1
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Murck H, Lehr L, Jezova D. A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. J Neuroendocrinol 2023; 35:e13219. [PMID: 36539978 DOI: 10.1111/jne.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
An abundance of knowledge has been collected describing the involvement of neuroendocrine parameters in major depression. The hypothalamic-pituitary-adrenocortical (HPA) axis regulating cortisol release has been extensively studied; however, attempts to target the HPA axis pharmacologically to treat major depression have failed. This review focuses on the importance of the adrenocortical stress hormone aldosterone, which is released by adrenocorticotropic hormone and angiotensin, and the mineralocorticoid receptor (MR) in depression. Depressed patients, in particular those with atypical depression, have signs of central hyperactivation of the aldosterone sensitive MR, potentially as a consequence of a reactive aldosterone release induced by low blood pressure and as a result of low sensitivity of peripheral MR. This is reflected in reduced heart rate variability, increased salt appetite and sleep changes in this group of patients. In addition, enlarged brain ventricles, compressed corpus callosum and changes of the choroid plexus are associated with increased aldosterone (in relation to cortisol). Furthermore, subjects with these features often show obesity. These characteristics are related to a worse antidepressant treatment outcome. Alterations in choroid plexus function as a consequence of increased aldosterone levels, autonomic dysregulation, metabolic changes and/or inflammation may be involved. The characterization of this regulatory system is in its early days but may identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Harald Murck
- Philipps-University Marburg, Marburg, Germany
- Murck-Neuroscience LLC Westfield, Westfield, NJ, USA
| | - Lisa Lehr
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental Endocrinology, Bratislava, Slovakia
| |
Collapse
|
3
|
Liu R, Zhang Z, Chen Y, Liao J, Wang Y, Liu J, Lin Z, Xiao G. Choroid plexus epithelium and its role in neurological diseases. Front Mol Neurosci 2022; 15:949231. [PMID: 36340696 PMCID: PMC9633854 DOI: 10.3389/fnmol.2022.949231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 02/16/2024] Open
Abstract
Choroid plexus epithelial cells can secrete cerebrospinal fluid into the ventricles, serving as the major structural basis of the selective barrier between the neurological system and blood in the brain. In fact, choroid plexus epithelial cells release the majority of cerebrospinal fluid, which is connected with particular ion channels in choroid plexus epithelial cells. Choroid plexus epithelial cells also produce and secrete a number of essential growth factors and peptides that help the injured cerebrovascular system heal. The pathophysiology of major neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, as well as minor brain damage diseases like hydrocephalus and stroke is still unknown. Few studies have previously connected choroid plexus epithelial cells to the etiology of these serious brain disorders. Therefore, in the hopes of discovering novel treatment options for linked conditions, this review extensively analyzes the association between choroid plexus epithelial cells and the etiology of neurological diseases such as Alzheimer's disease and hydrocephalus. Finally, we review CPE based immunotherapy, choroid plexus cauterization, choroid plexus transplantation, and gene therapy.
Collapse
Affiliation(s)
- Ruizhen Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Lin
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Kompaníková P, Bryja V. Regulation of choroid plexus development and its functions. Cell Mol Life Sci 2022; 79:304. [PMID: 35589983 PMCID: PMC9119385 DOI: 10.1007/s00018-022-04314-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.
Collapse
Affiliation(s)
- Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265, Brno, Czech Republic.
| |
Collapse
|
5
|
Totten JD, Alhadrami HA, Jiffri EH, McMullen CJ, Seib FP, Carswell HVO. Towards clinical translation of 'second-generation' regenerative stroke therapies: hydrogels as game changers? Trends Biotechnol 2021; 40:708-720. [PMID: 34815101 DOI: 10.1016/j.tibtech.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Stroke is an unmet clinical need with a paucity of treatments, at least in part because chronic stroke pathologies are prohibitive to 'first-generation' stem cell-based therapies. Hydrogels can remodel the hostile stroke microenvironment to aid endogenous and exogenous regenerative repair processes. However, no clinical trials have yet been successfully commissioned for these 'second-generation' hydrogel-based therapies for chronic ischaemic stroke regeneration. This review recommends a path forward to improve hydrogel technology for future clinical translation for stroke. Specifically, we suggest that a better understanding of human host stroke tissue-hydrogel interactions in addition to the effects of scaling up hydrogel volume to human-sized cavities would help guide translation of these second-generation regenerative stroke therapies.
Collapse
Affiliation(s)
- John D Totten
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Hani A Alhadrami
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Essam H Jiffri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Calum J McMullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, UK
| | - Hilary V O Carswell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
6
|
Eslami M, Oryan SH, Rahnema M, Bigdeli MR. Neuroprotective Effects of Normobaric Hyperoxia and Transplantation of Encapsulated Choroid Plexus Epithelial Cells on The Focal Brain Ischemia. CELL JOURNAL 2021; 23:303-312. [PMID: 34308573 PMCID: PMC8286464 DOI: 10.22074/cellj.2021.7204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Objective Choroid plexus epithelial cells (CPECs) have the epithelial characteristic, produce cerebrospinal fluid,
contribute to the detoxification process in the central nervous system (CNS), and are responsible for the synthesis and
release of many nerve growth factors. On the other hand, studies suggest that normobaric hyperoxia (HO) by induction
of ischemic tolerance (IT) can protect against brain damage and neurological diseases. We examined the effect of
combination therapy of encapsulated CPECs and HO to protect against ischemic brain injury.
Materials and Methods In this experimental study, six groups of adult male Wistar rats were randomly organized:
sham, room air (RA)+middle cerebral artery occlusion (MCAO), HO+MCAO, RA+MCAO+encapsulated CPECs,
HO+MCAO+encapsulated CPECs, RA+MCAO+empty capsules. RA/HO were pretreatment. The CPECs were isolated
from the brain of neonatal Wistar rats, cultured, and encapsulated. Then microencapsulated CPECs were transplanted
in the neck of the animal immediately after the onset of reperfusion in adult rats that had been exposed to 60 minutes
MCAO. After 23 hours of reperfusion, the neurologic deficit score (NDS) was assessed. Next, rats were killed, and
brains were isolated for measuring brain infarction volume, blood-brain barrier (BBB) permeability, edema, the activity
of superoxide dismutase (SOD), and catalase (CAT) and also, the level of malondialdehyde (MDA). Results Our results showed that NDS decreased equally in HO+MCAO, RA+MCAO+encapsulated CPECs, and
HO+MCAO+encapsulated CPECs groups. Brain infarction volume decreased up 79%, BBB stability increased, edema
decreased, SOD and CAT activities increased, and MDA decreased in the combination group of HO and transplantation
of encapsulated CPECs in the ischemic brain as compared with when HO or transplantation of encapsulated CPECs was
applied alone.
Conclusion The combination of HO and transplantation of encapsulated CPECs for stroke in rats was more effective
than the other treatments, and it can be taken into account as a promising treatment for ischemic stroke.
Collapse
Affiliation(s)
- Maesumeh Eslami
- Department of Animal Physiology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - S Hahrbanoo Oryan
- Department of Animal Physiology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehdi Rahnema
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mohammad Reza Bigdeli
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran. .,Inistitute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Wu MR, Lee CH, Hsiao JK. Bidirectional Enhancement of Cell Proliferation Between Iron Oxide Nanoparticle-Labeled Mesenchymal Stem Cells and Choroid Plexus in a Cell-Based Therapy Model of Ischemic Stroke. Int J Nanomedicine 2020; 15:9181-9195. [PMID: 33239875 PMCID: PMC7682617 DOI: 10.2147/ijn.s278687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Stem cell therapy for ischemic stroke has shown success in experimental settings, but its translation into clinical practice is challenging. The choroid plexus (CP) plays a regulatory role in neural regeneration. Mesenchymal stem cells (MSCs) promote neurogenesis in the ventricular-subventricular zone. However, it is unclear whether MSCs interact with the CP in brain tissue repair. METHODS Rat (r)MSCs were labeled with iron oxide nanoparticles (IONs) and transduced with red fluorescent protein, and then injected into the brain of rats with ischemic stroke and monitored over time by magnetic resonance imaging. The functional recovery of rats was determined by the corner test score, Modified Neurological Severity score, and stroke volume. MSCs and CP were also co-cultured for 14 days, and the medium was analyzed with a cytokine array. RESULTS In vivo imaging and histologic analysis revealed that ION-labeled MSCs were mainly located at the injection site and migrated to the infarct area and to the CP. Functional recovery was greater in rats treated with MSCs as compared to those that received mock treatment. Bidirectional enhancement of proliferation in MSCs and CP was observed in the co-culture; moreover, MSCs migrated to the CP. Cytokine analysis revealed elevated levels of proliferation- and adhesion-related cytokines and chemokines in the culture medium. Wikipathway predictions indicated that insulin-like growth factor 1/Akt signaling (WP3675), chemokine signaling pathway (WP2292), and spinal cord injury (WP2432) are involved in the increased proliferation and migration of MSCs co-cultured with the CP. CONCLUSION Crosstalk with the CP enhances MSC proliferation and migration in a transwell assay. Moreover, MRI reveals MSC migration towards the CP in an ischemic stroke model. The secreted factors resulting from this interaction have therapeutic potential for promoting functional recovery in the brain after ischemic stroke.
Collapse
Affiliation(s)
- Menq-Rong Wu
- Department of Medical Imaging, Taipei Tzuchi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City23142, Taiwan
- Institute of Biomedical Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Chia-Hsun Lee
- Department of Medical Imaging, Taipei Tzuchi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City23142, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzuchi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien97004, Taiwan
| |
Collapse
|
8
|
Abstract
Stroke remains a major unmet clinical need that warrants novel therapies. Following an ischemic insult, the cerebral vasculature secretes inflammatory molecules, creating the stroke vasculome profile. The present study evaluated the therapeutic effects of endothelial cells on the inflammation-associated stroke vasculome. qRT-PCR analysis revealed that specific inflammation-related vasculome genes BRM, IκB, Foxf1, and ITIH-5 significantly upregulated by oxygen glucose deprivation (OGD. Interestingly, co-culture of human endothelial cells (HEN6) with human endothelial cells (EPCs) during OGD significantly blocked the elevations of BRM, IκB, and Foxf1, but not ITIH-5. Next, employing the knockdown/antisense technology, silencing the inflammation-associated stroke vasculome gene, IκB, as opposed to scrambled knockdown, blocked the EPC-mediated protection of HEN6 against OGD. In vivo, stroke animals transplanted with intracerebral human EPCs (300,000 cells) into the striatum and cortex 4 h post ischemic stroke displayed significant behavioral recovery up to 30 days post-transplantation compared to vehicle-treated stroke animals. At 7 days post-transplantation, quantification of the fluorescent staining intensity in the cortex and striatum revealed significant upregulation of the endothelial marker RECA1 and a downregulation of the stroke-associated vasculome BRM, IKB, Foxf1, ITIH-5 and PMCA2 in the ipsilateral side of cortex and striatum of EPC-transplanted stroke animals relative to vehicle-treated stroke animals. Altogether, these results demonstrate that EPCs exert therapeutic effects in experimental stroke possibly by modulating the inflammation-plagued vasculome.
Collapse
|
9
|
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020; 17:35. [PMID: 32375819 PMCID: PMC7201396 DOI: 10.1186/s12987-020-00196-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) forming the blood-cerebrospinal fluid (B-CSF) barrier is among the least studied structures of the central nervous system (CNS) despite its clinical importance. The CP is an epithelio-endothelial convolute comprising a highly vascularized stroma with fenestrated capillaries and a continuous lining of epithelial cells joined by apical tight junctions (TJs) that are crucial in forming the B-CSF barrier. Integrity of the CP is critical for maintaining brain homeostasis and B-CSF barrier permeability. Recent experimental and clinical research has uncovered the significance of the CP in the pathophysiology of various diseases affecting the CNS. The CP is involved in penetration of various pathogens into the CNS, as well as the development of neurodegenerative (e.g., Alzheimer´s disease) and autoimmune diseases (e.g., multiple sclerosis). Moreover, the CP was shown to be important for restoring brain homeostasis following stroke and trauma. In addition, new diagnostic methods and treatment of CP papilloma and carcinoma have recently been developed. This review describes and summarizes the current state of knowledge with regard to the roles of the CP and B-CSF barrier in the pathophysiology of various types of CNS diseases and sets up the foundation for further avenues of research.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital Brno, Pekařská 53, CZ-656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Johanson CE, Vío K, Guerra M, Salazar P, Jara MC, Rodríguez S, Ortega E, Castañeyra-Ruiz L, McAllister JP, Rodríguez EM. Organ Culture and Grafting of Choroid Plexus into the Ventricular CSF of Normal and Hydrocephalic HTx Rats. J Neuropathol Exp Neurol 2020; 79:626-640. [DOI: 10.1093/jnen/nlaa028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
AbstractChoroid plexus (CP) may aid brain development and repair by secreting growth factors and neurotrophins for CSF streaming to ventricular and subventricular zones. Disrupted ventricular/subventricular zone progenitors and stem cells lead to CNS maldevelopment. Exploring models, we organ cultured the CP and transplanted fresh CP into a lateral ventricle of postnatal hydrocephalic (hyHTx) and nonhydrocephalic (nHTx) rats. After 60 days in vitro, the cultured choroid ependyma formed spherical rings with beating cilia. Cultured CP expressed endocytotic caveolin 1 and apical aquaporin 1 and absorbed horseradish peroxidase from medium. Transthyretin secretory protein was secreted by organ-cultured CP into medium throughout 60 days in vitro. Fresh CP, surviving at 1 week after lateral ventricle implantation of nHTx or hyHTx did not block CSF flow. Avascular 1-week transplants in vivo expressed caveolin 1, aquaporin 1, and transthyretin, indicating that grafted CP may secrete trophic proteins but not CSF. Our findings encourage further exploration on CP organ culture and grafting for translational strategies. Because transplanted CP, though not producing CSF, may secrete beneficial molecules for developing brain injured by hydrocephalus, we propose that upon CP removal in hydrocephalus surgery, the fractionated tissue could be transplanted back (ventricular autograft).
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Neurosurgery, Alpert Medical School at Brown University, Providence, Rhode Island
| | - Karin Vío
- Instituto de Anatomía, Histología y Patología
| | | | | | | | | | | | - Leandro Castañeyra-Ruiz
- Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Anatomía, Facultad de Medicina, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - J Patrick McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
11
|
Rodríguez-Lorenzo S, Ferreira Francisco DM, Vos R, van Het Hof B, Rijnsburger M, Schroten H, Ishikawa H, Beaino W, Bruggmann R, Kooij G, de Vries HE. Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis. Acta Neuropathol Commun 2020; 8:35. [PMID: 32192527 PMCID: PMC7083003 DOI: 10.1186/s40478-020-00903-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is a key regulator of the central nervous system (CNS) homeostasis through its secretory, immunological and barrier properties. Accumulating evidence suggests that the CP plays a pivotal role in the pathogenesis of multiple sclerosis (MS), but the underlying mechanisms remain largely elusive. To get a comprehensive view on the role of the CP in MS, we studied transcriptomic alterations of the human CP in progressive MS and non-neurological disease controls using RNA sequencing. We identified 17 genes with significantly higher expression in progressive MS patients relative to that in controls. Among them is the newly described long non-coding RNA HIF1A-AS3. Next to that, we uncovered disease-affected pathways related to hypoxia, secretion and neuroprotection, while only subtle immunological and no barrier alterations were observed. In an ex vivo CP explant model, a subset of the upregulated genes responded in a similar way to hypoxic conditions. Our results suggest a deregulation of the Hypoxia-Inducible Factor (HIF)-1 pathway in progressive MS CP. Importantly, cerebrospinal fluid levels of the hypoxia-responsive secreted peptide PAI-1 were higher in MS patients with high disability relative to those with low disability. These findings provide for the first time a complete overview of the CP transcriptome in health and disease, and suggest that the CP environment becomes hypoxic in progressive MS patients, highlighting the altered secretory and neuroprotective properties of the CP under neuropathological conditions. Together, these findings provide novel insights to target the CP and promote the secretion of neuroprotective factors into the CNS of progressive MS patients.
Collapse
Affiliation(s)
- Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | | | - Ricardo Vos
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Manheim, Medical Faculty Manheim, Heidelberg University, Manheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands.
- Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands.
| |
Collapse
|
12
|
Fame RM, Cortés-Campos C, Sive HL. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube: A Primer with Latest Insights. Bioessays 2020; 42:e1900186. [PMID: 32078177 DOI: 10.1002/bies.201900186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.
Collapse
Affiliation(s)
- Ryann M Fame
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hazel L Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
13
|
Zhao H, Li G, Wang R, Tao Z, Zhang S, Li F, Han Z, Li L, Liu P, Luo Y. MiR‐424 prevents astrogliosis after cerebral ischemia/reperfusion in elderly mice by enhancing repressive H3K27me3 via NFIA/DNMT1 signaling. FEBS J 2019; 286:4926-4936. [PMID: 31365782 DOI: 10.1111/febs.15029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
- Beijing Geriatric Medical Research Center Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
- Beijing Geriatric Medical Research Center Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
- Beijing Geriatric Medical Research Center Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
| | - Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology Xuanwu Hospital of Capital Medical University Beijing China
- Beijing Geriatric Medical Research Center Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases China
- Beijing Institute for Brain Disorders China
| |
Collapse
|
14
|
Snow B, Mulroy E, Bok A, Simpson M, Smith A, Taylor K, Lockhart M, Lam BJ, Frampton C, Schweder P, Chen B, Finucane G, McMahon A, Macdonald L. A phase IIb, randomised, double-blind, placebo-controlled, dose-ranging investigation of the safety and efficacy of NTCELL ® [immunoprotected (alginate-encapsulated) porcine choroid plexus cells for xenotransplantation] in patients with Parkinson's disease. Parkinsonism Relat Disord 2018; 61:88-93. [PMID: 30503748 DOI: 10.1016/j.parkreldis.2018.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Regenerative therapies in Parkinson's disease aim to slow neurodegeneration and re-establish damaged neuronal circuitry. Neurotrophins are potent endogenous regulators of neuronal survival, development and regeneration. They represent an attractive regenerative treatment option in Parkinson's disease. Porcine choroid plexus produces a number of neurotrophins, and can be safely delivered to the striatum in an encapsulated formulation (termed NTCELL®) to protect them from immune attack. NTCELL® has shown regenerative potential in animal models of stroke, Huntington's disease and Parkinson's disease. Following promising results from an initial open label safety study of intra-striatal delivery of NTCELL® in human subjects, we sought to specifically investigate the safety and efficacy of NTCELL® for the treatment of Parkinson's disease. METHODS 18 patients aged 56-65 years with idiopathic Parkinson's disease of at least 5 years duration were randomised to receive either sham surgery (general anaesthesia and partial thickness burr holes) or intra-striatal delivery of NTCELL® (the 3 groups in the treatment arm receiving incremental NTCELL® doses). RESULTS At 26 weeks, we found no significant difference in total UPDRS scores ('on' and 'off'), UPDRS motor scores ('on' and 'off'), PDQ-39, UDysRS, timed walk or modified Hoehn and Yahr stage between patients implanted with NTCELL® and patients undergoing sham procedure. There were no serious adverse events or xenogeneic viral transmission during the study. CONCLUSION The study did not meet its primary efficacy end-point of a change in UPDRS at 26 weeks post-intervention compared with baseline. Stereotactic NTCELL® implantation was safe and well tolerated.
Collapse
Affiliation(s)
- Barry Snow
- Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Eoin Mulroy
- Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Arnold Bok
- Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Mark Simpson
- Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Andrew Smith
- Department of Radiology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand.
| | - Kenneth Taylor
- Living Cell Technologies New Zealand Limited, PO Box 23566, Hunters Corner, Auckland, 2155, New Zealand.
| | - Michelle Lockhart
- Living Cell Technologies New Zealand Limited, PO Box 23566, Hunters Corner, Auckland, 2155, New Zealand.
| | - Bb Janice Lam
- Living Cell Technologies New Zealand Limited, PO Box 23566, Hunters Corner, Auckland, 2155, New Zealand.
| | - Christopher Frampton
- Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand.
| | - Patrick Schweder
- Centre for Brain Research, University of Auckland, New Zealand; Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand.
| | - Benson Chen
- Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Gregory Finucane
- Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Adele McMahon
- Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| | - Lorraine Macdonald
- Department of Neurology, Auckland City Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
15
|
Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol 2018; 135:387-407. [PMID: 29428972 DOI: 10.1007/s00401-018-1812-4] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K+, Ca2+, and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with CNS microvessels, and, finally, a mixture of CSF/ISF/waste products is normally cleared along the PVS of venules/veins as well as other pathways; such a system may or may not constitute a true 'circulation', but, at the least, suggests a comprehensive re-evaluation of the previously proposed 'glymphatic' concepts in favour of a new system better taking into account basic cerebrovascular physiology and fluid transport considerations.
Collapse
Affiliation(s)
- N Joan Abbott
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building 3.82, 150 Stamford St, London, SE1 9NH, UK.
| | - Michelle E Pizzo
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison School of Pharmacy, Madison, WI, USA
- Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jane E Preston
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building 3.82, 150 Stamford St, London, SE1 9NH, UK
| | - Damir Janigro
- Flocel Inc., Cleveland, OH, USA
- Department of Physiology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert G Thorne
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison School of Pharmacy, Madison, WI, USA.
- Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, USA.
- , 5113 Rennebohm Hall, 777 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
16
|
González-Nieto D, Fernández-García L, Pérez-Rigueiro J, Guinea GV, Panetsos F. Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality. Polymers (Basel) 2018; 10:polym10020184. [PMID: 30966220 PMCID: PMC6415003 DOI: 10.3390/polym10020184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/07/2023] Open
Abstract
The use of advanced biomaterials as a structural and functional support for stem cells-based therapeutic implants has boosted the development of tissue engineering applications in multiple clinical fields. In relation to neurological disorders, we are still far from the clinical reality of restoring normal brain function in neurodegenerative diseases and cerebrovascular disorders. Hydrogel polymers show unique mechanical stiffness properties in the range of living soft tissues such as nervous tissue. Furthermore, the use of these polymers drastically enhances the engraftment of stem cells as well as their capacity to produce and deliver neuroprotective and neuroregenerative factors in the host tissue. Along this article, we review past and current trends in experimental and translational research to understand the opportunities, benefits, and types of tentative hydrogel-based applications for the treatment of cerebral disorders. Although the use of hydrogels for brain disorders has been restricted to the experimental area, the current level of knowledge anticipates an intense development of this field to reach clinics in forthcoming years.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
| | - Laura Fernández-García
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid 28040 Madrid, Spain.
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid 28040 Madrid, Spain.
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos Madrid, IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Cruz Y, García EE, Gálvez JV, Arias-Santiago SV, Carvajal HG, Silva-García R, Bonilla-Jaime H, Rojas-Castañeda J, Ibarra A. Release of interleukin-10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer-1 immunization after cerebral ischemia. Neural Regen Res 2018; 13:1743-1752. [PMID: 30136689 PMCID: PMC6128049 DOI: 10.4103/1673-5374.238615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Copolymer-1 (Cop-1) is a peptide with immunomodulatory properties, approved by the Food and Drug Administration of United States in the treatment of multiple sclerosis. Cop-1 has been shown to exert neuroprotective effects and induce neurogenesis in cerebral ischemia models. Nevertheless, the mechanism involved in the neurogenic action of this compound remains unknown. The choroid plexus (CP) is a network of cells that constitute the interphase between the immune and central nervous systems, with the ability to mediate neurogenesis through the release of cytokines and growth factors. Therefore, the CP could play a role in Cop-1-induced neurogenesis. In order to determine the participation of the CP in the induction of neurogenesis after Cop-1 immunization, we evaluated the gene expression of various growth factors (brain-derived neurotrophic factor, insulin-like growth factor 1, neurotrophin-3) and cytokines (tumor necrosis factor alpha, interferon-gamma, interleukin-4 (IL-4), IL-10 and IL-17), in the CP at 14 days after ischemia. Furthermore, we analyzed the correlation between the expression of these genes and neurogenesis. Our results showed that Cop-1 was capable of stimulating an upregulation in the expression of the genes encoding for brain-derived neurotrophic factor, insulin-like growth factor 1, neurotrophin-3 and IL-10 in the CP, which correlated with an increase in neurogenesis in the subventricular and subgranular zone. As well, we observed a downregulation of IL-17 gene expression. This study demonstrates the effect of Cop-1 on the expression of growth factors and IL-10 in the CP, in the same way, presents a possible mechanism involved in the neurogenic effect of Cop-1.
Collapse
Affiliation(s)
- Yolanda Cruz
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México; Lab. De Biología de la reproducción, UAMI. Ciudad de México; Doctorado en Ciencias Biológicas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa. Ciudad de México, México
| | - Edna E García
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Jessica V Gálvez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Stella V Arias-Santiago
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Horacio G Carvajal
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | | | | | - Julio Rojas-Castañeda
- Subdirección de Medicina Experimental, Instituto Nacional de Pediatría. Ciudad de México, México
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| |
Collapse
|
18
|
A Hidden Epithelial Barrier in the Brain with a Central Role in Regulating Brain Homeostasis. Implications for Aging. Ann Am Thorac Soc 2017; 13 Suppl 5:S407-S410. [PMID: 28005425 DOI: 10.1513/annalsats.201609-676aw] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite increasing interest the last years, the choroid plexus still is a relatively understudied tissue in neuroscience. The choroid plexus contains fenestrated capillaries surrounded by tightly connected choroid plexus epithelial cells that form the blood-cerebrospinal fluid barrier. The choroid plexus is the main source of cerebrospinal fluid production, assures removal of toxic waste products, and acts as gatekeeper of the brain by the presence of resident inflammatory cells. Increasing evidence shows that choroid plexus' dysfunction, via altered secretory, transport, immune, and barrier function, plays a central role in a very diverse set of clinical conditions such as aging and the age-associated Alzheimer's disease. Indeed, age-related changes may weaken the barrier formed by the choroid plexus epithelial cells and/or impair the choroid plexus' ability to generate cerebrospinal fluid and to produce beneficial factors. Consequently, advanced knowledge of the choroid plexus-cerebrospinal fluid system in aging is essential to better understand age-associated neurological diseases and might open up new therapeutic strategies.
Collapse
|
19
|
Borlongan CV, Thanos CG, Skinner SJM, Geaney M, Emerich DF. Transplants of Encapsulated Rat Choroid Plexus Cells Exert Neuroprotection in a Rodent Model of Huntington's Disease. Cell Transplant 2017; 16:987-992. [PMID: 28866919 DOI: 10.3727/000000007783472426] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Choroid plexus (CP) epithelial cells secrete several neurotrophic factors and have been used in transplantation studies designed to impart neuroprotection against central nervous system (CNS) trauma. In the present study, CP was isolated from adult rats, encapsulated within alginate microcapsules, and transplanted unilaterally into the rat striatum. Three days later, unilateral injections of quinolinic acid (QA; 225 nmol) were made into the ipsilateral striatum to mimic the pathology observed in Huntington's disease (HD). After surgery, animals were tested for motor function using the placement test. Rats receiving CP transplants were significantly less impaired on this test. Nissl-stained sections demonstrated that CP transplants significantly reduced the volume of the striatal lesion produced by QA. Quantitative analysis of striatal neurons further demonstrated that choline acetyltransferase-immunoreactive, but not diaphorase-positive, neurons were protected by CP transplants. These data demonstrate that transplanted CP cells can be used to protect striatal neurons from excitotoxic damage and that the pattern of neuroprotection varies across specific neuronal populations.
Collapse
Affiliation(s)
- Cesario V Borlongan
- Neurology/Institute of Molecular Medicine and Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA.,Research and Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | | | | | | | | |
Collapse
|
20
|
Anthony SS, Date I, Yasuhara T. Limiting exercise inhibits neuronal recovery from neurological disorders. Brain Circ 2017; 3:124-129. [PMID: 30276313 PMCID: PMC6057693 DOI: 10.4103/bc.bc_16_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Patients who are bedridden often suffer from muscular atrophy due to reduced daily activities and can become depressed. However, patients who undergo physical therapy sometimes demonstrate positive benefits including a reduction of stressful and depressed behavior. Regenerative medicine has seen improvements in two stem cell-based therapies for central nervous system disorders. One therapy is through the transfer of exogenous stem cells. The other therapy is a more natural method and focuses on the increasing endogenous neurogenesis and restoring the neurological impairments. This study overviews how immobilization-induced disuse atrophy affects neurogenesis in rats, specifically hypothesizing that immobilization diminishes circulating trophic factor levels, like vascular endothelial growth factors or brain-derived neurotrophic factor, which in turn limits neurogenesis. This hypothesis requires the classification of the stem cell microenvironment by probing growth factors in addition to other stress-related proteins that correlate with exercise-induced neurogenesis. There is research examining the effects of increased exercise on neurogenesis while limiting exercise, which better demonstrates the pathological states of immobile stroke patients, remains relatively unexplored. To examine the effects of immobilization on neurogenesis quantitative measurements of movements, 5-bromo-2deoxyuridine labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and neurological levels of trophic factors, growth factors, and stress-related proteins will indicate levels of neurogenesis. In further research, studies are needed to show how in vivo stimulation, or lack thereof, affects stem cell microenvironments to advance treatment procedures for strengthening neurogenesis in bedridden patients. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Stefan S. Anthony
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
21
|
Emerich DF, Skinner SJM, Borlongan CV, Thanos CG. A Role of the Choroid Plexus in Transplantation Therapy. Cell Transplant 2017; 14:715-25. [PMID: 16454346 DOI: 10.3727/000000005783982576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The choroid plexuses (CPs) play pivotal roles in the most basic aspects of neural function. Some of the roles of the CP include maintaining the extracellular milieu of the brain by actively modulating chemical exchange between the CSF and brain parenchyma, surveying the chemical and immunological status of the brain, detoxifying the brain, secreting a nutritive “cocktail” of polypeptides, and participating in repair processes following trauma. This diversity of functions suggests that even modest changes in the CP can have far reaching effects. Indeed, changes in the anatomy and physiology of the CP have been linked to several CNS diseases. It is also possible that replacing diseased CP or transplanting healthy CP might be useful for treating acute and chronic brain diseases. Here we describe the wide-ranging functions of the CP, alterations of these functions in aging and neurodegeneration, and recent demonstrations of the therapeutic potential of transplanted CP for neural trauma.
Collapse
|
22
|
Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, Deans RJ, Hess DC, Carroll JE, Borlongan CV. Behavioral and Histological Characterization of Intrahippocampal Grafts of Human Bone Marrow-Derived Multipotent Progenitor Cells in Neonatal Rats with Hypoxic-Ischemic Injury. Cell Transplant 2017; 15:231-8. [PMID: 16719058 DOI: 10.3727/000000006783982034] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Children born with hypoxic-ischemic (HI) brain injury account for a significant number of live births wherein no clinical treatment is available. Limited clinical trials of stem cell therapy have been initiated in a number of neurological disorders, but the preclinical evidence of a cell-based therapy for neonatal HI injury remains in its infancy. One major postulated mechanism underlying therapeutic benefits of stem cell therapy involves stimulation of endogenous neurogenesis via transplantation of exogenous stem cells. To this end, transplantation has targeted neurogenic sites, such as the hippocampus, for brain protection and repair. The hippocampus has been shown to secrete growth factors, especially during the postnatal period, suggesting that this brain region presents as highly conducive microenvironment for cell survival. Based on its neurogenic and neurotrophic factor-secreting features, the hippocampus stands as an appealing target for stem cell therapy. Here, we investigated the efficacy of intrahippocampal transplantation of multipotent progenitor cells (MPCs), which are pluripotent progenitor cells with the ability to differentiate into a neuronal lineage. Seven-day-old Sprague-Dawley rats were initially subjected to unilateral HI injury, which involved permanent ligation of the right common carotid artery and subsequent exposure to hypoxic environment. At day 7 after HI injury, animals received stereotaxic hippocampal injections of vehicle or cryopreserved MPCs (thawed just prior to transplantation) derived either from Sprague-Dawley rats (syngeneic) or Fisher rats (allogeneic). All animals were treated with daily immunosuppression throughout the survival period. Behavioral tests were conducted on posttransplantation days 7 and 14 using the elevated body swing test and the rotarod to reveal general and coordinated motor functions. MPC transplanted animals exhibited reduced motor asymmetry and longer time spent on the rotarod than those that received the vehicle infusion. Both syngeneic and allogeneic MPC transplanted injured animals did not significantly differ in their behavioral improvements at both test periods. Immunohistochemical evaluations of graft survival after behavioral testing at day 14 posttransplantation revealed that syngeneic and allogeneic transplanted MPCs survived in the hippocampal region. These results demonstrate for the first time that transplantation of MPCs ameliorated motor deficits associated with HI injury. In view of comparable behavioral recovery produced by syngeneic and allogeneic MPC grafts, allogeneic transplantation poses as a feasible and efficacious cell replacement strategy with direct clinical application. An equally major finding is the observation lending support to the hippocampus as an excellent target brain region for stem cell therapy in treating HI injury.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Emerich DF, Thanos CG. In Vitro Culture Duration does Not Impact the Ability of Encapsulated Choroid Plexus Transplants to Prevent Neurological Deficits in an Excitotoxin-Lesioned Rat Model of Huntington's Disease. Cell Transplant 2017; 15:595-602. [PMID: 17176611 DOI: 10.3727/000000006783981657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Delivery of neurotrophic molecules to the CNS is a potential treatment strategy for preventing the neuronal loss accompanying many neurological disorders. Choroid plexus (CP) epithelial cells secrete a cocktail of neurotrophic factors, and encapsulated CP transplants are neuroprotective in animal models of stroke and Huntington's disease (HD). Prior to clinical use, it is essential to identify and optimize parameters such as the length of time that transplant products such as encapsulated CP can be maintained. In the present study, neonatal porcine CP was encapsulated within alginate microcapsules and maintained in vitro for 1, 2, or 7 months. The encapsulated cells remained viable (>80%) at all time points and were transplanted unilaterally into the rat striatum. Seven days later, the same animals received unilateral injections of quinolinic acid (QA; 225 nmol) adjacent to the implant site. Separate groups of animals served as controls and received QA alone. After surgery, animals were periodically evaluated for weight loss and were tested for motor function 14 days post-QA. In controls, QA lesions produced a significant loss of body weight and impaired function of the contralateral forelimb. In contrast, implants of CP were potently neuroprotective as rats receiving CP transplants did not lose body weight and were not significantly impaired when tested for motor function. These benefits were independent of the length of time that the cells were held in vitro and demonstrate that the potential potency of alginate encapsulated CP cells can be retained for extremely long periods of time in vitro.
Collapse
|
24
|
Emerich DF, Schneider P, Bintz B, Hudak J, Thanos CG. In Vitro Exposure of Cultured Porcine Choroid Plexus Epithelial Cells to Immunosuppressant, Anti-Inflammatory, and Psychoactive Drugs. Cell Transplant 2017; 16:435-40. [PMID: 17658133 DOI: 10.3727/000000007783464867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Delivery of neurotrophic molecules to the CNS is a potential treatment for preventing the neuronal loss in neurological disorders such as Huntington's disease (HD). Choroid plexus (CP) epithelial cell transplants secrete several neurotrophic factors and are neuroprotective in rat and monkey animal models of HD. HD patients receiving CP transplants would likely receive a course of immunosuppressant/anti-inflammatory treatment postsurgery and would remain on psychoactive medications to treat their motor, psychiatric, and emotional symptoms. Therefore, we examined whether CP epithelial cells are impacted by incubation with cyclosporine A (CsA), dexmethasone, haloperidol, fluoxetine, and carbamezapine. In each case, DNA was quantified to determine cell number, a formazen dye-based assay was used to quantify cell metabolism, and vascular endothelial growth factor (VEGF) levels were measured as a marker of protein secretion. Except for the highest dose of fluoxetine, none of the drugs tested exerted any detrimental effect on cell number. Incubation with CsA or dexamethasone did not have any consistent significant effect on VEGF secretion or cell metabolism. Carbamazepine was without effect while only the highest dose of haloperidol tested modestly lowered cell metabolism. VEGF secretion and cell metabolism was not measurable from CP cells exposed to 100 μM fluoxetine. These data continue to support the potential use of CP transplants in HD.
Collapse
|
25
|
Barron C, He JQ. Alginate-based microcapsules generated with the coaxial electrospray method for clinical application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1245-1255. [PMID: 28391767 DOI: 10.1080/09205063.2017.1318030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Alginate-based microencapsulation of cells has made a significant impact on the fields of regenerative medicine and tissue engineering mainly because of its ability to provide immunoisolation for the encapsulated material. This characteristic has allowed for the successful transplantation of non-autologous cells in several clinical trials for life threatening conditions, such as diabetes, myocardial infarction, and neurodegenerative disorders. Methods for alginate hydrogel microencapsulation have been well developed for various types of cells and can generate microcapsules of different diameters, degradation time, and composition. It appears the most prominent and successful method in clinical applications is the coaxial electrospray method, which can be used to generate both homogenous and non-homogeneous microcapsules with uniform size on the order of 100 μm. The present review aims to discuss why alginate hydrogel is an ideal biomaterial for the encapsulation of cells, how alginate-based microcapsules are generated, and methods of modifying the microcapsules for specific clinical treatments. This review will also discuss clinical applications that have utilized alginate-based microencapsulation in the treatment of diabetes, ischemic heart disease, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Catherine Barron
- a Department of Biomedical Sciences & Pathobiology , College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Jia-Qiang He
- a Department of Biomedical Sciences & Pathobiology , College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
26
|
Xiang J, Routhe LJ, Wilkinson DA, Hua Y, Moos T, Xi G, Keep RF. The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids Barriers CNS 2017; 14:8. [PMID: 28351417 PMCID: PMC5371201 DOI: 10.1186/s12987-017-0056-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
While the impact of hemorrhagic and ischemic strokes on the blood–brain barrier has been extensively studied, the impact of these types of stroke on the choroid plexus, site of the blood-CSF barrier, has received much less attention. The purpose of this review is to examine evidence of choroid plexus injury in clinical and preclinical studies of intraventricular hemorrhage, subarachnoid hemorrhage, intracerebral hemorrhage and ischemic stroke. It then discusses evidence that the choroid plexuses are important in the response to brain injury, with potential roles in limiting damage. The overall aim of the review is to highlight deficiencies in our knowledge on the impact of hemorrhagic and ischemic strokes on the choroid plexus, particularly with reference to intraventricular hemorrhage, and to suggest that a greater understanding of the response of the choroid plexus to stroke may open new avenues for brain protection.
Collapse
Affiliation(s)
- Jianming Xiang
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Lisa J Routhe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - D Andrew Wilkinson
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Torben Moos
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
27
|
Sandrof MA, Emerich DF, Thanos CG. Primary Choroid Plexus Tissue for Use in Cellular Therapy. Methods Mol Biol 2017; 1479:237-249. [PMID: 27738941 DOI: 10.1007/978-1-4939-6364-5_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The choroid plexus (CP) has been explored as a cellular therapeutic due to its broad-ranging secretome and demonstrated longevity in a variety of encapsulation modalities. While the CP organ is normally involved in disease repair processes in the brain, the range of indications that could potentially be ameliorated with exogenous CP therapy is widespread, including diseases of the central nervous system, hearing loss, chronic wounds, and others. The CP can be isolated from animal sources and digested into a highly purified epithelial culture that can withstand encapsulation and transplantation. Its epithelium can adapt to different microenvironments, and depending on culture conditions, can be manipulated into various three-dimensional configurations with distinct gene expression profiles. The cocktail of proteins secreted by the CP can be harvested in culture, and purified forms of these extracts have been evaluated in topical applications to treat poorly healing wounds. When encapsulated, the epithelial clusters can be maintained for extended durations in vitro with minimal impact on potency. A treatment for Parkinson's disease utilizing encapsulated porcine CP has been developed and is currently being evaluated in a Phase I clinical trial. The current chapter serves to summarize recent experience with CP factor delivery, and provides a description of the relevant materials and methods employed in these studies.
Collapse
Affiliation(s)
- M A Sandrof
- Cytosolv, Inc., 117 Chapman Street, Suite 107, Providence, RI, 02905, USA
| | | | - Chris G Thanos
- Cytosolv, Inc., 117 Chapman Street, Suite 107, Providence, RI, 02905, USA.
| |
Collapse
|
28
|
Lippert T, Watson N, Ji X, Yasuhara T, Date I, Kaneko Y, Tajiri N, Borlongan CV. Detrimental effects of physical inactivity on neurogenesis. Brain Circ 2016; 2:80-85. [PMID: 30276277 PMCID: PMC6126252 DOI: 10.4103/2394-8108.186278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023] Open
Abstract
Patients diagnosed with neurological disorders exhibit a variety of physical and psychiatric symptoms, including muscle atrophy, general immobility, and depression. Patients who participate in physical rehabilitation at times show unexpected clinical improvement, which includes diminished depression and other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for central nervous system (CNS) disorders, transplantation of exogenous stem cells, and enhancing the endogenous neurogenesis. The latter therapy utilizes a natural method of re-innervating the injured brain, which may mend neurological impairments. In this study, we examine how inactivity-induced atrophy, using the hindlimb suspension model, alters neurogenesis in rats. The hypothesis is that inactivity inhibits neurogenesis by decreasing circulation growth or trophic factors, such as vascular endothelial growth or neurotrophic factors. The restriction modifies neurogenesis and stem cell differentiation in the CNS, the stem cell microenvironment is examined by the trophic and growth factors, including stress-related proteins. Despite growing evidence revealing the benefits of “increased” exercise on neurogenesis, the opposing theory involving “physical inactivity,” which simulates pathological states, continues to be neglected. This novel theory will allow us to explore the effects on neurogenesis by an intransigent stem cell microenvironment likely generated by inactivity. 5-bromo-2-deoxyuridine labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid, and brain levels of trophic factors, growth factors, and stress-related proteins are suggested identifiers of neurogenesis, while evaluation of spontaneous movements will give insight into the psychomotor effects of inactivity. Investigations devised to show how in vivo stimulation, or lack thereof, affects the stem cell microenvironment are necessary to establish treatment methods to boost neurogenesis in bedridden patients.
Collapse
Affiliation(s)
- Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
29
|
Balusu S, Brkic M, Libert C, Vandenbroucke RE. The choroid plexus-cerebrospinal fluid interface in Alzheimer's disease: more than just a barrier. Neural Regen Res 2016; 11:534-7. [PMID: 27212900 PMCID: PMC4870896 DOI: 10.4103/1673-5374.180372] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The choroid plexus is a complex structure which hangs inside the ventricles of the brain and consists mainly of choroid plexus epithelial (CPE) cells surrounding fenestrated capillaries. These CPE cells not only form an anatomical barrier, called the blood-cerebrospinal fluid barrier (BCSFB), but also present an active interface between blood and cerebrospinal fluid (CSF). CPE cells perform indispensable functions for the development, maintenance and functioning of the brain. Indeed, the primary role of the choroid plexus in the brain is to maintain homeostasis by secreting CSF which contains different molecules, such as nutrients, neurotrophins, and growth factors, as well as by clearing toxic and undesirable molecules from CSF. The choroid plexus also acts as a selective entry gate for leukocytes into the brain. Recent findings have revealed distinct changes in CPE cells that are associated with aging and Alzheimer's disease. In this review, we review some recent findings that highlight the importance of the CPE-CSF system in Alzheimer's disease and we summarize the recent advances in the regeneration of brain tissue through use of CPE cells as a new therapeutic strategy.
Collapse
Affiliation(s)
- Sriram Balusu
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marjana Brkic
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 2015; 50:1-13. [PMID: 26116435 DOI: 10.1016/j.bbi.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus (CP) comprises an epithelial monolayer that forms an important physical, enzymatic and immunologic barrier, called the blood-cerebrospinal fluid barrier (BCSFB). It is a highly vascularized organ located in the brain ventricles that is key in maintaining brain homeostasis as it produces cerebrospinal fluid (CSF) and has other important secretory functions. Furthermore, the CP-CSF interface plays a putative role in neurogenesis and has been implicated in neuropsychiatric diseases such as the neurodevelopmental disorders schizophrenia and autism. A role for this CNS border was also implicated in sleep disturbances and chronic and/or severe stress, which are risk factors for the development of neuropsychiatric conditions. Understanding the mechanisms by which disturbance of the homeostasis at the CP-CSF interface is involved in these different chronic low-grade inflammatory diseases can give new insights into therapeutic strategies. Hence, this review discusses the different roles that have been suggested so far for the CP in these neuropsychiatric disorders, with special attention to potential therapeutic applications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
31
|
Ingberg E, Gudjonsdottir J, Theodorsson E, Theodorsson A, Ström JO. Elevated body swing test after focal cerebral ischemia in rodents: methodological considerations. BMC Neurosci 2015; 16:50. [PMID: 26242584 PMCID: PMC4525734 DOI: 10.1186/s12868-015-0189-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/28/2015] [Indexed: 01/06/2023] Open
Abstract
Background The elevated body swing test (EBST) is a behavioral test used to evaluate experimental stroke in rodents. The basic idea is that when the animal is suspended vertically by the tail, it will swing its head laterally to the left or right depending on lesion side. In a previous study from our lab using the EBST after middle cerebral artery occlusion (MCAo), rats swung contralateral to the infarct day 1 post-MCAo, but ipsilateral day 3 post-MCAo. This shift was unexpected and prompted us to perform the present study. First, the literature was systematically reviewed to elucidate whether a similar shift had been noticed before, and if consensus existed regarding swing direction. Secondly, an experiment was conducted to systematically investigate the suggested behavior. Eighty-three adult male and female Sprague–Dawley rats were subjected to MCAo or sham surgery and the EBST was performed up to 7 days after the lesion. Results Both experimentally and through systematic literature review, the present study shows that the direction of biased swing activity in the EBST for rodents after cerebral ischemia can differ and even shift over time in some situations. The EBST curve for females was significantly different from that of males after the same occlusion time (p = 0.023). Conclusions This study highlights the importance of adequate reporting of behavioral tests for lateralization and it is concluded that the EBST cannot be recommended as a test for motor asymmetry after MCAo in rats.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden.
| | - Johanna Gudjonsdottir
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden.
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden.
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden. .,Division of Neuroscience, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Linköping University, Region Östergötland, Linköping, Sweden.
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Department of Clinical Chemistry, Faculty of Health Sciences, Center for Diagnostics, Linköping University, Region Östergötland, Linköping, Sweden. .,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden. .,School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
32
|
Watson N, Ji X, Yasuhara T, Date I, Kaneko Y, Tajiri N, Borlongan CV. No pain, no gain: lack of exercise obstructs neurogenesis. Cell Transplant 2015; 24:591-7. [PMID: 25806858 DOI: 10.3727/096368915x687723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bedridden patients develop atrophied muscles, their daily activities greatly reduced, and some display a depressive mood. Patients who are able to receive physical rehabilitation sometimes show surprising clinical improvements, including reduced depression and attenuation of other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for CNS disorders, namely, transplantation of exogenous stem cells and amplification of endogenous neurogenesis. The latter strategy embraces a natural way of reinnervating the damaged brain and correcting the neurological impairments. In this study, we discussed how immobilization-induced disuse atrophy, using the hindlimb suspension model, affects neurogenesis in rats. The overarching hypothesis is that immobilization suppresses neurogenesis by reducing the circulating growth or trophic factors, such as vascular endothelial growth factor or brain-derived neurotrophic factor. That immobilization alters neurogenesis and stem cell differentiation in the CNS requires characterization of the stem cell microenvironment by examining the trophic and growth factors, as well as stress-related proteins that have been implicated in exercise-induced neurogenesis. Although accumulating evidence has revealed the contribution of "increased" exercise on neurogenesis, the reverse paradigm involving "lack of exercise," which mimics pathological states (e.g., stroke patients are often immobile), remains underexplored. This novel paradigm will enable us to examine the effects on neurogenesis by a nonpermissive stem cell microenvironment likely produced by lack of exercise. BrdU labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and brain levels of trophic factors, growth factors, and stress-related proteins are proposed as indices of neurogenesis, while quantitative measurements of spontaneous movements will reveal psychomotor components of immobilization. Studies designed to reveal how in vivo stimulation, or lack thereof, alters the stem cell microenvironment are needed to begin to develop treatment strategies for enhancing neurogenesis in bedridden patients.
Collapse
Affiliation(s)
- Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Gurruchaga H, Saenz del Burgo L, Ciriza J, Orive G, Hernández RM, Pedraz JL. Advances in cell encapsulation technology and its application in drug delivery. Expert Opin Drug Deliv 2015; 12:1251-67. [PMID: 25563077 DOI: 10.1517/17425247.2015.1001362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cell encapsulation technology has improved enormously since it was proposed 50 years ago. The advantages offered over other alternative systems, such as the prevention of repetitive drug administration, have triggered the use of this technology in multiple therapeutic applications. AREAS COVERED In this article, improvements in cell encapsulation technology and strategies to overcome the drawbacks that prevent its use in the clinic have been summarized and discussed. Different studies and clinical trials that have been performed in several therapeutic applications have also been described. EXPERT OPINION The authors believe that the future translation of this technology from bench to bedside requires the optimization of diverse aspects: i) biosafety, controlling and monitoring cell viability; ii) biocompatibility, reducing pericapsular fibrotic growth and hypoxia suffered by the graft; iii) control over drug delivery; iv) and the final scale up. On the other hand, an area that deserves more attention is the cryopreservation of encapsulated cells as this will facilitate the arrival of these biosystems to the clinic.
Collapse
Affiliation(s)
- Haritz Gurruchaga
- University of the Basque Country, Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Group, Faculty of Pharmacy, UPV/EHU , Vitoria-Gasteiz, 01006 , Spain
| | | | | | | | | | | |
Collapse
|
34
|
Bill BR, Korzh V. Choroid plexus in developmental and evolutionary perspective. Front Neurosci 2014; 8:363. [PMID: 25452709 PMCID: PMC4231874 DOI: 10.3389/fnins.2014.00363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/22/2014] [Indexed: 01/17/2023] Open
Abstract
The blood-cerebrospinal fluid boundary is present at the level of epithelial cells of the choroid plexus. As one of the sources of the cerebrospinal fluid (CSF), the choroid plexus (CP) plays an important role during brain development and function. Its formation has been studied largely in mammalian species. Lately, progress in other model animals, in particular the zebrafish, has brought a deeper understanding of CP formation, due in part to the ability to observe CP development in vivo. At the same time, advances in comparative genomics began providing information, which opens a possibility to understand further the molecular mechanisms involved in evolution of the CP and the blood-cerebrospinal fluid boundary formation. Hence this review focuses on analysis of the CP from developmental and evolutionary perspectives.
Collapse
Affiliation(s)
- Brent Roy Bill
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Vladimir Korzh
- Agency for Science, Technology and Research of Singapore, Institute of Molecular and Cell Biology Singapore, Singapore ; National University of Singapore, Department of Biological Sciences Singapore, Singapore
| |
Collapse
|
35
|
Kratzer I, Chip S, Vexler ZS. Barrier mechanisms in neonatal stroke. Front Neurosci 2014; 8:359. [PMID: 25426016 PMCID: PMC4224076 DOI: 10.3389/fnins.2014.00359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Clinical data continue to reveal that the incidence of perinatal stroke is high, similar to that in the elderly. Perinatal stroke leads to significant morbidity and severe long-term neurological and cognitive deficits, including cerebral palsy. Experimental models of cerebral ischemia in neonatal rodents have shown that the pathophysiology of perinatal brain damage is multifactorial. Cerebral vasculature undergoes substantial structural and functional changes during early postnatal brain development. Thus, the state of the vasculature could affect susceptibility of the neonatal brain to cerebral ischemia. In this review, we discuss some of the most recent findings regarding the neurovascular responses of the immature brain to focal arterial stroke in relation to neuroinflammation. We also discuss a possible role of the neonatal blood-CSF barrier in modulating inflammation and the long-term effects of early neurovascular integrity after neonatal stroke on angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Ingrid Kratzer
- Department of Neurology, University of California San Francisco San Francisco, CA, USA
| | - Sophorn Chip
- Department of Neurology, University of California San Francisco San Francisco, CA, USA
| | - Zinaida S Vexler
- Department of Neurology, University of California San Francisco San Francisco, CA, USA
| |
Collapse
|
36
|
Bolos M, Antequera D, Aldudo J, Kristen H, Bullido MJ, Carro E. Choroid plexus implants rescue Alzheimer's disease-like pathologies by modulating amyloid-β degradation. Cell Mol Life Sci 2014; 71:2947-55. [PMID: 24343520 PMCID: PMC11113864 DOI: 10.1007/s00018-013-1529-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/13/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
The choroid plexuses (CP) release numerous biologically active enzymes and neurotrophic factors, and contain a subpopulation of neural progenitor cells providing the capacity to proliferate and differentiate into other types of cells. These characteristics make CP epithelial cells (CPECs) excellent candidates for cell therapy aiming at restoring brain tissue in neurodegenerative illnesses, including Alzheimer's disease (AD). In the present study, using in vitro approaches, we demonstrated that CP were able to diminish amyloid-β (Aβ) levels in cell cultures, reducing Aβ-induced neurotoxicity. For in vivo studies, CPECs were transplanted into the brain of the APP/PS1 murine model of AD that exhibits advanced Aβ accumulation and memory impairment. Brain examination after cell implantation revealed a significant reduction in brain Aβ deposits, hyperphosphorylation of tau, and astrocytic reactivity. Remarkably, the transplantation of CPECs was accompanied by a total behavioral recovery in APP/PS1 mice, improving spatial and non-spatial memory. These findings reinforce the neuroprotective potential of CPECs and the use of cell therapies as useful tools in AD.
Collapse
Affiliation(s)
- Marta Bolos
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041 Madrid, Spain
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Desireé Antequera
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041 Madrid, Spain
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Aldudo
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CBM (UAM/CSIC), Madrid, Spain
| | - Henrike Kristen
- Centro de Biología Molecular Severo Ochoa, CBM (UAM/CSIC), Madrid, Spain
| | - María Jesús Bullido
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CBM (UAM/CSIC), Madrid, Spain
| | - Eva Carro
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041 Madrid, Spain
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
37
|
Carriers in cell-based therapies for neurological disorders. Int J Mol Sci 2014; 15:10669-723. [PMID: 24933636 PMCID: PMC4100175 DOI: 10.3390/ijms150610669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023] Open
Abstract
There is a pressing need for long-term neuroprotective and neuroregenerative therapies to promote full function recovery of injuries in the human nervous system resulting from trauma, stroke or degenerative diseases. Although cell-based therapies are promising in supporting repair and regeneration, direct introduction to the injury site is plagued by problems such as low transplanted cell survival rate, limited graft integration, immunorejection, and tumor formation. Neural tissue engineering offers an integrative and multifaceted approach to tackle these complex neurological disorders. Synergistic therapeutic effects can be obtained from combining customized biomaterial scaffolds with cell-based therapies. Current scaffold-facilitated cell transplantation strategies aim to achieve structural and functional rescue via offering a three-dimensional permissive and instructive environment for sustainable neuroactive factor production for prolonged periods and/or cell replacement at the target site. In this review, we intend to highlight important considerations in biomaterial selection and to review major biodegradable or non-biodegradable scaffolds used for cell transplantation to the central and peripheral nervous system in preclinical and clinical trials. Expanded knowledge in biomaterial properties and their prolonged interaction with transplanted and host cells have greatly expanded the possibilities for designing suitable carrier systems and the potential of cell therapies in the nervous system.
Collapse
|
38
|
Potential therapeutic effects of neurotrophins for acute and chronic neurological diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:601084. [PMID: 24818146 PMCID: PMC4000962 DOI: 10.1155/2014/601084] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/25/2014] [Indexed: 12/31/2022]
Abstract
The neurotrophins (NTs) nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT-3, and NT-4/5 are proteins that regulate cell proliferation, differentiation, and survival in both the developing and mature central nervous system (CNS) by binding to two receptor classes, Trk receptors and p75 NTR. Motivated by the broad growth- and survival-promoting effects of these proteins, numerous studies have attempted to use exogenous NTs to prevent the death of cells that are associated with neurological disease or promote the regeneration of severed axons caused by mechanical injury. Indeed, such neurotrophic effects have been repeatedly demonstrated in animal models of stroke, nerve injury, and neurodegenerative disease. However, limitations, including the short biological half-lives and poor blood-brain permeability of these proteins, prevent routine application from treating human disease. In this report, we reviewed evidence for the neuroprotective efficacy of NTs in animal models, highlighting outstanding technical challenges and discussing more recent attempts to harness the neuroprotective capacity of endogenous NTs using small molecule inducers and cell transplantation.
Collapse
|
39
|
Huang SL, Wang J, He XJ, Li ZF, Pu JN, Shi W. Secretion of BDNF and GDNF from free and encapsulated choroid plexus epithelial cells. Neurosci Lett 2014; 566:42-5. [PMID: 24561094 DOI: 10.1016/j.neulet.2014.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Choroid plexus epithelial cells secrete numerous biologically active neurotrophic factors, which may be beneficial to the transplantation site. Encapsulated cells are often used in tissue transplantation. The present study was conducted to investigate the effect of encapsulation on the secretory function of choroid plexus epithelial cells. Neonatal rat choroid plexus epithelial cells were primarily cultured. After 9 days of culture, the cells were distributed into two groups, and one group of cells was encapsulated in vitro. The initial culture conditions such as cell numbers and medium volumes were the same. Supernatants in the free and encapsulated choroid plexus epithelial cells were collected at the time points of day 1 through day 7. Quantitative determination of the BDNF and GDNF levels was performed by enzyme-linked immunosorbent assay to assess the secretory function of the cells in the two forms. Statistical analyses were performed using a Student t test. P<0.05 was set to indicate statistical significance. A very similar secretion pattern was observed in both groups. In the first 4 days of encapsulation, the release of BDNF and GDNF in the encapsulated cells was significantly lower than that in the free cells, while the difference diminished after day 5. This in vitro study demonstrates that the secretion of BDNF and GDNF in encapsulated choroid plexus epithelial cells is different from that in non-encapsulated cells in the early stage of encapsulation treatment, whereas it is similar in the later stage.
Collapse
Affiliation(s)
- Sheng-Li Huang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of pediatrics, Xi'an Children's Hospital, Xi'an, China
| | - Xi-Jing He
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Zong-Fang Li
- Central Laboratory for scientific Research, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jing-Nan Pu
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wei Shi
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
40
|
Aliaghaei A, Khodagholi F, Ahmadiani A. Conditioned media of choroid plexus epithelial cells induces Nrf2-activated phase II antioxidant response proteins and suppresses oxidative stress-induced apoptosis in PC12 cells. J Mol Neurosci 2014; 53:617-25. [PMID: 24488602 DOI: 10.1007/s12031-014-0228-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/01/2014] [Indexed: 12/01/2022]
Abstract
Based on the critical role of the choroid plexus (CP) in detoxification processes in the central nervous system (CNS), herein we investigated the effect of choroid plexus epithelial cells conditioned media (CPECs-CM) under oxidative conditions. CPECs were isolated from rat brains, cultured, and the conditioned media were collected. Then pheochromocytoma neuron-like cells (PC12) were treated simultaneously with CPECs-CM and H2O2 as the oxidative stressor. Next, the effect of CPECs-CM on neurite outgrowth and cell differentiation in the presence of H2O2 was determined. Our results showed that CPECs-CM improved the expansion of neurites and differentiation in PC12 cells under oxidative stress conditions. Changes in apoptotic factors, nuclear factor erythroid 2-related factor 2 (Nrf2) and γ-glutamylcysteine synthetase as the highlighted pathway in the antioxidant defense system were determined by western blot. Also, the activity of antioxidant enzymes and lipid peroxidation level were determined. CPECs-CM-treated PC12 cells could survive after exposure to H2O2 by reduction of caspase-3 cleavage and Bax level and elevation of anti-apoptotic factor Bcl2. Our data also revealed that Nrf2 activation, and consequently its downstream protein levels, increased in the presence of CPECs-CM. Based on our data, we can conclude that CPECs-CM protects PC12 cells against oxidative stress and apoptosis. It seems that CPECs secrete antioxidative agents and neurotrophic factors that have a role in the health of the CNS.
Collapse
Affiliation(s)
- Abbas Aliaghaei
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
41
|
Saito S, Saito K, Nabeka H, Shimokawa T, Kobayashi N, Matsuda S. Differential expression of the alternatively spliced forms of prosaposin mRNAs in rat choroid plexus. Cell Tissue Res 2014; 356:231-42. [PMID: 24414178 DOI: 10.1007/s00441-013-1773-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/14/2013] [Indexed: 02/02/2023]
Abstract
Prosaposin has two distinct profiles. One is a precursor form that is processed into saposins thus promoting lysosomal sphingolipid hydrolase function, whereas the other is an intact form that is not processed into saposins but is abundant in certain tissues and secretory fluids, including the cerebrospinal fluid. In rats, alternative splicing in the prosaposin gene generates mRNAs with and without a 9-base insertion (Pro+9 and Pro+0 mRNAs, respectively). Pro+9 mRNA is reported to be preferentially expressed in tissues in which the intact form of prosaposin dominates, whereas Pro+0 mRNA is preferentially expressed in tissues in which the precursor dominates. The expression patterns of Pro+9 and Pro+0 mRNAs in the rat choroid plexus are examined in the present study. The specificities of 36-mer oligonucleotide probes used to detect the 9-base insertion by in situ hybridization were demonstrated by dot-blot hybridization. Next, these probes were used for in situ hybridization, which showed predominant expression of Pro+0 mRNA and weak expression of Pro+9 mRNA in the choroid plexus. These expression patterns were confirmed by reverse transcription plus the polymerase chain reaction with AlwI restriction enzyme treatment. Expression of the intact form of prosaposin in the choroid plexus was assessed by Western blotting and immunohistochemistry. Because the choroid plexus is responsible for the generation of cerebrospinal fluid containing the intact form of prosaposin, the present study raises the possibility that Pro+0 mRNA is related to the intact form in the choroid plexus and that the alternatively spliced forms of mRNAs do not simply correspond to the precursor and intact forms of prosaposin.
Collapse
Affiliation(s)
- Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, 501-1128, Japan,
| | | | | | | | | | | |
Collapse
|
42
|
Pabon M, Tamboli C, Tamboli S, Acosta S, De La Pena I, Sanberg PR, Tajiri N, Kaneko Y, Borlongan CV. ESTROGEN REPLACEMENT THERAPY FOR STROKE. CELL MEDICINE 2014; 6:111-122. [PMID: 24999442 DOI: 10.3727/215517913x672263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stroke is the third most common cause of death and severe disability among Western populations. Overall, the incidence of stroke is uniformly higher in men than in women. Stroke is rare in women during the reproductive years, and rapidly increases after menopause, strongly suggesting that estrogen (E2) plays an important role in the prevention of stroke. Ongoing studies are currently evaluating both the benefits and risks associated with E2 replacement therapy and hormone replacement therapy in stroke. Equally important is the role of E2 receptor (ER), as studies indicate that ER populations in several tissue sites may significantly change during stress and aging. Such changes may affect the patient's susceptibility to neurological disorders including stroke, and greatly affect the response to selective E2 receptor modulators (SERMs). Replacement therapies may be inefficient with low ER levels. The goal of this review paper is to discuss an animal model that will allow investigations of the potential therapeutic effects of E2 and its derivatives in stroke. We hypothesize that E2 neuroprotection is, in part, receptor mediated. This hypothesis is a proof of principle approach to demonstrate a role for specific ER subtypes in E2 neuroprotection. To accomplish this, we use a retroviral mediated gene transfer strategy that express subtypes of the ER gene in regions of the rat brain most susceptible to neuronal damage, namely the striatum and cortex. The animal model is exposed to experimental stroke conditions involving middle cerebral artery occlusion (MCAo) method, and eventually the extent of neuronal damage will be evaluated. A reduction in neuronal damage is expected when E2 is administered with specific ER subtypes. From this animal model, an optimal E2 dose and treatment regimen can be determined. The animal model can help identify potential E2-like therapeutics in stroke, and screen for beneficial or toxic additives present in commercial E2 preparations that are currently available. Such studies will be informative in designing drug therapies for stroke.
Collapse
Affiliation(s)
- Mibel Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cyrus Tamboli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Sarosh Tamboli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Sandra Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Ike De La Pena
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| |
Collapse
|
43
|
Huang SL, He XJ, Li ZF, Yao L, Yuan GL, Shi W. Primary culture of choroid plexuses from neonate rats containing progenitor cells capable of differentiation. Balkan Med J 2013; 30:350-4. [PMID: 25207140 DOI: 10.5152/balkanmedj.2013.8259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/13/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The choroid plexuses, which could secrete a number of neurotrophins, have recently been used in transplantation in central nervous system diseases. AIMS To study the mechanism of nerve regeneration in the central nervous system by grafting choroid plexus tissues. STUDY DESIGN Animal experimentation. METHODS The choroid plexuses from the lateral ventricles of neonatal rats were cultured in adherent culture, and immunocytochemical methods were used to analyse the progenitor cells on days 2, 6, and 10 after seeding. RESULTS Expression of both nestin and glial fibrillary acidic protein was observed in small cell aggregates on day 2 in primary culture. Most of the nestin-positive cells on day 6 were immunoreactive to glial fibrillary acidic protein antibody. No cells expressing nestin or glial fibrillary acidic protein were seen on day 10. CONCLUSION These experimental results indicate that the choroid plexus contains a specific cell population - progenitor cells. Under in vitro experimental conditions, the progenitor cells differentiated into choroid plexus epithelial cells but did not form neurons or astrocytes.
Collapse
Affiliation(s)
- Sheng-Li Huang
- Department of Orthopaedics, the Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xi-Jing He
- Department of Orthopaedics, the Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Zong-Fang Li
- Central Laboratory for Scientific Research, the Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Lu Yao
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Guo-Lian Yuan
- Central Laboratory for Scientific Research, the Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Wei Shi
- Department of Neurosurgery, the Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| |
Collapse
|
44
|
Ishikawa H, Tajiri N, Vasconcellos J, Kaneko Y, Mimura O, Dezawa M, Borlongan CV. Ischemic stroke brain sends indirect cell death signals to the heart. Stroke 2013; 44:3175-82. [PMID: 24008571 PMCID: PMC3859251 DOI: 10.1161/strokeaha.113.001714] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke is a leading cause of mortality and morbidity in the world and may be associated with cardiac myocyte vulnerability. However, it remains uncertain how an ischemic brain contributes to cardiac alternations. Here, we used experimental stroke models to reveal the pathological effects of the ischemic brain on the heart. METHODS For the in vitro study, primary rat neuronal cells were subjected to 90-minute oxygen-glucose deprivation (OGD). Two hours after OGD, the supernatant was collected and cryopreserved until further biological assays. Primary rat cardiac myocytes were exposed to ischemic-reperfusion injury and subsequently to the supernatant derived from either the OGD or non-OGD-exposed primary rat neuronal cells for 2, 6, 24, or 48 hours. Thereafter, we measured cell viability and mitochondrial activity in rat cardiac myocytes. For the in vivo study, we subjected adult rats to transient middle cerebral artery occlusion, and their brains and hearts were harvested for immunohistochemical analyses at 3 months later. RESULTS The supernatant from the OGD, but not the non-OGD-exposed primary rat neuronal cells, caused significant reduction in cell viability and mitochondrial activity in rat cardiac myocytes. Ischemic stroke animals displayed phenotypic expression of necrosis, apoptosis, and autophagy in their hearts, which paralleled the detection of these same cell death markers in their brains. CONCLUSIONS Ischemic stroke was accompanied by cardiac myocyte death, indicating a close pathological link between brain and heart. These results suggest a vigilant assessment of the heart condition in stroke patients, likely requiring the need to treat systemic cardiac symptoms after an ischemic brain episode.
Collapse
Affiliation(s)
- Hiroto Ishikawa
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
- Department of Ophthalmology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - J Vasconcellos
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Osamu Mimura
- Department of Ophthalmology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology & Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
45
|
Ishikawa H, Tajiri N, Shinozuka K, Vasconcellos J, Kaneko Y, Lee HJ, Mimura O, Dezawa M, Kim SU, Borlongan CV. Vasculogenesis in experimental stroke after human cerebral endothelial cell transplantation. Stroke 2013; 44:3473-81. [PMID: 24130140 DOI: 10.1161/strokeaha.113.001943] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE Despite the reported functional recovery in transplanted stroke models and patients, the mechanism of action underlying stem cell therapy remains not well understood. Here, we examined the role of stem cell-mediated vascular repair in stroke. METHODS Adult rats were exposed to transient occlusion of the middle cerebral artery and 3 hours later randomly stereotaxically transplantated with 100K, 200K, or 400K human cerebral endothelial cell 6 viable cells or vehicle. Animals underwent neurological examination and motor test up to day 7 after transplantation then euthanized for immunostaining against neuronal, vascular, and specific human antigens. A parallel in vitro study cocultured rat primary neuronal cells with human cerebral endothelial cell 6 under oxygen-glucose deprivation and treated with vascular endothelial growth factor (VEGF) and anti-VEGF. RESULTS Stroke animals that received vehicle infusion displayed typical occlusion of the middle cerebral artery-induced behavioral impairments that were dose-dependently reduced in transplanted stroke animals at days 3 and 7 after transplantation and accompanied by increased expression of host neuronal and vascular markers adjacent to the transplanted cells. Some transplanted cells showed a microvascular phenotype and juxtaposed to the host vasculature. Infarct volume in transplanted stroke animals was significantly smaller than vehicle-infused stroke animals. Moreover, rat neurons cocultured with human cerebral endothelial cell 6 or treated with VEGF exhibited significantly less oxygen-glucose deprivation-induced cell death that was blocked by anti-VEGF treatment. CONCLUSIONS We found attenuation of behavioral and histological deficits coupled with robust vasculogenesis and neurogenesis in endothelial cell-transplanted stroke animals, suggesting that targeting vascular repair sets in motion a regenerative process in experimental stroke possibly via the VEGF pathway.
Collapse
Affiliation(s)
- Hiroto Ishikawa
- From the Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL (H.I., N.T., K.S., J.V., Y.K., C.V.B.); Department of Ophthalmology, Hyogo College of Medicine, Nishinomiya, Japan (H.I., O.M.); Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea (H.J.L.); Department of Stem Cell Biology and Histology and Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan (M.D.); and Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada (S.U.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, Borlongan CV. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des 2012; 18:3731-4. [PMID: 22574986 DOI: 10.2174/138161212802002733] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/17/2012] [Indexed: 01/07/2023]
Abstract
Endothelial progenitor cells (EPCs) correspond to a population of cells with novel properties capable of angiogenesis and vasculogenesis, thus they are likely to display unique role in the reconstitution of the blood brain barrier (BBB) after stroke. Laboratory evidence supports safety and efficacy of cell therapy for stroke, with limited clinical trials recently initiated. This lab-to-clinic ascent of cell-based therapeutics has been aided by the establishment of consortium consisting of thought-leaders from academia, industry, National Institutes of Health (NIH) and the United States Food and Drug Administration (FDA). However, there remain unanswered questions prior to realization of large-scale application of cell transplantation in patients. This review article discusses translational challenges associated in cell therapy, emphasizing the need for optimizing both safety and efficacy profiles for advancing the clinical applications of EPC transplantation for stroke patients.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions. JOURNAL OF PHARMACEUTICS 2012; 2013:103527. [PMID: 26555963 PMCID: PMC4595965 DOI: 10.1155/2013/103527] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/15/2012] [Indexed: 01/17/2023]
Abstract
Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed.
Collapse
|
48
|
Kaneko Y, Tajiri N, Su TP, Wang Y, Borlongan CV. Combination treatment of hypothermia and mesenchymal stromal cells amplifies neuroprotection in primary rat neurons exposed to hypoxic-ischemic-like injury in vitro: role of the opioid system. PLoS One 2012; 7:e47583. [PMID: 23077646 PMCID: PMC3471862 DOI: 10.1371/journal.pone.0047583] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
This study was designed to reveal the therapeutic regimen and mechanism of action underlying hypothermia treatment in combination with stem cell transplantation for ameliorating neonatal hypoxic-ischemic-like injury. Primary rat neurons were exposed to oxygen-glucose deprivation (OGD), which produced hypoxic-ischemic-like injury in vitro, then incubated at 25°C (severe hypothermia), 34°C (moderate hypothermia), and 37°C (normothermia) with or without subsequent co-culture with mesenchymal stromal cells (MSCs). Combination treatment of moderate hypothermia and MSCs significantly improved cell survival and mitochondrial activity after OGD exposure. The exposure of delta opioid human embryonic kidney cells (HEK293) to moderate hypothermia attenuated OGD-mediated cell alterations, which were much more pronounced in HEK293 cells overexpressing the delta opioid receptor. Further, the addition of delta opioid peptide to 34°C hypothermia and stem cell treatment in primary rat neurons showed synergistic neuroprotective effects against OGD which were significantly more robust than the dual combination of moderate hypothermia and MSCs, and were significantly reduced, but not completely abolished, by the opioid receptor antagonist naltrexone altogether implicating a ligand-receptor mechanism of neuroprotection. Further investigations into non-opioid therapeutic signaling pathways revealed growth factor mediation and anti-apoptotic function accompanying the observed therapeutic benefits. These results support combination therapy of hypothermia and stem cells for hypoxic-ischemic-like injury in vitro, which may have a direct impact on current clinical trials using stand-alone hypothermia or stem cells for treating neonatal encephalopathy.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Tsung-Ping Su
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yun Wang
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
49
|
A missense mutation (c.1963A<G) of the complementary component 2 (C2) gene is associated with serum Ca⁺⁺ concentrations in pigs. Mol Biol Rep 2012; 39:9291-7. [PMID: 22763733 DOI: 10.1007/s11033-012-1679-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Serum Ca(++) levels play important roles in the humoral immunity. The aim of this study was to detect quantitative trait loci and the associated positional candidate genes affecting baseline serum Ca(++) concentrations. A genome-wide association study was conducted in an F(2) intercross population between Landrace and Korean native pigs using the porcine single nucleotide polymorphism (SNP) 60 K beadchip and the PLINK program based on linear regression. Data used in the study included 410 F(2) pigs. All experimental animals were genotyped with 36,613 SNP markers located throughout the pig autosomes. We identified a strong association between a SNP marker on chromosome 7 and serum Ca(++) levels (DIAS0002191, genomic control-corrected P = 7.7 × 10(-5)). The position of DIAS0002191 was closely located to SLA class III region containing the C2 gene encoding the complementary component 2 protein, a protein which is important in the humoral immune responses. De novo sequencing of the porcine C2 gene revealed a missense mutation [c.1963A<G (N655D)] and this missense mutation was also strongly associated with serum Ca(++) concentrations (genomic control-corrected P = 5.9 × 10(-5)). Further studies are necessary to investigate the effect of this missense mutation at a functional-molecular level. In conclusion, the missense mutation of the C2 gene identified in this study may help in elucidating the genetic factors underlying humoral immune reactions.
Collapse
|
50
|
Xiang J, Alesi GN, Zhou N, Keep RF. Protective effects of isothiocyanates on blood-CSF barrier disruption induced by oxidative stress. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1-7. [PMID: 22573102 DOI: 10.1152/ajpregu.00518.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The choroid plexuses (CPs) form the blood-cerebrospinal fluid (CSF) barrier (BCSFB) and play an important role in maintaining brain normal function and the brain response to injury. Many neurological disorders are associated with oxidative stress that can impact CP function. This study examined the effects of isothiocyanates, an abundant component in cruciferous vegetables, on H(2)O(2)-induced BCSFB disruption and CP cell death in vitro. It further examined the potential role of a transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), in isothiocyanate-induced protection. Sulforaphane (SF) significantly reduced H(2)O(2)-induced BCSFB disruption as assessed by transepithelial electrical resistance (29 ± 7% reduction vs. 92 ± 2% decrease in controls) and [(3)H]mannitol permeability. Allyl-isothiocyanate (AITC) had a similar protective effect. H(2)O(2)-induced epithelial cell death was also reduced by these isothiocyanates. In primary CP cells, SF and AITC reduced cell death by 42 ± 3% and 53 ± 10%, respectively. Similar protection was found in a CP cell line Z310. Protection was only found with pretreatment for 12-48 h and not with acute exposure (1 h). The protective effects of SF and AITC were associated with Nrf2 nuclear translocation and upregulated expression of antioxidative systems regulated by Nrf2, including heme oxygenase-1, NAD(P)H quinine oxidoreductase, and cysteine/glutamate exchange transporter. Thus isothiocyanates, as diet or medicine, may be a method for protecting BCSFB in neurological disorders.
Collapse
Affiliation(s)
- Jianming Xiang
- Department of Neurosurgery, Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|