1
|
Gunawardene AN, Reyes N, Valdes-Arias D, Ortug A, Martinez J, Galor A, Moulton EA. Abnormal visual cortex activity using functional magnetic resonance imaging in treatment resistant photophobia in Friedreich Ataxia. Am J Ophthalmol Case Rep 2024; 36:102213. [PMID: 39583293 PMCID: PMC11585643 DOI: 10.1016/j.ajoc.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Friedreich ataxia (FDRA) is a debilitating neurodegenerative disease that can have ophthalmological manifestations including visual dysfunction, nystagmus, and optic atrophy. However, severe photophobia has not been reported nor evaluated with functional magnetic resonance imaging (fMRI). Methods A 64-year-old white female with a 37-year history of FDRA presented to the eye clinic with worsening photophobia of 3 years. To measure her visual cortex activation and subjective responses during episodes of photophobia, she underwent event-related fMRI with light stimuli. In comparison, the same protocol was conducted in an individual with photophobia but without FDRA. After the fMRI, both patients were treated with 35 units of BoNT-A applied to the forehead. Results Analysis of visual cortex activity in response to light stimulus in the FDRA patient showed no correlation between blood oxygen level dependent (BOLD) activation and light stimuli in the first (r = -0.100, p = 0.235), and a weak negative correlation in the second half of the fMRI scan (r = -0.236 p = 0.004). In notable contrast, significant positive correlations were noted between visual cortex activity and the light stimulus (1st half: r = 0.742, p < 0.001, vs. 2nd half: r = 0.614, p < 0.001) in the comparator. Six weeks later, no improvement in photophobia was noted in either patient. Conclusion and importance Our study highlights photophobia as one potential ocular manifestation of FDRA and suggests that one underlying contributor may be a decoupled cortical neurovascular response to light. Our study provides novel information that may guide physiologic understanding and future treatments in this disease.
Collapse
Affiliation(s)
- Araliya N. Gunawardene
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Nicholas Reyes
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - David Valdes-Arias
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Alpen Ortug
- Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02115, USA
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
| | - Jaime Martinez
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Anat Galor
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Eric A. Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
- Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
| |
Collapse
|
2
|
Amemiya S, Takao H, Abe O. Resting-State fMRI: Emerging Concepts for Future Clinical Application. J Magn Reson Imaging 2024; 59:1135-1148. [PMID: 37424140 DOI: 10.1002/jmri.28894] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rsfMRI) has been developed as a method of investigating spontaneous neural activity. Based on its low-frequency signal synchronization, rsfMRI has made it possible to identify multiple macroscopic structures termed resting-state networks (RSNs) on a single scan of less than 10 minutes. It is easy to implement even in clinical practice, in which assigning tasks to patients can be challenging. These advantages have accelerated the adoption and growth of rsfMRI. Recently, studies on the global rsfMRI signal have attracted increasing attention. Because it primarily arises from physiological events, less attention has hitherto been paid to the global signal than to the local network (i.e., RSN) component. However, the global signal is not a mere nuisance or a subsidiary component. On the contrary, it is quantitatively the dominant component that accounts for most of the variance in the rsfMRI signal throughout the brain and provides rich information on local hemodynamics that can serve as an individual-level diagnostic biomarker. Moreover, spatiotemporal analyses of the global signal have revealed that it is closely and fundamentally associated with the organization of RSNs, thus challenging the basic assumptions made in conventional rsfMRI analyses and views on RSNs. This review introduces new concepts emerging from rsfMRI spatiotemporal analyses focusing on the global signal and discusses how they may contribute to future clinical medicine. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Shah-Basak P, Boukrina O, Li XR, Jebahi F, Kielar A. Targeted neurorehabilitation strategies in post-stroke aphasia. Restor Neurol Neurosci 2023; 41:129-191. [PMID: 37980575 PMCID: PMC10741339 DOI: 10.3233/rnn-231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Aphasia is a debilitating language impairment, affecting millions of people worldwide. About 40% of stroke survivors develop chronic aphasia, resulting in life-long disability. OBJECTIVE This review examines extrinsic and intrinsic neuromodulation techniques, aimed at enhancing the effects of speech and language therapies in stroke survivors with aphasia. METHODS We discuss the available evidence supporting the use of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation, and functional MRI (fMRI) real-time neurofeedback in aphasia rehabilitation. RESULTS This review systematically evaluates studies focusing on efficacy and implementation of specialized methods for post-treatment outcome optimization and transfer to functional skills. It considers stimulation target determination and various targeting approaches. The translation of neuromodulation interventions to clinical practice is explored, emphasizing generalization and functional communication. The review also covers real-time fMRI neurofeedback, discussing current evidence for efficacy and essential implementation parameters. Finally, we address future directions for neuromodulation research in aphasia. CONCLUSIONS This comprehensive review aims to serve as a resource for a broad audience of researchers and clinicians interested in incorporating neuromodulation for advancing aphasia care.
Collapse
Affiliation(s)
| | - Olga Boukrina
- Kessler Foundation, Center for Stroke Rehabilitation Research, West Orange, NJ, USA
| | - Xin Ran Li
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fatima Jebahi
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Aneta Kielar
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Amemiya S, Takao H, Watanabe Y, Miyawaki S, Koizumi S, Saito N, Abe O. Reliability and Sensitivity to Alterered Hemodynamics Measured with Resting-state fMRI Metrics: Comparison with 123I-IMP SPECT. Neuroimage 2022; 263:119654. [PMID: 36180009 DOI: 10.1016/j.neuroimage.2022.119654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Blood oxygenation level-dependent (BOLD) contrast is sensitive to local hemodynamic changes and thus is applicable to imaging perfusion or vascular reactivity. However, knowledge about its measurement characteristics compared to reference standard perfusion imaging is limited. This study longitudinally evaluated perfusion in patients with steno-occlusive disease using resting-state functional MRI (rsfMRI) acquired before and within nine days of anterior circulation revascularization in patients with large cerebral artery steno-occlusive diseases. The reliability and sensitivity to longitudinal changes of rsfMRI temporal correlation (Rc) and time delay (TDc) relative to the cerebellar signal were examined voxel-wise in comparison with single-photon emission CT (SPECT) cerebral blood flow (CBF) using the within-subject standard deviation (Sw) and intraclass correlation coefficients (ICCs). For statistical comparisons, the standard deviation (SD) of longitudinal changes within the cerebellum, the number of voxels with significant changes in the left middle cerebral artery territory ipsilateral to surgery, and their average changes relative to the cerebellar SD were evaluated. The test-retest reliability of the fMRI metrics was also similarly evaluated using the human connectome project (HCP) healthy young adult dataset. The test-retest time interval was 31 ± 18 days. Test-retest reliability was significantly higher for SPECT (cerebellar SD: -2.59 ± 0.20) than for fMRI metrics (cerebellar SD: Rc, -2.34 ± 0.24, p = 0.04; TDc, -2.19 ± 0.21, p = 0.003). Sensitivity to postoperative changes, which was evaluated as the number of voxels, was significantly higher for fMRI TDc (8.78 ± 0.72) than for Rc (7.42 ± 1.48, p = 0.03) or SPECT CBF (6.88 ± 0.67, p < 0.001). The ratio between the average Rc, TDc, and SPECT CBF changes within the left MCA target region and cerebellar SD was also significantly higher for fMRI TDc (1.21 ± 0.79) than Rc (0.48 ± 0.94, p = 0.006) or SPECT CBF (0.23 ± 0.57, p = 0.001). The measurement variability of time delay was also larger than that of temporal correlation in HCP data within the cerebellum (t = -8.7, p < 0.001) or in the whole-brain (t = -27.4, p < 0.001) gray matter. These data suggest that fMRI time delay is more sensitive to the hemodynamic changes than SPECT CBF, although the reliability is lower. The implication for fMRI connectivity studies is that temporal correlation can be significantly decreased due to altered hemodynamics, even in cases with normal CBF.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, JAPAN.
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, JAPAN
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, JAPAN
| | - Satoru Miyawaki
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, JAPAN
| | - Satoshi Koizumi
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, JAPAN
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, JAPAN
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, JAPAN
| |
Collapse
|
5
|
Amemiya S, Takao H, Abe O. Origin of the Time Lag Phenomenon and the Global Signal in Resting-State fMRI. Front Neurosci 2020; 14:596084. [PMID: 33250709 PMCID: PMC7673396 DOI: 10.3389/fnins.2020.596084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
The global mean signal of resting-state fMRI (rs-fMRI) shows a characteristic spatiotemporal pattern that is closely related to the pattern of vascular perfusion. Although being increasingly adopted in the mapping of the flow of neural activity, the mechanism that gives rise to the BOLD signal time lag remains controversial. In the present study, we compared the time lag of the global mean signal with those of the local network components obtained by applying temporal independent component analysis to the resting-state fMRI data, as well as by using simultaneous wide-field visual stimulation, and demonstrated that the time lag patterns are highly similar across all types of data. These results suggest that the time lag of the rs-fMRI signal reflects the local variance of the hemodynamic responses rather than the arrival or transit time of the stimulus, whether the trigger is neuronal or non-neuronal in origin as long as it is mediated by local hemodynamic responses. Examinations of the internal carotid artery signal further confirmed that the arterial signal is tightly inversely coupled with the global mean signal in accordance with previous studies, presumably reflecting the blood flow or blood pressure changes that are occurring almost simultaneously in the internal carotid artery and the cerebral pial/capillary arteries, within the low-frequency component in human rs-fMRI.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Nagy M, Aranyi C, Opposits G, Papp T, Lánczi L, Berényi E, Vér C, Csiba L, Katona P, Spisák T, Emri M. Effective connectivity differences in motor network during passive movement of paretic and non-paretic ankles in subacute stroke patients. PeerJ 2020; 8:e8942. [PMID: 32518713 PMCID: PMC7258895 DOI: 10.7717/peerj.8942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/18/2020] [Indexed: 11/20/2022] Open
Abstract
Background A better understanding of the neural changes associated with paresis in stroke patients could have important implications for therapeutic approaches. Dynamic Causal Modeling (DCM) for functional magnetic resonance imaging (fMRI) is commonly used for analyzing effective connectivity patterns of brain networks due to its significant property of modeling neural states behind fMRI signals. We applied this technique to analyze the differences between motor networks (MNW) activated by continuous passive movement (CPM) of paretic and non-paretic ankles in subacute stroke patients. This study aimed to identify CPM induced connectivity characteristics of the primary sensory area (S1) and the differences in extrinsic directed connections of the MNW and to explain the hemodynamic differences of brain regions of MNW. Methods For the network analysis, we used ten stroke patients’ task fMRI data collected under CPMs of both ankles. Regions for the MNW, the primary motor cortex (M1), the premotor cortex (PM), the supplementary motor area (SMA) and the S1 were defined in a data-driven way, by independent component analysis. For the network analysis of both CPMs, we compared twelve models organized into two model-families, depending on the S1 connections and input stimulus modeling. Using DCM, we evaluated the extrinsic connectivity strengths and hemodynamic parameters of both stimulations of all patients. Results After a statistical comparison of the extrinsic connections and their modulations of the “best model”, we concluded that three contralateral self-inhibitions (cM1, cS1 and cSMA), one contralateral inter-regional connection (cSMA→cM1), and one interhemispheric connection (cM1→iM1) were significantly different. Our research shows that hemodynamic parameters can be estimated with the Balloon model using DCM but the parameters do not change with stroke. Conclusions Our results confirm that the DCM-based connectivity analyses combined with Bayesian model selection may be a useful technique for quantifying the alteration or differences in the characteristics of the motor network in subacute stage stroke patients and in determining the degree of MNW changes.
Collapse
Affiliation(s)
- Marianna Nagy
- Faculty of Medicine, Department of Medical Imaging, Division of Radiology and Imaging Science, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Csaba Aranyi
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Gábor Opposits
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Tamás Papp
- Faculty of Medicine, Department of Medical Imaging, Division of Radiology and Imaging Science, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Levente Lánczi
- Faculty of Medicine, Department of Medical Imaging, Division of Radiology and Imaging Science, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary.,Department of Diagnostic Radiology, Kenézy University Hospital, Debrecen, Hajdú-Bihar, Hungary
| | - Ervin Berényi
- Faculty of Medicine, Department of Medical Imaging, Division of Radiology and Imaging Science, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Csilla Vér
- Clinical Center, Department of Neurology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - László Csiba
- Clinical Center, Department of Neurology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Péter Katona
- Department of Diagnostic Radiology, Kenézy University Hospital, Debrecen, Hajdú-Bihar, Hungary
| | - Tamás Spisák
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Miklós Emri
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| |
Collapse
|
7
|
Amemiya S, Takao H, Abe O. Global vs. Network-Specific Regulations as the Source of Intrinsic Coactivations in Resting-State Networks. Front Syst Neurosci 2019; 13:65. [PMID: 31736721 PMCID: PMC6829116 DOI: 10.3389/fnsys.2019.00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/14/2019] [Indexed: 12/02/2022] Open
Abstract
Spontaneous neural activities are endowed with specific patterning characterized by synchronizations within functionally relevant distant regions that are termed as resting-state networks (RSNs). Although the mechanisms that organize the large-scale neural systems are still largely unknown, recent studies have proposed a hypothesis that network-specific coactivations indeed emerge as the result of globally propagating neural activities with specific paths of transmission. However, the extent to which such a centralized global regulation, rather than network-specific control, contributes to the RSN synchronization remains unknown. In the present study, we investigated the contribution from each mechanism by directly identifying the global as well as local component of resting-state functional MRI (fMRI) data provided by human connectome project, using temporal independent component analysis (ICA). Based on the spatial distribution pattern, each ICA component was classified as global or local. Time lag mapping of each IC revealed several paths of global or semi-global propagations that are partially overlapping yet spatially distinct to each other. Consistent with previous studies, the time lag of global oscillation, although being less spatially homogenous than what was assumed to be, contributed to the RSN synchronization. However, an equivalent contribution was also shown on the part of the more locally confined activities that are independent to each other. While allowing the view that network-specific coactivation occurs as part of the sequences of global neural activities, these results further confirm an equally important role of the network-specific regulation for its coactivation, regardless of whether vascular artifacts contaminate the global component in fMRI measures.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Boukrina O, Kucukboyaci NE, Dobryakova E. Considerations of power and sample size in rehabilitation research. Int J Psychophysiol 2019; 154:6-14. [PMID: 31655185 DOI: 10.1016/j.ijpsycho.2019.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 01/26/2023]
Abstract
With the current emphasis on power and reproducibility, pressures are rising to increase sample sizes in rehabilitation research in order to reflect more accurate effect estimation and generalizable results. The conventional way of increasing power by enrolling more participants is less feasible in some fields of research. In particular, rehabilitation research faces considerable challenges in achieving this goal. We describe the specific challenges to increasing power by recruiting large sample sizes and obtaining large effects in rehabilitation research. Specifically, we discuss how variability within clinical populations, lack of common standards for selecting appropriate control groups; potentially reduced reliability of measurements of brain function in individuals recovering from a brain injury; biases involved in a priori effect size estimation, and higher budgetary and staffing requirements can influence considerations of sample and effect size in rehabilitation. We also describe solutions to these challenges, such as increased sampling per participant, improving experimental control, appropriate analyses, transparent result reporting and using innovative ways of harnessing the inherent variability of clinical populations. These solutions can improve statistical power and produce reliable and valid results even in the face of limited availability of large samples.
Collapse
Affiliation(s)
- Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - N Erkut Kucukboyaci
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
9
|
Wang X, Seguin C, Zalesky A, Wong WW, Chu WCW, Tong RKY. Synchronization lag in post stroke: relation to motor function and structural connectivity. Netw Neurosci 2019; 3:1121-1140. [PMID: 31637341 PMCID: PMC6777982 DOI: 10.1162/netn_a_00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Stroke is characterized by delays in the resting-state hemodynamic response, resulting in synchronization lag in neural activity between brain regions. However, the structural basis of this lag remains unclear. In this study, we used resting-state functional MRI (rs-fMRI) to characterize synchronization lag profiles between homotopic regions in 15 individuals (14 males, 1 female) with brain lesions consequent to stroke as well as a group of healthy comparison individuals. We tested whether the network communication efficiency of each individual's structural brain network (connectome) could explain interindividual and interregional variation in synchronization lag profiles. To this end, connectomes were mapped using diffusion MRI data, and communication measures were evaluated under two schemes: shortest paths and navigation. We found that interindividual variation in synchronization lags was inversely associated with communication efficiency under both schemes. Interregional variation in lag was related to navigation efficiency and navigation distance, reflecting its dependence on both distance and structural constraints. Moreover, severity of motor deficits significantly correlated with average synchronization lag in stroke. Our results provide a structural basis for the delay of information transfer between homotopic regions inferred from rs-fMRI and provide insight into the clinical significance of structural-functional relationships in stroke individuals.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Wan-wa Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie Chiu-wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Boukrina O, Barrett AM, Graves WW. Cerebral perfusion of the left reading network predicts recovery of reading in subacute to chronic stroke. Hum Brain Mapp 2019; 40:5301-5314. [PMID: 31452284 PMCID: PMC6864894 DOI: 10.1002/hbm.24773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023] Open
Abstract
Better understanding of cerebral blood flow (CBF) perfusion in stroke recovery can help inform decisions about optimal timing and targets of restorative treatments. In this study, we examined the relationship between cerebral perfusion and recovery from stroke‐induced reading deficits. Left stroke patients were tested with a noninvasive CBF measure (arterial spin labeling) <5 weeks post‐stroke, and a subset had follow up testing >3 months post‐stroke. We measured blood flow perfusion within the left and right sides of the brain, in areas surrounding the lesion, and areas belonging to the reading network. Two hypotheses were tested. The first was that recovery of reading function depends on increased perfusion around the stroke lesion. This hypothesis was not supported by our findings. The second hypothesis was that increased perfusion of intact areas within the reading circuit is tightly coupled with recovery. Our findings are consistent with this hypothesis. Specifically, higher perfusion in the left reading network measured during the subacute stroke period predicted better reading ability and phonology competence in the chronic period. In contrast, higher perfusion of the right homologous regions was associated with decreased reading accuracy and phonology competence in the subacute and chronic periods. These findings suggest that recovery of reading and language competence may rely on improved blood flow in the reading network of the language‐dominant hemisphere.
Collapse
Affiliation(s)
- Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, New Jersey.,Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - A M Barrett
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, New Jersey.,Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, New Jersey.,Kessler Institute for Rehabilitation, West Orange, New Jersey
| | - William W Graves
- Department of Psychology, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
11
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Atwi S, Metcalfe AWS, Robertson AD, Rezmovitz J, Anderson ND, MacIntosh BJ. Attention-Related Brain Activation Is Altered in Older Adults With White Matter Hyperintensities Using Multi-Echo fMRI. Front Neurosci 2018; 12:748. [PMID: 30405336 PMCID: PMC6200839 DOI: 10.3389/fnins.2018.00748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
Abstract
Cognitive decline is often undetectable in the early stages of accelerated vascular aging. Attentional processes are particularly affected in older adults with white matter hyperintensities (WMH), although specific neurovascular mechanisms have not been elucidated. We aimed to identify differences in attention-related neurofunctional activation and behavior between adults with and without WMH. Older adults with moderate to severe WMH (n = 18, mean age = 70 years), age-matched adults (n = 28, mean age = 72), and healthy younger adults (n = 19, mean age = 25) performed a modified flanker task during multi-echo blood oxygenation level dependent functional magnetic resonance imaging. Task-related activation was assessed using a weighted-echo approach. Healthy older adults had more widespread response and higher amplitude of activation compared to WMH adults in fronto-temporal and parietal cortices. Activation associated with processing speed was absent in the WMH group, suggesting attention-related activation deficits that may be a consequence of cerebral small vessel disease. WMH adults had greater executive contrast activation in the precuneous and posterior cingulate gyrus compared to HYA, despite no performance benefits, reinforcing the network dysfunction theory in WMH.
Collapse
Affiliation(s)
- Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Arron W S Metcalfe
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Centre for Youth Bipolar Disorder, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Andrew D Robertson
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jeremy Rezmovitz
- Department of Family and Community Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nicole D Anderson
- Department of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada.,Rotman Research Institute, Baycrest Centre, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Yan S, Qi Z, An Y, Zhang M, Qian T, Lu J. Detecting perfusion deficit in Alzheimer's disease and mild cognitive impairment patients by resting-state fMRI. J Magn Reson Imaging 2018; 49:1099-1104. [PMID: 30318645 DOI: 10.1002/jmri.26283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Vascular factors contributing to cerebral hypoperfusion are implicated in the risk of developing Alzheimer's disease (AD). PURPOSE To investigate the time-shift mapping created time-shift value of the brain by resting-state functional magnetic resonance imaging (rs-fMRI), and to determine the differences in time-shift value among AD, mild cognitive impairment (MCI), and normal control (NC) groups to better understand the disease. STUDY TYPE Prospective. SUBJECTS Twenty-four AD, 24 MCI, and 24 age-matched NC participants. FIELD STRENGTH/SEQUENCE T2 *-weighted single-shot echo-planar imaging sequence was performed at 3T. In addition, a T1 -weighted fast spoiled gradient-echo sequence was acquired for coregistration. ASSESSMENT The brain time-shift value was determined from rs-fMRI-based blood oxygenation level-dependent (BOLD) signal in the three groups by time-shift mapping. The perfusion patterns were also investigated in the NC group. STATISTICAL TESTS One-way analysis of variance and chi-squared tests were used to compare demographic information. The normalized time-shift maps were analyzed in a second-level test using SPM8. All analyses were evaluated with a significance level of P < 0.05 after false discovery rate (FDR) correction. RESULTS The time-shift maps obtained from rs-fMRI are consistent with the cerebral blood supply atlas. Compared with NC, both MCI and AD groups had less early perfusion arrival areas among the whole brain. In the delayed time-shift value for the AD group, the areas were located in the bilateral precuneus, the sensory-motor cortex in the left hemisphere, and the bilateral calcarine sulcus, which were different from the MCI group (both P < 0.05, FDR corrected). DATA CONCLUSION The time-shift mapping method could detect perfusion deficits in AD and MCI noninvasively. The perfusion deficits detected by rs-fMRI may provide new insight for understanding the mechanism of neurodegeneration. Level of Evidence 2 Technical Efficacy Stage 3 J. Magn. Reson. Imaging 2019;49:1099-1104.
Collapse
Affiliation(s)
- Shaozhen Yan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, P.R. China
| | - Zhigang Qi
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, P.R. China
| | - Yanhong An
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, P.R. China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, P.R. China
| | - Tianyi Qian
- MR Collaborations NE Asia, Siemens Healthcare, Beijing, P.R. China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, P.R. China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
14
|
Taylor AJ, Kim JH, Ress D. Characterization of the hemodynamic response function across the majority of human cerebral cortex. Neuroimage 2018; 173:322-331. [PMID: 29501554 DOI: 10.1016/j.neuroimage.2018.02.061] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/27/2023] Open
Abstract
A brief (<4 s) period of neural activation evokes a stereotypical sequence of vascular and metabolic events to create the hemodynamic response function (HRF) measured using functional magnetic resonance imaging (fMRI). Linear analysis of fMRI data requires that the HRF be treated as an impulse response, so the character and temporal stability of the HRF are critical issues. Here, a simple audiovisual stimulus combined with a fast-paced task was used to evoke a strong HRF across a majority, ∼77%, of cortex during a single scanning session. High spatiotemporal resolution (2-mm voxels, 1.25-s acquisition time) was used to focus HRF measurements specifically on the gray matter for whole brain. The majority of activated cortex responds with positive HRFs, while ∼27% responds with negative (inverted) HRFs. Spatial patterns of the HRF response amplitudes were found to be similar across subjects. Timing of the initial positive lobe of the HRF was relatively stable across the cortical surface with a mean of 6.1 ± 0.6 s across subjects, yet small but significant timing variations were also evident in specific regions of cortex. The results provide guidance for linear analysis of fMRI data. More importantly, this method provides a means to quantify neurovascular function across most of the brain, with potential clinical utility for the diagnosis of brain pathologies such as traumatic brain injury.
Collapse
Affiliation(s)
- Amanda J Taylor
- Department of Neuroscience, Core for Advanced MRI, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jung Hwan Kim
- Department of Neuroscience, Core for Advanced MRI, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Ress
- Department of Neuroscience, Core for Advanced MRI, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Chen SCJ, Hsieh YJ, Tyan YC, Chuang KS, Lai JJ, Chang CC. Adapted estimate of neural activity based on blood-oxygen-level dependent signal by a model-free spatio-temporal clustering analysis. Phys Med 2017; 43:6-14. [PMID: 29195564 DOI: 10.1016/j.ejmp.2017.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we detected brain activity by comparing the overall temporal response of the blood oxygen level referring to hemodynamic response with a modeled hemodynamic response (MHR). However, in a conventional analysis by statistical parametric mapping (SPM) method, the MHR is assumed to be a fixed-response function, which may bias the conclusions about brain activation, such as the shapes of the response curve or the different response delays to stimuli. Therefore, to improve detection efficacy, we applied a spatio-temporal clustering analysis (sTCA) to determine the MHR, which is calculated from the prospective voxels with no a priori information about the experiment design. With the sTCA method, these prospective voxels are detected by the feature with the largest temporal clustering within which these voxels react simultaneously, irrespective of where the variant hemodynamic response occurs. This estimated MHR (eMHR) is then applied to search for brain activation. Preliminary results show that the eMHR signal response closely resembles the real signal response of the target area. Moreover, the activation detection using eMHR method is more sensitive for the human visual and motor tasks than that with the canonical hemodynamic response embedded in the SPM analysis as the default MHR (dMHR). The more precise location of brain activation made possible by the improved sensitivity should provide helpful information about the stimulation of neuron activity.
Collapse
Affiliation(s)
- Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Keh-Shih Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Jui-Jen Lai
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Taiwan
| | - Chin-Ching Chang
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Taiwan
| |
Collapse
|
16
|
Sato Y, Matsumoto M. Clinical usefulness of multiphase arterial spin labeling imaging for evaluating cerebral hemodynamic status in a patient with symptomatic carotid stenosis by comparison with single-photon emission computed tomography: A case study. Radiol Case Rep 2017; 12:824-826. [PMID: 29484080 PMCID: PMC5823480 DOI: 10.1016/j.radcr.2017.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/05/2022] Open
Abstract
Multiphase arterial spin labeling (ASL), which obtains the imaged slices with various postlabeling delays, allows for the noninvasive assessment of cerebral hemodynamics that cannot be adequately acquired by single-photon emission computed tomography (SPECT) imaging. We describe the clinical usefulness of multiphase ASL in a patient with symptomatic carotid stenosis by comparison with SPECT at rest using iodoamphetamine. A 75-year-old man was referred to our hospital with severe stenosis of the left internal carotid artery (ICA). While SPECT showed no significant laterality of cerebral blood flow (CBF), multiphase ASL demonstrated relatively delayed perfusion in the left ICA territory. The patient underwent stent placement for the left ICA stenosis. Postoperatively, while SPECT demonstrated no significant laterality of CBF, multiphase ASL revealed improved perfusion in the left ICA territory. This case showed that multiphase ASL could accurately evaluate the cerebral hemodynamic status which could not be detected using pre- and postoperative SPECT.
Collapse
Affiliation(s)
- Yosuke Sato
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan.,Department of Neurosurgery, Cerebrovascular Center, Niigata Rosai Hospital, Japan Organization of Occupational Health and Safety, Niigata, Japan
| | - Masaki Matsumoto
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Lake EMR, Bazzigaluppi P, Stefanovic B. Functional magnetic resonance imaging in chronic ischaemic stroke. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0353. [PMID: 27574307 DOI: 10.1098/rstb.2015.0353] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 11/12/2022] Open
Abstract
Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Evelyn M R Lake
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paolo Bazzigaluppi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada Heart and Stroke Foundation Centre for Stroke Recovery, Ottawa, Canada
| |
Collapse
|
18
|
Williams RJ, Goodyear BG, Peca S, McCreary CR, Frayne R, Smith EE, Pike GB. Identification of neurovascular changes associated with cerebral amyloid angiopathy from subject-specific hemodynamic response functions. J Cereb Blood Flow Metab 2017; 37:3433-3445. [PMID: 28145796 PMCID: PMC5624392 DOI: 10.1177/0271678x17691056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a small-vessel disease preferentially affecting posterior brain regions. Recent evidence has demonstrated the efficacy of functional MRI in detecting CAA-related neurovascular injury, however, it is unknown whether such perturbations are associated with changes in the hemodynamic response function (HRF). Here we estimated HRFs from two different brain regions from block design activation data, in light of recent findings demonstrating how block designs can accurately reflect HRF parameter estimates while maximizing signal detection. Patients with a diagnosis of probable CAA and healthy controls performed motor and visual stimulation tasks. Time-to-peak (TTP), full-width at half-maximum (FWHM), and area under the curve (AUC) of the estimated HRFs were compared between groups and to MRI features associated with CAA including cerebral microbleed (CMB) count. Motor HRFs in CAA patients showed significantly wider FWHM ( P = 0.006) and delayed TTP ( P = 0.03) compared to controls. In the patient group, visual HRF FWHM was positively associated with CMB count ( P = 0.03). These findings indicate that hemodynamic abnormalities in patients with CAA may be reflected in HRFs estimated from block designs across different brain regions. Moreover, visual FWHM may be linked to structural MR indications associated with CAA.
Collapse
Affiliation(s)
- Rebecca J Williams
- 1 Department of Radiology, University of Calgary, Calgary, Canada.,2 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,3 Seaman Family MR Research Centre, Alberta Health Services, Calgary, Canada
| | - Bradley G Goodyear
- 1 Department of Radiology, University of Calgary, Calgary, Canada.,2 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,3 Seaman Family MR Research Centre, Alberta Health Services, Calgary, Canada.,4 Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Stefano Peca
- 5 Tom Baker Cancer Centre, University of Calgary, Calgary, Canada
| | - Cheryl R McCreary
- 1 Department of Radiology, University of Calgary, Calgary, Canada.,2 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,3 Seaman Family MR Research Centre, Alberta Health Services, Calgary, Canada.,4 Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Richard Frayne
- 1 Department of Radiology, University of Calgary, Calgary, Canada.,2 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,3 Seaman Family MR Research Centre, Alberta Health Services, Calgary, Canada.,4 Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Eric E Smith
- 1 Department of Radiology, University of Calgary, Calgary, Canada.,2 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,3 Seaman Family MR Research Centre, Alberta Health Services, Calgary, Canada.,4 Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - G Bruce Pike
- 1 Department of Radiology, University of Calgary, Calgary, Canada.,2 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,3 Seaman Family MR Research Centre, Alberta Health Services, Calgary, Canada.,4 Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| |
Collapse
|
19
|
Siegel JS, Shulman GL, Corbetta M. Measuring functional connectivity in stroke: Approaches and considerations. J Cereb Blood Flow Metab 2017; 37:2665-2678. [PMID: 28541130 PMCID: PMC5536814 DOI: 10.1177/0271678x17709198] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent research has demonstrated the importance of global changes to the functional organization of brain network following stroke. Resting functional magnetic resonance imaging (R-fMRI) is a non-invasive tool that enables the measurement of functional connectivity (FC) across the entire brain while placing minimal demands on the subject. For these reasons, it is a uniquely appealing tool for studying the distant effects of stroke. However, R-fMRI studies rely on a number of premises that cannot be assumed without careful validation in the context of stroke. Here, we describe strategies to identify and mitigate confounds specific to R-fMRI research in cerebrovascular disease. Five main topics are discussed: (a) achieving adequate co-registration of lesioned brains, (b) identifying and removing hemodynamic lags in resting BOLD, (c) identifying other vascular disruptions that affect the resting BOLD signal, (d) selecting an appropriate control cohort, and (e) acquiring sufficient fMRI data to reliably identify FC changes. For each topic, we provide guidelines for steps to improve the interpretability and reproducibility of FC-stroke research. We include a table of confounds and approaches to identify and mitigate each. Our recommendations extend to any research using R-fMRI to study diseases that might alter cerebrovascular flow and dynamics or brain anatomy.
Collapse
Affiliation(s)
- Joshua S Siegel
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA
| | - Gordon L Shulman
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA
| | - Maurizio Corbetta
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA.,2 Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA.,3 Department of Psychology, Washington University School of Medicine, St. Louis, USA.,4 Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, USA.,5 Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
20
|
Liu J, Duffy BA, Bernal-Casas D, Fang Z, Lee JH. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies. Neuroimage 2016; 147:390-408. [PMID: 27993672 DOI: 10.1016/j.neuroimage.2016.12.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 12/15/2016] [Indexed: 01/22/2023] Open
Abstract
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ben A Duffy
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - David Bernal-Casas
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Zhongnan Fang
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Jin Hyung Lee
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA 94305.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Herrera CRC, Beltramini GC, Avelar WM, Lima FO, Li LM. Cerebral vasomotor reactivity assessment using Transcranial Doppler and MRI with apnea test. ACTA ACUST UNITED AC 2016; 49:e5437. [PMID: 27783807 PMCID: PMC5089231 DOI: 10.1590/1414-431x20165437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/05/2016] [Indexed: 11/22/2022]
Abstract
Differently from previous studies that used Transcranial Doppler (TCD) and functional MRI (fMRI) for cerebral vasomotor reactivity (CVR) assessment in patients with carotid stenosis (CS), we assessed CVR using an identical stimulus, the Breath-Holding Test (BHT). We included 15 patients with CS and 7 age-matched controls to verify whether fMRI responded differently to BHT between groups and to calculate the agreement rate between tests. For TCD, impaired CVR was defined when the mean percentage increase on middle cerebral artery velocities was ≤31% on 3 consecutive 30-s apnea intercalated by 4-min normal breathing intervals. For fMRI, the percent variation on blood oxygen level-dependent (BOLD) signal intensity in the lentiform nucleus (LN) ipsilateral to the CS (or both LNs for controls) from baseline breathing to apnea was measured. The Euclidian differences between the series of each subject and the series of controls and patients classified it into normal or impaired CVR. We found different percent variations on BOLD-signal intensities between groups (P=0.032). The agreement was good in Controls (85.7%; κ=0.69) and overall (77.3%; κ=0.54). We conclude that BHT was feasible for CVR assessment on fMRI and elicited different BOLD responses in patients and controls, with a good overall agreement between the tests.
Collapse
Affiliation(s)
- C R Campos Herrera
- Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Complexo Hospitalar Prefeito Edivaldo Orsi "Ouro Verde", Campinas, SP, Brasil
| | - G C Beltramini
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - W M Avelar
- Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Brazilian Research Institute for Neuroscience and Neurotechnology (BRAINN), Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - F O Lima
- Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Universidade de Fortaleza, Fortaleza, CE, Brasil
| | - L M Li
- Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Brazilian Research Institute for Neuroscience and Neurotechnology (BRAINN), Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
22
|
Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI. NEUROIMAGE-CLINICAL 2016; 12:173-9. [PMID: 27437178 PMCID: PMC4939388 DOI: 10.1016/j.nicl.2016.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/26/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
Abstract
Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients. Breath-holding can be used to assess the validity of fMRI in stroke patients. Vascular reactivity, estimated by breath-hold fMRI, was greatest in young controls. Acute stroke patients and age-matched controls had similar vascular reactivity. Modeling the breath-hold response on an individual basis can improve results.
Collapse
|
23
|
Carey LM, Seitz RJ. Functional Neuroimaging in Stroke Recovery and Neurorehabilitation: Conceptual Issues and Perspectives. Int J Stroke 2016; 2:245-64. [DOI: 10.1111/j.1747-4949.2007.00164.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background In stroke, functional neuroimaging has become a potent diagnostic tool; opened new insights into the pathophysiology of ischaemic damage in the human brain; and made possible the assessment of functional–structural relationships in postlesion recovery. Summary of review Here, we give a critical account on the potential and limitation of functional neuroimaging and discuss concepts related to the use of neuroimaging for exploring the neurobiological and neuroanatomical mechanisms of poststroke recovery and neurorehabilitation. We identify and provide evidence for five hypotheses that functional neuroimaging can provide new insights into: adaptation occurs at the level of functional brain systems; the brain–behaviour relationship varies with recovery and over time; functional neuroimaging can improve our ability to predict recovery and select individuals for rehabilitation; mechanisms of recovery reflect different pathophysiological phases; and brain adaptation may be modulated by experience and specific rehabilitation. The significance and application of this new evidence is discussed, and recommendations made for investigations in the field. Conclusion Functional neuroimaging is an important tool to explore the mechanisms underlying brain plasticity and, thereby, to guide clinical research in neurorehabilitation.
Collapse
Affiliation(s)
- Leeanne M. Carey
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- School of Occupational Therapy, LaTrobe University, Bundoora, Vic., Australia
| | - Rüdiger J. Seitz
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- Institute of Advanced Study, La Trobe University, Bundoora, Vic., Australia
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Marshall RS, Pavol MA, Cheung YK, Strom I, Slane K, Asllani I, Lazar RM. Dissociation among hemodynamic measures in asymptomatic high grade carotid artery stenosis. J Neurol Sci 2016; 367:143-7. [PMID: 27423579 DOI: 10.1016/j.jns.2016.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cerebral blood flow (CBF) regulation is a critical element in cerebrovascular pathophysiology, particularly in large vessel disease, but the best method to use for hemodynamic assessment is not clear. We examined 4 different blood-flow related measures in patients with unilateral high-grade carotid artery disease, assessing asymmetry between the occluded vs non-occluded side, and the correlations among the measures. METHODS Thirty-three patients (age 50-93, 19 M) with unilateral 80-100% ICA occlusion but no stroke underwent: 1) mean flow velocity (MFV) in both middle cerebral arteries by transcranial Doppler (TCD), 2) quantitative resting CBF using pseudo-continuous arterial spin labeling (pCASL) MRI, 3) vasomotor reactivity (VMR) in response to 5% CO2 inhalation, and 4) dynamic cerebral autoregulation (DCA) assessing the counter-regulation of blood flow to spontaneous changes in blood pressure using TCD monitoring and finger photoplethysmography. Paired t-tests and Pearson correlations assessed side-to-side differences within each measure, and correlations between measures. RESULTS CBF (p=0.001), MFV (p<0.001), VMR (p=0.008), and DCA (p=0.047) all showed significantly lower values on the occluded side. The 4 measures were independent of each other on correlation analysis, even when controlling for age and anterior circle of Willis collateral (all partial correlations <0.233 and p-values >0.468). CONCLUSIONS These 4 measures showed high sensitivity to the occluded carotid artery, but their dissociation suggests that any given measure only partially characterizes the hemodynamic state. Additional research is needed to explore the multifaceted biology of cerebral blood flow regulation.
Collapse
Affiliation(s)
| | - MaryKay A Pavol
- Columbia University, Department of Neurology, New York, United States
| | - Ying K Cheung
- Department of Biostatistics, Columbia University, New York, United States
| | - Isabelle Strom
- Columbia University, Department of Neurology, New York, United States
| | - Kevin Slane
- Columbia University, Department of Neurology, New York, United States
| | - Iris Asllani
- Rochester Institute of Neurology, Rochester, New York, United States
| | - Ronald M Lazar
- Columbia University, Department of Neurology, New York, United States
| |
Collapse
|
25
|
Hsiao FJ, Hsieh FY, Chen WT, Chu DC, Lin YY. Altered Resting-State Cortical EEG Oscillations in Patients With Severe Asymptomatic Carotid Stenosis. Clin EEG Neurosci 2016; 47:142-9. [PMID: 25465434 DOI: 10.1177/1550059414560396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 10/27/2014] [Indexed: 11/16/2022]
Abstract
Asymptomatic carotid stenosis is characterized by altered cerebral hemodynamics and cognitive impairment, but the underlying neurophysiological mechanism remains unclear. To elucidate the alterations of cortical activities, resting-state electrophysiological activities were recorded from patients with mild (<30%; n=10; age 57-85 years), moderate (30% to 50%; n=11; age 66-88 years), and severe (>50%; n=8; age 67-91 years) carotid stenosis. The current density and oscillatory power of the cortical sources were analyzed using the minimum norm estimates method combined with fast Fourier transform analysis. Our results indicate that the cortical current density among regions of the brain was similar, irrespective of the degree of carotid stenosis. With regard to the cortical oscillations, augmented theta activities in the bilateral parietal, left temporal, and left occipital regions and attenuated alpha activities in the bilateral frontal and right central regions were obtained in patients with severe asymptomatic carotid stenosis. We suggest that the source-based cortical oscillations at theta and alpha bands might reflect the alterations of the brain activities and characterize the altered neurophysiological mechanism of the brain with at least 50% occlusion of the carotid artery. Further longitudinal studies with larger populations are warranted to verify the present findings.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan Department of Education and Research, Taipei City Hospital, Taipei, Taiwan Department of Neurology, Taipei City Hospital, Taipei, Taiwan Laboratory of Neurophysiology, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fang-Yuh Hsieh
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan Department of Neurosurgery, Taipei City Hospital, Taipei, Taiwan Laboratory of Neurophysiology, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Da-Chen Chu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Yang Lin
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan Department of Neurology, Taipei City Hospital, Taipei, Taiwan Department of Neurosurgery, Taipei City Hospital, Taipei, Taiwan Laboratory of Neurophysiology, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Interpreting Intervention Induced Neuroplasticity with fMRI: The Case for Multimodal Imaging Strategies. Neural Plast 2015; 2016:2643491. [PMID: 26839711 PMCID: PMC4709757 DOI: 10.1155/2016/2643491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/27/2015] [Indexed: 12/03/2022] Open
Abstract
Direct measurement of recovery from brain injury is an important goal in neurorehabilitation, and requires reliable, objective, and interpretable measures of changes in brain function, referred to generally as “neuroplasticity.” One popular imaging modality for measuring neuroplasticity is task-based functional magnetic resonance imaging (t-fMRI). In the field of neurorehabilitation, however, assessing neuroplasticity using t-fMRI presents a significant challenge. This commentary reviews t-fMRI changes commonly reported in patients with cerebral palsy or acquired brain injuries, with a focus on studies of motor rehabilitation, and discusses complexities surrounding their interpretations. Specifically, we discuss the difficulties in interpreting t-fMRI changes in terms of their underlying causes, that is, differentiating whether they reflect genuine reorganisation, neurological restoration, compensation, use of preexisting redundancies, changes in strategy, or maladaptive processes. Furthermore, we discuss the impact of heterogeneous disease states and essential t-fMRI processing steps on the interpretability of activation patterns. To better understand therapy-induced neuroplastic changes, we suggest that researchers utilising t-fMRI consider concurrently acquiring information from an additional modality, to quantify, for example, haemodynamic differences or microstructural changes. We outline a variety of such supplementary measures for investigating brain reorganisation and discuss situations in which they may prove beneficial to the interpretation of t-fMRI data.
Collapse
|
27
|
Duarte JV, Pereira JMS, Quendera B, Raimundo M, Moreno C, Gomes L, Carrilho F, Castelo-Branco M. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study. J Cereb Blood Flow Metab 2015; 35:1671-80. [PMID: 26058698 PMCID: PMC4640307 DOI: 10.1038/jcbfm.2015.106] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.
Collapse
Affiliation(s)
- João V Duarte
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,ICNAS, University of Coimbra, Coimbra, Portugal
| | - João M S Pereira
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,ICNAS, University of Coimbra, Coimbra, Portugal.,Laboratory of Biostatistics and Medical Informatics, Institute for Biomedical Imaging in Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bruno Quendera
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,ICNAS, University of Coimbra, Coimbra, Portugal
| | - Miguel Raimundo
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina Moreno
- Department of Endocrinology, University Hospital of Coimbra (CHUC), Coimbra, Portugal
| | - Leonor Gomes
- Department of Endocrinology, University Hospital of Coimbra (CHUC), Coimbra, Portugal
| | - Francisco Carrilho
- Department of Endocrinology, University Hospital of Coimbra (CHUC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,ICNAS, University of Coimbra, Coimbra, Portugal.,Laboratory of Biostatistics and Medical Informatics, Institute for Biomedical Imaging in Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Promjunyakul NO, Schmit BD, Schindler-Ivens SM. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke. Front Hum Neurosci 2015; 9:324. [PMID: 26089789 PMCID: PMC4454878 DOI: 10.3389/fnhum.2015.00324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/20/2015] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann's area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of -0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum - but not cortex - was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities.
Collapse
Affiliation(s)
- Nutta-On Promjunyakul
- Department of Physical Therapy, Marquette University Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA ; Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin Milwaukee, WI, USA
| | - Sheila M Schindler-Ivens
- Department of Physical Therapy, Marquette University Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA ; Clinical and Translational Science Institute of Southeastern Wisconsin, Medical College of Wisconsin Milwaukee, WI, USA
| |
Collapse
|
29
|
Calibrated MRI to evaluate cerebral hemodynamics in patients with an internal carotid artery occlusion. J Cereb Blood Flow Metab 2015; 35:1015-23. [PMID: 25712500 PMCID: PMC4640248 DOI: 10.1038/jcbfm.2015.14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to assess whether calibrated magnetic resonance imaging (MRI) can identify regional variances in cerebral hemodynamics caused by vascular disease. For this, arterial spin labeling (ASL)/blood oxygen level-dependent (BOLD) MRI was performed in 11 patients (65±7 years) and 14 controls (66±4 years). Cerebral blood flow (CBF), ASL cerebrovascular reactivity (CVR), BOLD CVR, oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) were evaluated. The CBF was 34±5 and 36±11 mL/100 g per minute in the ipsilateral middle cerebral artery (MCA) territory of the patients and the controls. Arterial spin labeling CVR was 44±20 and 53±10% per 10 mm Hg ▵EtCO2 in patients and controls. The BOLD CVR was lower in the patients compared with the controls (1.3±0.8 versus 2.2±0.4% per 10 mm Hg ▵EtCO2, P<0.01). The OEF was 41±8% and 38±6%, and the CMRO2 was 116±39 and 111±40 μmol/100 g per minute in the patients and the controls. The BOLD CVR was lower in the ipsilateral than in the contralateral MCA territory of the patients (1.2±0.6 versus 1.6±0.5% per 10 mmHg ▵EtCO2, P<0.01). Analysis was hampered in three patients due to delayed arrival time. Thus, regional hemodynamic impairment was identified with calibrated MRI. Delayed arrival artifacts limited the interpretation of the images in some patients.
Collapse
|
30
|
Lopez-Gordo MA, Sánchez-Morillo D, Van Gerven MAJ. Spreading Codes Enables the Blind Estimation of the Hemodynamic Response with Short-Events Sequences. Int J Neural Syst 2015; 25:1450035. [DOI: 10.1142/s012906571450035x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Finite impulse response (FIR) filters are considered the least constrained option for the blind estimation of the hemodynamic response function (HRF). However, they have a tendency to yield unstable solutions in the case of short-events sequences. There are solutions based on regularization, e.g. smooth FIR (sFIR), but at the cost of a regularization penalty and prior knowledge, thus breaking the blind principle. In this study, we show that spreading codes (scFIR) outperforms FIR and sFIR in short-events sequences, thus enabling the blind and dynamic estimation of the HRF without numerical instabilities and the regularization penalty. The scFIR approach was applied in short-events sequences of simulated and experimental functional magnetic resonance imaging (fMRI) data. In general terms, scFIR performed the best with both simulated and experimental data. While FIR was unable to compute the blind estimation of two simulated target HRFs for the shortest sequences (15 and 31 events) and sFIR yielded shapes barely correlated with the targets, scFIR achieved a normalized correlation coefficient above 0.9. Furthermore, scFIR was able to estimate in a responsive way dynamic changes of the amplitude of a simulated target HRF more accurately than FIR and sFIR. With experimental fMRI data, the ability of scFIR to estimate the real HRF obtained from a training data set was superior in terms of correlation and mean-square error. The use of short-events sequences for the blind estimation of the HRF could benefit patients in terms of scanning time or intensity of magnetic field in clinical tests. Furthermore, short-events sequences could be used, for instance, on the online detection of rapid shifts of visual attention that, according to literature, entails rapid changes in the amplitude of the HRF.
Collapse
Affiliation(s)
- M. A. Lopez-Gordo
- ISAER Department, University of Cadiz, c/Chile 1, 11002 Cadiz, Spain
- TSTC Department, University of Granada, 18071, Granada, Spain
- Nicolo Association, Churriana de la Vega, Granada, Spain
| | | | - Marcel A. J. Van Gerven
- Radboud University Nijmegen Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Montessorilaan 3, 6525 HR, The Netherlands
| |
Collapse
|
31
|
Veldsman M, Cumming T, Brodtmann A. Beyond BOLD: optimizing functional imaging in stroke populations. Hum Brain Mapp 2014; 36:1620-36. [PMID: 25469481 DOI: 10.1002/hbm.22711] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/14/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022] Open
Abstract
Blood oxygenation level-dependent (BOLD) signal changes are often assumed to directly reflect neural activity changes. Yet the real relationship is indirect, reliant on numerous assumptions, and subject to several sources of noise. Deviations from the core assumptions of BOLD contrast functional magnetic resonance imaging (fMRI), and their implications, have been well characterized in healthy populations, but are frequently neglected in stroke populations. In addition to conspicuous local structural and vascular changes after stroke, there are many less obvious challenges in the imaging of stroke populations. Perilesional ischemic changes, remodeling in regions distant to lesion sites, and diffuse perfusion changes all complicate interpretation of BOLD signal changes in standard fMRI protocols. Most stroke patients are also older than the young populations on which assumptions of neurovascular coupling and the typical analysis pipelines are based. We present a review of the evidence to show that the basic assumption of neurovascular coupling on which BOLD-fMRI relies does not capture the complex changes arising from stroke, both pathological and recovery related. As a result, estimating neural activity using the canonical hemodynamic response function is inappropriate in a number of contexts. We review methods designed to better estimate neural activity in stroke populations. One promising alternative to event-related fMRI is a resting-state-derived functional connectivity approach. Resting-state fMRI is well suited to stroke populations because it makes no performance demands on patients and is capable of revealing network-based pathology beyond the lesion site.
Collapse
Affiliation(s)
- Michele Veldsman
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | | | | |
Collapse
|
32
|
Vincent T, Warnking J, Villien M, Krainik A, Ciuciu P, Forbes F. Bayesian joint detection-estimation of cerebral vasoreactivity from ASL fMRI data. ACTA ACUST UNITED AC 2014; 16:616-24. [PMID: 24579192 DOI: 10.1007/978-3-642-40763-5_76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Although the study of cerebral vasoreactivity using fMRI is mainly conducted through the BOLD fMRI modality, owing to its relatively high signal-to-noise ratio (SNR), ASL fMRI provides a more interpretable measure of cerebral vasoreactivity than BOLD fMRI. Still, ASL suffers from a low SNR and is hampered by a large amount of physiological noise. The current contribution aims at improving the recovery of the vasoreactive component from the ASL signal. To this end, a Bayesian hierarchical model is proposed, enabling the recovery of perfusion levels as well as fitting their dynamics. On a single-subject ASL real data set involving perfusion changes induced by hypercapnia, the approach is compared with a classical GLM-based analysis. A better goodness-of-fit is achieved, especially in the transitions between baseline and hypercapnia periods. Also, perfusion levels are recovered with higher sensitivity and show a better contrast between gray- and white matter.
Collapse
Affiliation(s)
- Thomas Vincent
- INRIA, MISTIS, Grenoble University, LJK, Grenoble, France
| | | | | | | | - Philippe Ciuciu
- CEA/DSV/I2BM NeuroSpin center, Bat. 145, F-91191 Gif-sur-Yvette, France
| | | |
Collapse
|
33
|
Amemiya S, Kunimatsu A, Saito N, Ohtomo K. Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 2013; 270:548-55. [PMID: 24072777 DOI: 10.1148/radiol.13130982] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To test the feasibility of noninvasive global assessment of cerebral hemodynamic impairment with use of resting-state blood oxygenation level-dependent functional magnetic resonance (MR) imaging. MATERIALS AND METHODS In this institutional review board-approved study, five patients with chronic hypoperfusion without neurologic impairment and six patients with acute stroke underwent 10-minute resting-state functional MR imaging and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging, which was considered the standard of reference. All patients gave informed consent. The temporal shift of low-frequency signal fluctuations in each voxel compared with the averaged whole brain or global mean signal at resting-state functional MR imaging and the delay in time to peak at dynamic susceptibility-weighted contrast-enhanced perfusion imaging were computed with voxel-wise analysis. The similarity of the temporal delay maps obtained with resting-state functional MR imaging and perfusion data, as well as the stability of the resting-state functional MR imaging measurement, were evaluated with the Dice similarity coefficient (DSC) and the two-tailed t test (random-effect analysis). RESULTS The brain tissue with normal perfusion at dynamic susceptibility-weighted contrast-enhanced imaging showed no delay to global mean signal at resting-state functional MR imaging, whereas areas of abnormal perfusion with delayed time to peak (3.4 seconds ± 2.1) showed a delay at resting-state functional MR imaging that was similar to the time to peak at dynamic susceptibility-weighted contrast-enhanced perfusion imaging, both in spatial coverage (mean DSC, 0.57 ± 0.16) and tendency (t = 5.1, P < .001). Resting-state functional MR imaging measurements were highly stable (mean DSC, 0.83 ± 0.12). CONCLUSION Resting-state functional MR imaging temporal-shift analysis can noninvasively demonstrate the extent and degree of perfusion delay in patients with hypoperfusion both with and without neurologic deficit.
Collapse
Affiliation(s)
- Shiori Amemiya
- From the Departments of Radiology (S.A., A.K., K.O.) and Neurosurgery (N.S.), Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | |
Collapse
|
34
|
Krainik A, Villien M, Troprès I, Attyé A, Lamalle L, Bouvier J, Pietras J, Grand S, Le Bas JF, Warnking J. Functional imaging of cerebral perfusion. Diagn Interv Imaging 2013; 94:1259-78. [PMID: 24011870 DOI: 10.1016/j.diii.2013.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The functional imaging of perfusion enables the study of its properties such as the vasoreactivity to circulating gases, the autoregulation and the neurovascular coupling. Downstream from arterial stenosis, this imaging can estimate the vascular reserve and the risk of ischemia in order to adapt the therapeutic strategy. This method reveals the hemodynamic disorders in patients suffering from Alzheimer's disease or with arteriovenous malformations revealed by epilepsy. Functional MRI of the vasoreactivity also helps to better interpret the functional MRI activation in practice and in clinical research.
Collapse
Affiliation(s)
- A Krainik
- Clinique universitaire de neuroradiologie et IRM, CHU de Grenoble, CS 10217, 38043 Grenoble cedex, France; Inserm U836, université Joseph-Fourier, site santé, chemin Fortuné-Ferrini, 38706 La Tronche cedex, France; UMS IRMaGe, unité IRM 3T recherche, CHU de Grenoble, CS 10217, 38043 Grenoble cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Amin-Hanjani S, Singh A, Rifai H, Thulborn KR, Alaraj A, Aletich V, Charbel FT. Combined Direct and Indirect Bypass for Moyamoya. Neurosurgery 2013; 73:962-7; discussion 967-8. [DOI: 10.1227/neu.0000000000000139] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
The optimal revascularization strategy for symptomatic adult moyamoya remains controversial. Whereas direct bypass offers immediate revascularization, indirect bypass can effectively induce collaterals over time.
OBJECTIVE:
Using angiography and quantitative magnetic resonance angiography, we examined the relative contributions of direct and indirect bypass in moyamoya patients after combined direct superficial temporal artery-to-middle cerebral artery (STA-MCA) bypass and indirect encephaloduroarteriosynangiosis (EDAS).
METHODS:
A retrospective review of moyamoya patients undergoing combined STA-MCA bypass and EDAS was conducted, excluding pediatric patients and hemorrhagic presentation. Patients with quantitative magnetic resonance angiography measurements of the direct bypass immediately and > 6 months postoperatively were included. Angiographic follow-up, when available, was used to assess EDAS collaterals at similar time intervals.
RESULTS:
Of 16 hemispheres in 13 patients, 11 (69%) demonstrated a significant (> 50%) decline in direct bypass flow at > 6 months compared with baseline, averaging a drop from 99 ± 35 to12 ± 7 mL/min. Conversely, angiography in these hemispheres demonstrated prominent indirect collaterals, in concert with shrinkage of the STA graft. Decline in flow was apparent at a median of 9 months but was evident as early as 2 to 3 months.
CONCLUSION:
In this small cohort, a reciprocal relationship between direct STA bypass flow and indirect EDAS collaterals frequently occurred. This substantiates the notion that combined direct/indirect bypass can provide temporally complementary revascularization.
Collapse
Affiliation(s)
| | | | | | - Keith R. Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | |
Collapse
|
36
|
Promjunyakul NO, Schmit BD, Schindler-Ivens S. Changes in hemodynamic responses in chronic stroke survivors do not affect fMRI signal detection in a block experimental design. Magn Reson Imaging 2013; 31:1119-28. [PMID: 23642802 DOI: 10.1016/j.mri.2013.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/22/2013] [Accepted: 02/20/2013] [Indexed: 10/26/2022]
Abstract
The use of canonical functions to model BOLD-fMRI data in people post-stroke may lead to inaccurate descriptions of task-related brain activity. The purpose of this study was to determine whether the spatiotemporal profile of hemodynamic responses (HDRs) obtained from stroke survivors during an event-related experiment could be used to develop individualized HDR functions that would enhance BOLD-fMRI signal detection in block experiments. Our long term goal was to use this information to develop individualized HDR functions for stroke survivors that could be used to analyze brain activity associated with locomotor-like movements. We also aimed to examine the reproducibility of HDRs obtained across two scan sessions in order to determine whether data from a single event-related session could be used to analyze block data obtained in subsequent sessions. Results indicate that the spatiotemporal profile of HDRs measured with BOLD-fMRI in stroke survivors was not the same as that observed in individuals without stroke. We observed small between-group differences in the rates of rise and decline of HDRs that were more apparent in individuals with cortical as compared to subcortical stroke. There were no differences in the peak or time to peak of HDRs in people with and without stroke. Of interest, differences in HDRs were not as substantial as expected from previous reports and were not large enough to necessitate the use of individualized HDR functions to obtain valid measures of movement-related brain activity. We conclude that all strokes do not affect the spatiotemporal characteristics of HDRs in such a way as to produce inaccurate representations of brain activity as measured by BOLD-fMRI. However, care should be taken to identify individuals whose BOLD-fMRI data may not provide an accurate representation of underlying brain activation when canonical models are used. Examination of HDRs need not be done for each scan session, as our data suggest that the characteristics of HDRs in stroke survivors are reproducible across days.
Collapse
Affiliation(s)
- Nutta-On Promjunyakul
- Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| | | | | |
Collapse
|
37
|
Kiran S. What is the nature of poststroke language recovery and reorganization? ISRN NEUROLOGY 2012; 2012:786872. [PMID: 23320190 PMCID: PMC3540797 DOI: 10.5402/2012/786872] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/05/2012] [Indexed: 12/16/2022]
Abstract
This review focuses on three main topics related to the nature of poststroke language recovery and reorganization. The first topic pertains to the nature of anatomical and physiological substrates in the infarcted hemisphere in poststroke aphasia, including the nature of the hemodynamic response in patients with poststroke aphasia, the nature of the peri-infarct tissue, and the neuronal plasticity potential in the infarcted hemisphere. The second section of the paper reviews the current neuroimaging evidence for language recovery in the acute, subacute, and chronic stages of recovery. The third and final section examines changes in connectivity as a function of recovery in poststroke aphasia, specifically in terms of changes in white matter connectivity, changes in functional effective connectivity, and changes in resting state connectivity after stroke. While much progress has been made in our understanding of language recovery, more work needs to be done. Future studies will need to examine whether reorganization of language in poststroke aphasia corresponds to a tighter, more coherent, and efficient network of residual and new regions in the brain. Answering these questions will go a long way towards being able to predict which patients are likely to recover and may benefit from future rehabilitation.
Collapse
Affiliation(s)
- Swathi Kiran
- Department of Speech, Language, and Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA ; Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
38
|
Blicher JU, Stagg CJ, O'Shea J, Østergaard L, MacIntosh BJ, Johansen-Berg H, Jezzard P, Donahue MJ. Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI. J Cereb Blood Flow Metab 2012; 32:2044-54. [PMID: 22828998 PMCID: PMC3493993 DOI: 10.1038/jcbfm.2012.105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evaluation of cortical reorganization in chronic stroke patients requires methods to accurately localize regions of neuronal activity. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is frequently employed; however, BOLD contrast depends on specific coupling relationships between the cerebral metabolic rate of oxygen (CMRO(2)), cerebral blood flow (CBF), and volume (CBV), which may not exist following stroke. The aim of this study was to understand whether CBF-weighted (CBFw) and CBV-weighted (CBVw) fMRI could be used in sequence with BOLD to characterize neurovascular coupling mechanisms poststroke. Chronic stroke patients (n=11) with motor impairment and age-matched controls (n=11) performed four sets of unilateral motor tasks (60 seconds/30 seconds off/on) during CBFw, CBVw, and BOLD fMRI acquisition. While control participants elicited mean BOLD, CBFw, and CBVw responses in motor cortex (P<0.01), patients showed only mean changes in CBF (P<0.01) and CBV (P<0.01), but absent mean BOLD responses (P=0.20). BOLD intersubject variability was consistent with differing coupling indices between CBF, CBV, and CMRO(2). Thus, CBFw and/or CBVw fMRI may provide crucial information not apparent from BOLD in these patients. A table is provided outlining distinct vascular and metabolic uncoupling possibilities that elicit different BOLD responses, and the strengths and limitations of the multimodal protocol are summarized.
Collapse
Affiliation(s)
- Jakob U Blicher
- Research Unit, Hammel Neurocentre, Aarhus University Hospital, Hammel, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Impaired hemodynamic response in the ischemic brain assessed with BOLD fMRI. Neuroimage 2012; 61:579-90. [DOI: 10.1016/j.neuroimage.2012.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/29/2012] [Accepted: 04/01/2012] [Indexed: 11/21/2022] Open
|
40
|
Assessing Cerebrovascular Reactivity in Carotid Steno-Occlusive Disease Using MRI BOLD and ASL Techniques. Radiol Res Pract 2012; 2012:268483. [PMID: 22919485 PMCID: PMC3388310 DOI: 10.1155/2012/268483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022] Open
Abstract
Impaired cerebrovascular reactivity (CVR), a predictive factor of imminent stroke, has been shown to be associated with carotid steno-occlusive disease. Magnetic resonance imaging (MRI) techniques, such as blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL), have emerged as promising noninvasive tools to evaluate altered CVR with whole-brain coverage, when combined with a vasoactive stimulus, such as respiratory task or injection of acetazolamide. Under normal cerebrovascular conditions, CVR has been shown to be globally and homogenously distributed between hemispheres, but with differences among cerebral regions. Such differences can be explained by anatomical specificities and different biochemical mechanisms responsible for vascular regulation. In patients with carotid steno-occlusive disease, studies have shown that MRI techniques can detect impaired CVR in brain tissue supplied by the affected artery. Moreover, resulting CVR estimations have been well correlated to those obtained with more established techniques, indicating that BOLD and ASL are robust and reliable methods to assess CVR in patients with cerebrovascular diseases. Therefore, the present paper aims to review recent studies which use BOLD and ASL to evaluate CVR, in healthy individuals and in patients with carotid steno-occlusive disease, providing a source of information regarding the obtained results and the methodological difficulties.
Collapse
|
41
|
Gómez-Laberge C, Adler A, Cameron I, Nguyen T, Hogan MJ. A Bayesian hierarchical correlation model for fMRI cluster analysis. IEEE Trans Biomed Eng 2011; 58:1967-76. [PMID: 21278012 DOI: 10.1109/tbme.2011.2108296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Data-driven cluster analysis is potentially suitable to search for, and discriminate between, distinct response signals in blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI), which appear during cerebrovascular disease. In contrast to model-driven methods, which test for a particular BOLD signal whose shape must be given beforehand, data-driven methods generate a set of BOLD signals directly from the fMRI data by clustering voxels into groups with correlated time signals. Here, we address the problem of selecting only the clusters that represent genuine responses to the experimental stimulus by modeling the correlation structure of the clustered data using a Bayesian hierarchical model. The model is empirically justified by demonstrating the hierarchical organization of the voxel correlations after cluster analysis. BOLD signal discrimination is demonstrated using: 1) simulations that contain multiple pathological BOLD response signals; and 2) fMRI data acquired during an event-related motor task. These demonstrations are compared with results from a model-driven method based on the general linear model. Our simulations show that the data-driven method can discriminate between the BOLD response signals, while the model-driven method only finds one signal. For fMRI, the data-driven method distinguishes between the BOLD signals appearing in the sensorimotor cortex and those in basal ganglia and putamen, while the model-driven method combines these signals into one activation map. We conclude that the proposed data-driven method provides an objective framework to identify and discriminate between distinct BOLD response signals.
Collapse
Affiliation(s)
- Camille Gómez-Laberge
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | | | | | | |
Collapse
|
42
|
Palmer HS, Garzon B, Xu J, Berntsen EM, Skandsen T, Håberg AK. Reduced fractional anisotropy does not change the shape of the hemodynamic response in survivors of severe traumatic brain injury. J Neurotrauma 2010; 27:853-62. [PMID: 20199173 DOI: 10.1089/neu.2009.1225] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hemodynamic response (HDR) function is the basis for standard functional magnetic resonance imaging (fMRI) analysis. HDR is influenced by white matter inflammation. Traumatic brain injury (TBI) is frequently accompanied by diffuse white matter injury, but the effect of this on the HDR has not been investigated. The aims of the present study were to describe the HDR in visual cortex and examine its relationship with the microstructure of the optic radiation in severe TBI survivors and controls. Ten severe TBI survivors without visual impairments, but with known diffuse axonal injury, and 9 matched controls underwent diffusion tensor imaging (DTI) and fMRI. From the fMRI time series obtained during brief randomized visual stimuli, blood oxygenation level-dependent (BOLD) signal changes for each subject were estimated in V1, and group HDR curves were produced. Standard between-group analysis of BOLD activation in V1 + V2 was performed. For each individual the optic radiations were identified and fractional anisotropy (FA) plus mean apparent diffusion coefficient (ADC(mean)) values for these tracts were calculated. Group HDR curves from the visual cortex were fully transposable between TBI survivors and controls, despite a significant reduction in FA in the optic radiation in TBI survivors. A significant correlation between BOLD signal in the visual cortex and FA values in the optical tract was present in controls, but not in TBI survivors. Between-group comparisons showed that TBI survivors had increased areas of activation in V1 and V2. The HDR appears to be intact in traumatic white matter damage, supporting the validity of using standard fMRI methodology to study neuroplasticity in TBI.
Collapse
Affiliation(s)
- Helen S Palmer
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
43
|
Lindauer U, Dirnagl U, Füchtemeier M, Böttiger C, Offenhauser N, Leithner C, Royl G. Pathophysiological interference with neurovascular coupling - when imaging based on hemoglobin might go blind. FRONTIERS IN NEUROENERGETICS 2010; 2. [PMID: 20953238 PMCID: PMC2955428 DOI: 10.3389/fnene.2010.00025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/20/2010] [Indexed: 01/09/2023]
Abstract
Assessing neuronal activity by non-invasive functional brain imaging techniques which are based on the hemodynamic response depends totally on the physiological cascade of metabolism and blood flow. At present, functional brain imaging with near infrared spectroscopy (NIRS) or BOLD-fMRI is widely used in cognitive neuroscience in healthy subjects where neurovascular coupling and cerebrovascular reactivity can be assumed to be intact. Local activation studies as well as studies investigating functional connectivity between brain regions of the resting brain provide a rapidly increasing body of knowledge on brain function in humans and animals. Furthermore, functional NIRS and MRI techniques are increasingly being used in patients with severe brain diseases and this use might gain more and more importance for establishing their use in the clinical routine. However, more and more experimental evidence shows that changes in baseline physiological parameters, pharmacological interventions, or disease-related vascular changes may significantly alter the normal response of blood flow and blood oxygenation and thus may lead to misinterpretation of neuronal activity. In this article we present examples of recent experimental findings on pathophysiological changes of neurovascular coupling parameters in animals and discuss their potential implications for functional imaging based on hemodynamic signals such as fNIRS or BOLD-fMRI. To enable correct interpretation of neuronal activity by vascular signals, future research needs to deepen our understanding of the basic mechanisms of neurovascular coupling and the specific characteristics of disturbed neurovascular coupling in the diseased brain.
Collapse
Affiliation(s)
- Ute Lindauer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Brumm KP, Perthen JE, Liu TT, Haist F, Ayalon L, Love T. An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. Neuroimage 2010; 51:995-1005. [PMID: 20211268 PMCID: PMC2879883 DOI: 10.1016/j.neuroimage.2010.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022] Open
Abstract
Although the acute stroke literature indicates that cerebral blood flow (CBF) may commonly be disordered in stroke survivors, limited research has investigated whether CBF remains aberrant in the chronic phase of stroke. A directed study of CBF in stroke is needed because reduced CBF (hypoperfusion) may occur in neural regions that appear anatomically intact and may impact cognitive functioning in stroke survivors. Hypoperfusion in neurologically-involved individuals may also affect BOLD signal in FMRI studies, complicating its interpretation with this population. The current study measured CBF in three chronic stroke survivors with ischemic infarcts (greater than 1 year post-stroke) to localize regions of hypoperfusion, and most critically, examine the CBF inflow curve using a methodology that has never, to our knowledge, been reported in the chronic stroke literature. CBF data acquired with a Pulsed Arterial Spin Labeling (PASL) flow-sensitive alternating inversion recovery (FAIR) technique indicated both delayed CBF inflow curve and hypoperfusion in the stroke survivors as compared to younger and elderly control participants. Among the stroke survivors, we observed regional hypoperfusion in apparently anatomically intact neural regions that are involved in cognitive functioning. These results may have profound implications for the study of behavioral deficits in chronic stroke, and particularly for studies using neuroimaging methods that rely on CBF to draw conclusions about underlying neural activity.
Collapse
Affiliation(s)
- Kathleen P Brumm
- San Diego State University/University of California, San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Moriguchi Y, Negreira A, Weierich M, Dautoff R, Dickerson BC, Wright CI, Barrett LF. Differential hemodynamic response in affective circuitry with aging: an FMRI study of novelty, valence, and arousal. J Cogn Neurosci 2010; 23:1027-41. [PMID: 20521849 DOI: 10.1162/jocn.2010.21527] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Emerging evidence indicates that stimulus novelty is affectively potent and reliably engages the amygdala and other portions of the affective workspace in the brain. Using fMRI, we examined whether novel stimuli remain affectively salient across the lifespan, and therefore, whether novelty processing--a potentially survival-relevant function--is preserved with aging. Nineteen young and 22 older healthy adults were scanned during observing novel and familiar affective pictures while estimating their own subjectively experienced aroused levels. We investigated age-related difference of magnitude of activation, hemodynamic time course, and functional connectivity of BOLD responses in the amygdala. Although there were no age-related differences in the peak response of the amygdala to novelty, older individuals showed a narrower, sharper (i.e., "peakier") hemodynamic time course in response to novel stimuli, as well as decreased connectivity between the left amygdala and the affective areas including orbito-frontal regions. These findings have relevance for understanding age-related differences in memory and affect regulation.
Collapse
Affiliation(s)
- Yoshiya Moriguchi
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Altamura C, Reinhard M, Vry MS, Kaller CP, Hamzei F, Vernieri F, Rossini PM, Hetzel A, Weiller C, Saur D. The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study. BMC Neurosci 2009; 10:151. [PMID: 20021696 PMCID: PMC2805667 DOI: 10.1186/1471-2202-10-151] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 12/20/2009] [Indexed: 11/18/2022] Open
Abstract
Background By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke. This study investigated whether any impairment of cerebral hemodynamics that occurs during the acute and the subacute phases of ischemic stroke is related to changes in BOLD response. We enrolled six aphasic patients affected by acute stroke. All patients underwent a Transcranial Doppler to assess cerebral autoregulation (Mx index) and fMRI to evaluate the amplitude and the peak latency (time to peak-TTP) of BOLD response in the acute (i.e., within four days of stroke occurrence) and the subacute (i.e., between five and twelve days after stroke onset) stroke phases. Results As patients advanced from the acute to subacute stroke phase, the affected hemisphere presented a BOLD TTP increase (p = 0.04) and a deterioration of cerebral autoregulation (Mx index increase, p = 0.046). A similar but not significant trend was observed also in the unaffected hemisphere. When the two hemispheres were grouped together, BOLD TTP delay was significantly related to worsening cerebral autoregulation (Mx index increase) (Spearman's rho = 0.734; p = 0.01). Conclusions The hemodynamic response function subtending BOLD signal may present a delay in peak latency that arises as patients advance from the acute to the subacute stroke phase. This delay is related to the deterioration of cerebral hemodynamics. These findings suggest that remodeling the fMRI hemodynamic response function in the different phases of stroke may optimize the detection of BOLD signal changes.
Collapse
Affiliation(s)
- Claudia Altamura
- Neurologia Clinica, Università Campus Bio-Medico di Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Functional MRI of postnatal visual development in normal and hypoxic-ischemic-injured superior colliculi. Neuroimage 2009; 49:2013-20. [PMID: 19879366 DOI: 10.1016/j.neuroimage.2009.10.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/17/2009] [Accepted: 10/23/2009] [Indexed: 11/22/2022] Open
Abstract
The superior colliculus (SC) is a laminated subcortical structure in the mammalian midbrain, whose superficial layers receive visual information from the retina and the visual cortex. To date, its functional organization and development in the visual system remain largely unknown. This study employed blood oxygenation level-dependent (BOLD) functional MRI to evaluate the visual responses of the SC in normally developing and severe neonatal hypoxic-ischemic (HI)-injured rat brains from the time of eyelid opening to adulthood. MRI was performed to the normal animals (n=7) at postnatal days (P) 14, 21, 28 and 60. In the HI-injured group (n=7), the ipsilesional primary and secondary visual cortices were completely damaged after unilateral ligation of the left common carotid artery at P7 followed by hypoxia for 2 h, and MRI was performed at P60. Upon unilateral flash illumination, the normal contralateral SC underwent a systematic increase in BOLD signal amplitude with age especially after the third postnatal week. However, no significant difference in BOLD signal increase was found between P14 and P21. These findings implied the presence of neurovascular coupling at the time of eyelid opening, and the progressive development of hemodynamic regulation in the subcortical visual system. In the HI-injured group at P60, the BOLD signal increases in both SC remained at the same level as the normal group at P28 though they were significantly lower than the normal group at P60. These observations suggested the residual visual functions on both sides of the subcortical brain, despite the damages to the entire ipsilesional visual cortex. The results of this study constitute important evidence on the progressive maturation of visual functions and hemodynamic responses in the normal subcortical brain, and its functional plasticity upon neonatal HI injury.
Collapse
|
48
|
Radoeva PD, Prasad S, Brainard DH, Aguirre GK. Neural activity within area V1 reflects unconscious visual performance in a case of blindsight. J Cogn Neurosci 2008; 20:1927-39. [PMID: 18416678 PMCID: PMC2773243 DOI: 10.1162/jocn.2008.20139] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although lesions of the striate (V1) cortex disrupt conscious vision, patients can demonstrate surprising residual abilities within their affected visual field, a phenomenon termed blindsight. The relative contribution of spared "islands" of functioning striate cortex to residual vision, versus subcortical pathways to extrastriate areas, has implications for the role of early visual areas in visual awareness and performance. Here we describe the behavioral and neural features of residual cortical function in Patient M.C., who sustained a posterior cerebral artery stroke at the age of 15 years. Within her impaired visual field, we found preserved visual abilities characteristic of blindsight, including superior detection of motion, and above-chance discrimination of shape, color, and motion direction. Functional magnetic resonance imaging demonstrated a retinotopically organized representation of M.C.'s blind visual field within the lesioned occipital lobe, specifically within area V1. The incongruity of a well-organized cortex and M.C.'s markedly impaired vision was resolved by measurement of functional responses within her damaged occipital lobe. Attenuated neural contrast-response functions were found to correlate with M.C.'s impaired psychophysical performance. These results demonstrate that the behavioral features of blindsight may arise in the presence of residual striate responses that are spatially organized and sensitive to contrast variation.
Collapse
Affiliation(s)
- Petya D Radoeva
- Department of Neurology, Hospital of the University of Pennsylvania, 3499 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
49
|
Bokkers RPH, van Laar PJ, van de Ven KCC, Kapelle LJ, Klijn CJM, Hendrikse J. Arterial spin-labeling MR imaging measurements of timing parameters in patients with a carotid artery occlusion. AJNR Am J Neuroradiol 2008; 29:1698-703. [PMID: 18701581 DOI: 10.3174/ajnr.a1232] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin-labeling (ASL) with image acquisition at multiple delay times can be exploited in perfusion MR imaging to visualize and quantify the temporal dynamics of arterial blood inflow. In this study, we investigated the consequences of an internal carotid artery (ICA) occlusion and collateral blood flow on regional timing parameters. MATERIALS AND METHODS Seventeen functionally independent patients with a symptomatic ICA occlusion (15 men, 2 women; mean age, 57 years) and 29 sex- and age-matched control subjects were investigated. ASL at multiple delay times was used to quantify regional cerebral blood flow (CBF) and the transit and trailing edge times (arterial timing parameters) reflecting, respectively, the beginning and end of the labeled bolus. Intra-arterial digital subtraction angiography and MR angiography were used to grade collaterals. RESULTS In the hemisphere ipsilateral to the ICA occlusion, the CBF was lower in the anterior frontal (31 +/- 4 versus 47 +/- 3 mL/min/100 g, P < .01), posterior frontal (39 +/- 4 versus 55 +/- 2 mL/min/100 g, P < .01), and frontal parietal region (49 +/- 3 versus 61 +/- 3 mL/min/100 g, P = .04) than that in control subjects. The trailing edge of the frontal-parietal region was longer in the hemisphere ipsilateral to the ICA occlusion compared with that in control subjects (2225 +/- 167 versus 1593 +/- 35 ms, P < .01). In patients with leptomeningeal collateral flow, the trailing edge was longer in the anterior frontal region (2436 +/- 275 versus 1648 +/- 201 ms, P = .03) and shorter in the occipital region (1815 +/- 128 versus 2388 +/- 203 ms, P = .04), compared with patients without leptomeningeal collaterals. CONCLUSION Regional assessment of timing parameters with ASL may provide valuable information on the cerebral hemodynamic status. In patients with leptomeningeal collaterals, the most impaired territory was found in the frontal lobe.
Collapse
Affiliation(s)
- R P H Bokkers
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Altaf N, Morgan PS, Moody A, MacSweeney ST, Gladman JR, Auer DP. Brain White Matter Hyperintensities Are Associated with Carotid Intraplaque Hemorrhage. Radiology 2008; 248:202-9. [DOI: 10.1148/radiol.2481070300] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|