxation of the smooth muscle and inhibits platelet aggregation. In the aorta of SHR and Wistar-Kyoto rats, prostacyclin is the principal metabolite of arachidonic acid released by ACh. However, in SHR aorta, prostacyclin does not produce relaxations but activates the TP receptors on vascular smooth muscle cells and produces contraction. The IP receptor is not functional in the aortic smooth muscle cells of SHR as early as 12 weeks of age, but its activity is not reduced in platelets. Therefore, prostacyclin in the rule protects the vascular wall, but in the SHR aorta it can contribute to endothelial dysfunction. Whether or not prostacyclin plays a detrimental role as an EDCF in other animal models or in human remains to be demonstrated. Nevertheless, because EDCFs converge to activate TP receptors, selective antagonists of this receptor, by preventing endothelium-dependent contractions, curtail the endothelial dysfunction in diseases such as hypertension and diabetes.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France.
| | | | | |
Collapse
|
43
|
Abstract
Endothelial cells can induce contractions of the underlying vascular smooth muscle by generating vasoconstrictor prostanoids (endothelium-dependent contracting factor; EDCF). The endothelial COX-1 isoform of cyclooxygenase appears to play the dominant role in the phenomenon. Its activation requires an increase in intracellular Ca(2+) concentration. The production of EDCF is inhibited acutely and chronically by nitric oxide (NO), and possibly by endothelium-dependent hyperpolarizing factor (EDHF). The main prostanoids involved in endothelium-dependent contractions appear to be endoperoxides (PGH(2)) and prostacyclin, which activate thromboxane-prostanoid (TP) receptors of the vascular smooth muscle cells. Oxygen-derived free radicals can facilitate the production and/or the action of EDCF. Endothelium-dependent contractions are exacerbated by ageing, obesity, hypertension and diabetes, and thus are likely to contribute to the endothelial dysfunction observed in older people and in essential hypertensive patients.
Collapse
Affiliation(s)
- Paul M Vanhoutte
- Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | | |
Collapse
|
44
|
Alvarez de Sotomayor M, Bueno R, Pérez-Guerrero C, Herrera MD. Effect of L-Carnitine and Propionyl- L-Carnitine on Endothelial Function of Small Mesenteric Arteries from SHR. J Vasc Res 2007; 44:354-64. [PMID: 17483601 DOI: 10.1159/000102303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 03/02/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effect of treatment with either 200 mg x kg(-1) of L-carnitine (LC) or propionyl-L-carnitine (PLC) was studied on endothelial dysfunction of small mesenteric arteries (SMA) from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. METHODS Systolic blood pressure (SBP) was measured and endothelial and vascular functions were assessed by the effect of carbachol (CCh) and phenylephrine (Phe). O2- produced by SMA and eNOS expression were evaluated by chemiluminescence and Western blot, respectively. RESULTS Although SBP was not affected, endothelial relaxation increased in both LC- and PLC-treated SHR. Nevertheless, the CCh-induced contraction remained sensitive to indomethacin in these rats. On the contrary, NO participation was increased in all the groups except for LC-treated WKY. Furthermore, high concentrations of Phe produced NO-dependent relaxation of SMA from PLC-treated rats. Both compounds decreased basal and NADPH-stimulated O2- in SHR toward values observed in WKY. Only PLC increased eNOS protein expression in SHR. Neither LC nor PLC affected endothelium-derived hyperpolarizing factor-induced relaxation. CONCLUSIONS LC and its propionate improved endothelial responses of SMA from SHR by decreasing O2- production and thus increasing NO availability. PLC also increased NO synthesis by enhancing eNOS expression.
Collapse
|
45
|
Hilgers RHP, Webb RC. Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol 2007; 292:H2275-84. [PMID: 17209000 DOI: 10.1152/ajpheart.00949.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+-activated K+ channels (KCa), in particular, the small and intermediate KCa (SKCa and IKCa, respectively) channels, are key players in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in small arteries. Hypertension is characterized by an endothelial dysfunction, possibly via reduced EDHF release and/or function. We hypothesize that during angiotensin II (14 days)-induced hypertension (ANG II-14d), the contribution of SKCa and IKCa channels in ACh-induced relaxations is reduced due to decreased expression of SKCa and IKCa channel proteins in rat small mesenteric arteries (MAs). Nitric oxide- and prostacyclin-independent vasorelaxation to ACh was similar in small MAs of sham-operated and ANG II-14d rats. Catalase had no inhibitory effects on these relaxations. The highly selective SKCa channel blocker UCL-1684 almost completely blocked these responses in MAs of sham-operated rats but partially in MAs of ANG II-14d rats. These changes were pressure dependent since UCL-1684 caused a greater inhibition in MAs of 1-day ANG II-treated normotensive rats compared with ANG II-14d rats. Expression levels of both mRNA and protein SK3 were significantly reduced in MAs of ANG II-14d rats. The IKCa channel blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) resulted in comparable reductions in the relaxation responses to ACh in MAs of sham-operated and ANG II-14d rats. Relative mRNA expression levels of IK1 were significantly reduced in MAs of ANG II-14d rats, whereas protein levels of IK1 were not but tended to be lower in MAs of ANG II-14d rats. The findings demonstrate that EDHF-like responses are not compromised in a situation of reduced functional activity and expression of SK3 channels in small MAs of ANG II-induced hypertensive rats. The role of IK1 channels is less clear but might compensate for reduced SK3 activity.
Collapse
Affiliation(s)
- Rob H P Hilgers
- Department of Physiology, Medical College of Georgia, Augusta,. GA, USA.
| | | |
Collapse
|
46
|
Goto K, Edwards FR, Hill CE. Depolarization evoked by acetylcholine in mesenteric arteries of hypertensive rats attenuates endothelium-dependent hyperpolarizing factor. J Hypertens 2007; 25:345-59. [PMID: 17211241 DOI: 10.1097/hjh.0b013e328010d616] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE During blockade of endothelium-dependent hyperpolarizing factor (EDHF), acetylcholine evoked larger and faster depolarization in mesenteric arteries of spontaneously hypertensive rats (SHR) than normotensive Wistar-Kyoto (WKY) rats. We studied the mechanism underlying this response and its role in the attenuation of EDHF. METHODS Electrophysiology, computational modelling and myography were used to study changes in membrane potential and effects on contractility. RESULTS The large acetylcholine-evoked depolarization in SHR was accompanied by contraction, but this was not seen in WKY rats. The depolarization depended on release of intracellular Ca2+ but was unaffected by nonselective cation channel inhibitors, gadolinium, lanthanum or amiloride. The depolarization was significantly reduced by the Ca2+-dependent Cl- channel inhibitors, niflumic acid or flufenamic acid, or alterations in Cl- gradients using bumetanide (Na/K/Cl transporter inhibitor) or external Cl- replacement with isethionate. These drugs altered the time course of EDHF-evoked hyperpolarizations in SHR, making them indistinguishable from those in WKY rats. EDHF-induced relaxation was less sensitive to acetylcholine in SHR than in WKY rats, but this difference was eliminated following artery pretreatment with bumetanide. Computational modelling in which the SHR fast depolarizing response was selectively modulated mimicked physiologically acquired results obtained in SHR and WKY rats during Cl- -channel blockade. CONCLUSIONS Acetylcholine evokes a fast depolarization in SHR but not in WKY rats, mediated by the opening of Ca2+-dependent Cl- channels. The depolarization is responsible for a constriction that reduces EDHF-mediated relaxation. Data suggest that Ca2+-dependent Cl- channels may provide a novel therapeutic target for improvement of endothelial dysfunction during hypertension.
Collapse
Affiliation(s)
- Kenichi Goto
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
47
|
Morton JS, Jackson VM, Daly CJ, McGrath JC. Endothelium Dependent Relaxation in Rabbit Genital Resistance Arteries is Predominantly Mediated by Endothelial-Derived Hyperpolarizing Factor in Females and Nitric Oxide in Males. J Urol 2007; 177:786-91. [PMID: 17222682 DOI: 10.1016/j.juro.2006.09.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 11/29/2022]
Abstract
PURPOSE In nongenital arteries a sex difference has been postulated in the dominant endothelium-derived relaxant factor(s), eg nitric oxide, prostacyclin or endothelial-derived hyperpolarizing factor. Knowledge of endothelium-derived relaxant factor mechanisms in genital tissues could influence the development of novel treatments for sexual dysfunction. We compared nitric oxide and endothelial-derived hyperpolarizing factor contributions to acetylcholine induced relaxation in the genital arteries of the 2 sexes. MATERIALS AND METHODS Male dorsal and cavernous penile arteries, and female extravaginal and intravaginal arteries from New Zealand White rabbits were studied. Acetylcholine concentration-vasodilator response curves were constructed in the presence of the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester, K(+) channel blockers (apamin and charybdotoxin) or a combination. Indomethacin was present throughout to exclude prostacyclins. RESULTS Extravaginal artery relaxation was predominantly endothelial-derived hyperpolarizing factor induced. Apamin plus charybdotoxin decreased maximal relaxations from a mean +/- SEM of 77% +/- 4% to 23% +/- 3% in 6 preparations (p <0.01). However, nitric oxide and endothelial-derived hyperpolarizing factor contributed to overall function. Dorsal artery relaxation was largely nitric oxide induced. Nomega-nitro-L-arginine methyl ester decreased maximal relaxations from 90% +/- 3% to 41% +/- 9% (p <0.001) with no endothelial-derived hyperpolarizing factor involvement (p >0.05). In cavernous and intravaginal arteries nitric oxide and endothelial-derived hyperpolarizing factor contributed to acetylcholine induced relaxation, while nitric oxide predominated. Blocking nitric oxide synthase or K(+) channels indicated that myogenic tone and constitutive activity of endothelium-derived relaxant factors were present. Vasodilator nerve mediated responses were influenced by each with the former more effective. CONCLUSIONS Vaginal inflow arteries showed a dominance of endothelial-derived hyperpolarizing factor, contrasting with nitric oxide in penile arteries. Penile arteries followed the trend that endothelial-derived hyperpolarizing factor involvement increased with decreasing vessel caliber, while the reverse was demonstrated in female arteries.
Collapse
|
48
|
Christensen FH, Hansen T, Stankevicius E, Buus NH, Simonsen U. Elevated pressure selectively blunts flow-evoked vasodilatation in rat mesenteric small arteries. Br J Pharmacol 2006; 150:80-7. [PMID: 17128286 PMCID: PMC2013851 DOI: 10.1038/sj.bjp.0706965] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The present study investigated mechanisms underlying impaired endothelium-dependent vasodilatation elicited by elevating the intraluminal pressure in rat mesenteric small arteries. EXPERIMENTAL APPROACH Arterial segments (internal diameter 316+/-2 microm, n=86) were mounted in a pressure myograph. The effect of elevating pressure from 50 to 120 mmHg for 1 h before resetting it to 50 mmHg was studied on endothelium-dependent vasodilatation. KEY RESULTS In arteries constricted with U46619 in the presence of indomethacin, shear stress generated by flow, evoked vasodilatation that was abolished by an inhibitor of nitric oxide (NO) synthase, asymmetric dimethylarginine (1 mM), whereas acetylcholine-induced vasodilatation was unchanged. After elevation of intraluminal pressure for 1 h and then resetting it to 50 mmHg, vasodilatation induced by shear stress and the NO donor, S-nitrosopenicillamine was inhibited, while vasodilatation induced by a guanylyl cyclase activator, BAY 412272, and acetylcholine was unaltered. Superoxide levels sensitive to polyethylene glycol superoxide dismutase were increased in segments exposed to elevated pressure. A superoxide scavenger, tempol (300 microM), a general endothelin receptor antagonist, SB 217242 and the selective ET(A) receptor antagonist, BQ 123 preserved shear stress-evoked vasodilatation. CONCLUSIONS AND IMPLICATIONS The present study shows that transient exposure to an elevated intraluminal pressure selectively inhibits flow-evoked NO-mediated vasodilatation, probably through activation of endothelin receptors and increased formation of superoxide. In contrast, elevation of pressure did not affect the acetylcholine-evoked endothelium-derived hyperpolarizing factor type vasodilatation in mesenteric small arteries.
Collapse
Affiliation(s)
- F H Christensen
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
49
|
Vettoretti S, Ochodnicky P, Buikema H, Henning RH, Kluppel CA, de Zeeuw D, van Dokkum RPE. Altered myogenic constriction and endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries of hypertensive subtotally nephrectomized rats. J Hypertens 2006; 24:2215-23. [PMID: 17053543 DOI: 10.1097/01.hjh.0000249699.04113.36] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Chronic renal failure (CRF) is associated with altered systemic arterial tone and hypertension. Myogenic constriction and endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation represent major vasoregulatory mechanisms in small systemic arteries. Elevated myogenic response and impaired EDHF might participate in the development of essential hypertension; however, their role in CRF-related hypertension is unknown. We investigated whether myogenic response and EDHF are altered in subtotally nephrectomized (sNX) rats and whether these changes are modifiable by chronic treatment with angiotensin-converting enzyme (ACE) inhibitor. METHODS In a pressure arteriograph, myogenic constriction and EDHF-mediated relaxation were evaluated in small mesenteric arteries isolated from male Wistar rats 15 weeks after either sham operation (n = 7) (SHAM), sNX (n = 12) or sNX followed by 9 weeks of treatment with lisinopril (sNX + LIS, 2.5 mg/kg, n = 13). RESULTS Surprisingly, myogenic response was reduced in hypertensive CRF rats (maximal myogenic tone: 37 +/- 2 and 18 +/- 4%, P < 0.01; peak myogenic index: -0.80 +/- 0.08 and -0.40 +/- 0.12%/mmHg, P < 0.05 in SHAM and sNX respectively). At the same time EDHF-mediated relaxation was also impaired (maximal response: 92 +/- 2 and 77 +/- 5%, P < 0.01; pD2: 6.5 +/- 0.1 and 5.9 +/- 0.1, P < 0.05). Both myogenic response and EDHF were inversely related to the severity of renal failure and restored by treatment with lisinopril to levels found in SHAM animals. CONCLUSION Major constrictive (myogenic) and dilatory (EDHF) mechanisms of small systemic arteries are impaired in hypertensive CRF rats. These alterations do not seem to participate in the development of hypertension, being rather directly related to the severity of renal impairment. Both systemic vascular changes might be restored by renoprotective treatment with ACE inhibitor.
Collapse
Affiliation(s)
- Simone Vettoretti
- Department of Clinical Pharmacology, University Medical Center Groningen and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The vascular endothelium plays a fundamental role in the basal and dynamic regulation of the circulation. Thus, it has a crucial role in the pathogenesis of hypertension. A spectrum of vasoactive substances is synthesised in the endothelium; of these, nitric oxide (NO), prostacyclin (PGI2) and endothelin (ET)-1 are the most important. There is a continuous basal release of NO determining the tone of peripheral blood vessels. Systemic inhibition of NO synthesis or scavenging of NO through oxidative stress causes an increase in arterial blood pressure. Also, the renin-angiotensin-aldosterone system has a major role in hypertension as it has a direct vasoconstrictor effect and important interactions with oxygen free radicals and NO. Prostacyclin, in contrast to NO, does not contribute to the maintenance of basal vascular tone of conduit arteries, but its effect on platelets is most important. ET acts as the natural counterpart to endothelium-derived NO and has an arterial blood pressure-raising effect in man. Anti-hypertensive therapy lowers blood pressure and may influence these different mediators, thus influencing endothelial function. In summary, due to its position between the blood pressure and smooth muscle cells responsible for peripheral resistance, the endothelium is thought to be both victim and offender in arterial hypertension. The delicate balance of endothelium-derived factors is disturbed in hypertension. Specific anti-hypertensive and anti-oxidant treatment is able to restore this balance.
Collapse
Affiliation(s)
- L E Spieker
- Cardiovascular Centre, Cardiology, Dep. of Internal Medicine, University Hospital, 8091 Zürich, Switzerland
| | | | | |
Collapse
|