1
|
Andreassen SN, Toft-Bertelsen TL, Wardman JH, Villadsen R, MacAulay N. Transcriptional profiling of transport mechanisms and regulatory pathways in rat choroid plexus. Fluids Barriers CNS 2022; 19:44. [PMID: 35659263 PMCID: PMC9166438 DOI: 10.1186/s12987-022-00335-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dysregulation of brain fluid homeostasis associates with brain pathologies in which fluid accumulation leads to elevated intracranial pressure. Surgical intervention remains standard care, since specific and efficient pharmacological treatment options are limited for pathologies with disturbed brain fluid homeostasis. Such lack of therapeutic targets originates, in part, from the incomplete map of the molecular mechanisms underlying cerebrospinal fluid (CSF) secretion by the choroid plexus. METHODS The transcriptomic profile of rat choroid plexus was generated by RNA Sequencing (RNAseq) of whole tissue and epithelial cells captured by fluorescence-activated cell sorting (FACS), and compared to proximal tubules. The bioinformatic analysis comprised mapping to reference genome followed by filtering for type, location, and association with alias and protein function. The transporters and associated regulatory modules were arranged in discovery tables according to their transcriptional abundance and tied together in association network analysis. RESULTS The transcriptomic profile of choroid plexus displays high similarity between sex and species (human, rat, and mouse) and lesser similarity to another high-capacity fluid-transporting epithelium, the proximal tubules. The discovery tables provide lists of transport mechanisms that could participate in CSF secretion and suggest regulatory candidates. CONCLUSIONS With quantification of the transport protein transcript abundance in choroid plexus and their potentially linked regulatory modules, we envision a molecular tool to devise rational hypotheses regarding future delineation of choroidal transport proteins involved in CSF secretion and their regulation. Our vision is to obtain future pharmaceutical targets towards modulation of CSF production in pathologies involving disturbed brain water dynamics.
Collapse
Affiliation(s)
- Søren N Andreassen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jonathan H Wardman
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
2
|
Zhao L, Taso M, Dai W, Press DZ, Alsop DC. Non-invasive measurement of choroid plexus apparent blood flow with arterial spin labeling. Fluids Barriers CNS 2020; 17:58. [PMID: 32962708 PMCID: PMC7510126 DOI: 10.1186/s12987-020-00218-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The choroid plexus is a major contributor to the generation of cerebrospinal fluid (CSF) and the maintenance of its electrolyte and metabolite balance. Here, we sought to characterize the blood flow dynamics of the choroid plexus using arterial spin labeling (ASL) MRI to establish ASL as a non-invasive tool for choroid plexus function and disease studies. Methods Seven healthy volunteers were imaged on a 3T MR scanner. ASL images were acquired with 12 labeling durations and post labeling delays. Regions of the choroid plexus were manually segmented on high-resolution T1 weighted images. Choroid plexus perfusion was characterized with a dynamic ASL perfusion model. Cerebral gray matter perfusion was also quantified for comparison. Results Kinetics of the ASL signal were clearly different in the choroid plexus than in gray matter. The choroid plexus has a significantly longer T1 than the gray matter (2.33 ± 0.30 s vs. 1.85 ± 0.10 s, p < 0.02). The arterial transit time was 1.24 ± 0.20 s at the choroid plexus. The apparent blood flow to the choroid plexus was measured to be 39.5 ± 10.1 ml/100 g/min and 0.80 ± 0.31 ml/min integrated over the posterior lateral ventricles in both hemispheres. Correction with the choroid plexus weight yielded a blood flow of 80 ml/100 g/min. Conclusions Our findings suggest that ASL can provide a clinically feasible option to quantify the dynamic characteristics of choroid plexus blood flow. It also provides useful reference values of the choroid plexus perfusion. The long T1 of the choroid plexus may suggest the transport of water from arterial blood to the CSF, potentially providing a method to quantify CSF generation.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Manuel Taso
- Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Weiying Dai
- Computer Science, State University of New York At Binghamton, Binghamton, NY, USA
| | - Daniel Z Press
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Bhattrai A, Irimia A, Van Horn JD. Neuroimaging of traumatic brain injury in military personnel: An overview. J Clin Neurosci 2019; 70:1-10. [PMID: 31331746 PMCID: PMC6861663 DOI: 10.1016/j.jocn.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/04/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The incidence of blunt-force traumatic brain injury (TBI) is especially prevalent in the military, where the emergency care admission rate has been reported to be 24.6-41.8 per 10,000 soldier-years. Given substantial advancements in modern neuroimaging techniques over the past decade in terms of structural, functional, and connectomic approaches, this mode of exploration can be viewed as best suited for understanding the underlying pathology and for providing proper intervention at effective time-points. APPROACH Here we survey neuroimaging studies of mild-to-severe TBI in military veterans with the intent to aid the field in the creation of a roadmap for clinicians and researchers whose aim is to understand TBI progression. DISCUSSION Recent advancements on the quantification of neurocognitive dysfunction, cellular dysfunction, intracranial pressure, cerebral blood flow, inflammation, post-traumatic neuropathophysiology, on blood serum biomarkers and on their correlation to neuroimaging findings are reviewed to hypothesize how they can be used in conjunction with one another. This may allow clinicians and scientists to comprehensively study TBI in military service members, leading to new treatment strategies for both currently-serving as well as veteran personnel, and to improve the study of TBI more broadly.
Collapse
Affiliation(s)
- Avnish Bhattrai
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, SHN, Los Angeles, CA 90033, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Room 228C, Los Angeles, CA 90089-0191, USA.
| | - John Darrell Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, SHN, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Herculano-Houzel S. Decreasing sleep requirement with increasing numbers of neurons as a driver for bigger brains and bodies in mammalian evolution. Proc Biol Sci 2016; 282:20151853. [PMID: 26400745 DOI: 10.1098/rspb.2015.1853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammals sleep between 3 and 20 h d(-1), but what regulates daily sleep requirement is unknown. While mammalian evolution has been characterized by a tendency towards larger bodies and brains, sustaining larger bodies and brains requires increasing hours of feeding per day, which is incompatible with a large sleep requirement. Mammalian evolution, therefore, must involve mechanisms that tie increasing body and brain size to decreasing sleep requirements. Here I show that daily sleep requirement decreases across mammalian species and in rat postnatal development with a decreasing ratio between cortical neuronal density and surface area, which presumably causes sleep-inducing metabolites to accumulate more slowly in the parenchyma. Because addition of neurons to the non-primate cortex in mammalian evolution decreases this ratio, I propose that increasing numbers of cortical neurons led to decreased sleep requirement in evolution that allowed for more hours of feeding and increased body mass, which would then facilitate further increases in numbers of brain neurons through a larger caloric intake per hour. Coupling of increasing numbers of neurons to decreasing sleep requirement and increasing hours of feeding thus may have not only allowed but also driven the trend of increasing brain and body mass in mammalian evolution.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Instituto Nacional de Neurociência Translacional, INCT/MCT, São Paulo, Brazil
| |
Collapse
|
5
|
|
6
|
Schöniger S, Caprile T, Yulis CR, Zhang Q, Rodríguez EM, Nürnberger F. Physiological response of bovine subcommissural organ to endothelin 1 and bradykinin. Cell Tissue Res 2009; 336:477-88. [PMID: 19387687 DOI: 10.1007/s00441-009-0792-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/10/2009] [Indexed: 10/20/2022]
Abstract
The circumventricular organs (CVOs) regulate certain vegetative functions. Receptors for bradykinin (BDK) and endothelin (ET) have been found in some CVOs. The subcommissural organ (SCO) is a CVO expressing BDK-B2 receptors and secreting Reissner's fiber (RF) glycoproteins into the cerebrospinal fluid. This investigation was designed to search for ET receptors in the bovine SCO and, if found, to study the functional properties of this ET receptor and the BDK-B2 receptor. Cryostat sections exposed to (125)I ET1 showed dense labeling of secretory SCO cells, whereas the adjacent ciliated ependyma was devoid of radiolabel. The binding of (125)I ET1 was abolished by antagonists of ETA and ETB receptors. The intracellular calcium concentration ([Ca(2+)](i)) was measured in individual SCO cells prior to and after exposure to ET1, BDK, or RF glycoproteins. ET1 (100 nM) or BDK (100 nM) caused an increase in [Ca(2+)](i) in 48% or 53% of the analyzed SCO-cells, respectively. RF glycoproteins had no effect on [Ca(2+)](i) in SCO cells. ET and BDK evoked two types of calcium responses: prolonged and short responses. Prolonged responses included those with a constant slow decline of [Ca(2+)](i), biphasic responses, and responses with a plateau phase at the peak level of [Ca(2+)](i). ET1-treated SCO explants contained a reduced amount of intracytoplasmic AFRU (antiserum to RF glycoproteins)-immunoreactive material compared with sham-treated control explants. Our data suggest that ET1 and BDK regulate [Ca(2+)](i) in bovine SCO cells, and that the changes in [Ca(2+)](i) influence the secretory activity of these cells.
Collapse
Affiliation(s)
- S Schöniger
- Dr Senckenbergische Anatomie, FB Medizin der J.W.-Goethe-Universität, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Sharma HS, Johanson CE. Blood-cerebrospinal fluid barrier in hyperthermia. PROGRESS IN BRAIN RESEARCH 2007; 162:459-78. [PMID: 17645933 DOI: 10.1016/s0079-6123(06)62023-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-CSF barrier (BCSFB) in choroid plexus works with the blood-brain barrier (BBB) in cerebral capillaries to stabilize the fluid environment of neurons. Dysfunction of either transport interface, i.e., BCSFB or BBB, causes augmented fluxes of ions, water and proteins into the CNS. These barrier disruptions lead to problems with edema and other compromised homeostatic mechanisms. Hyperthermic effects on BCSFB permeability and transport are not as well known as for BBB. However, it is becoming increasingly appreciated that elevated prostaglandin synthesis from fever/heat activation of cyclooxygenases (COXs) in the BCSFB promotes water and ion transfer from plasma to the ventricles; this harmful fluid movement into the CSF-brain interior can be attenuated by agents that inhibit the COXs. Moreover, new functional data from our laboratory animal model indicate that the BCSFB (choroidal epithelium) and the CSF-bordering ependymal cells are vulnerable to whole body hyperthermia (WBH). This is evidenced from the fact that rats subjected to 4h of heat stress (38 degrees C) showed a significant increase in the translocation of Evans blue and (131)Iodine from plasma to cisternal CSF, and manifested blue staining of the dorsal surface of the hippocampus and caudate nucleus. Degeneration of choroidal epithelial cells and underlying ependyma, a dilated ventricular space and damage to the underlying neuropil were frequent. A disrupted BCSFB is associated with a marked increase in edema formation in the hippocampus, caudate nucleus, thalamus and hypothalamus. Taken together, these findings suggest that the breaching of the BCSFB in hyperthermia significantly contributes to cell and tissue injuries in the CNS.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Institute of Surgical Sciences, Department of Anaesthesiology and Intensive Care, University Hospital, Uppsala University, SE-75185 Uppsala, Sweden
| | | |
Collapse
|
8
|
Tatebayashi K, Asai Y, Maeda T, Shiraishi Y, Miyoshi M, Kawai Y. Effects of head-down tilt on the intracranial pressure in conscious rabbits. Brain Res 2003; 977:55-61. [PMID: 12788513 DOI: 10.1016/s0006-8993(03)02723-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Head-down tilt (HDT) causes a fluid shift towards the upper body, which increases intracranial pressure (ICP). In the present study, the time course of ICP changes during prolonged exposure to HDT was investigated in conscious rabbits through a catheter chronically implanted into the subarachnoid space. The production of cerebrospinal fluid (CSF) after exposure to 7-days HDT was also examined by a ventriculo-cisternal perfusion method. The ICP increased from 4.3+/-0.4 (mean+/-S.E.M.) mmHg to 8.0+/-0.8 mmHg immediately after the onset of 45 degrees HDT, reached a peak value of 15.8+/-1.9 mmHg at 11 h, and then decreased to 10.4+/-1.1 mmHg at 24 h. During 7-days HDT, it also increased from 4.8+/-0.9 mmHg to 9.2+/-1.6 mmHg immediately after the onset of 45 degrees HDT, reached a peak value of 12.8+/-2.5 mmHg at 12 h of HDT, and then decreased gradually towards the pre-HDT baseline value for 7 days. The rate of CSF production was 10.1+/-0.6 microl/min in rabbits exposed to 7-days HDT, and 9.7+/-0.5 microl/min in control rabbits. These results suggest that the rabbits begin to adapt to HDT within a few days and that the production of CSF is preserved after exposure to 7-days HDT. The time course of ICP changes during HDT in conscious rabbits seems to be considerably different from that in anesthetized rabbits.
Collapse
Affiliation(s)
- Kyoko Tatebayashi
- Second Department of Physiology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, Von Essen A, Rubenstein E. Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 2002; 97:1271-5. [PMID: 12507122 DOI: 10.3171/jns.2002.97.6.1271] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The goal of this study was to determine the effect of hydrocephalus on cerebrospinal fluid (CSF) production rates in patients with acute and chronic hydrocephalus. METHODS The authors studied CSF production both in patients presenting with acute and chronic hydrocephalus, and patients with Parkinson disease (PD) of a similar mean age, whose CSF production was known to be normal. A modification of the Masserman method was used to measure CSF production through a ventricular catheter. The CSF production rates (means +/- standard deviations) in the three groups were then compared. The patients with PD had a mean CSF production rate of 0.42 +/- 0.13 ml/minute; this value lies within the normal range measured using this technique. Patients with acute hydrocephalus had a similar CSF production rate of 0.4 +/- 0.13 ml/minute, whereas patients with chronic hydrocephalus had a significantly decreased mean CSF production rate of 0.25 +/- 0.08 ml/minute. CONCLUSIONS The authors postulate that chronic increased intracranial pressure causes downregulation of CSF production.
Collapse
Affiliation(s)
- Gerald D Silverberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Choroid plexus (CP) is an important target organ for polypeptides. The fenestrated phenotype of choroidal endothelium facilitates the penetration of blood-borne polypeptides across the capillary walls. Thus, both circulating and cerebrospinal fluid (CSF)-borne polypeptides can reach their receptors on choroidal epithelium. Several polypeptides have been demonstrated to regulate CSF formation by controlling blood flow to choroid plexus and/or the activity of ion transport in choroidal epithelium. However, many ligand-receptor interactions occurring in the CP are not involved in the regulation of fluid secretion. Increasing evidence suggests that the choroidal epithelium plays an important role in hormonal signaling via a receptor-mediated transport into the brain (e.g., leptin) and helps to clear certain CSF-borne polypeptides (e.g., soluble amyloid beta-protein). Thus, impaired choroidal transport or insufficient clearance of polypeptides may contribute to pathogenesis of systemic or central nervous system (CNS) disorders, such as obesity or Alzheimer's disease. CP epithelium is not only a target but is also a source of neuropeptides, growth factors, and cytokines in the CNS. These polypeptides following their release into the CSF may exert distal, endocrine-like effects on target cells in the brain due to bulk flow of this fluid. Distinct temporal patterns of choroidal expression of several polypeptides are observed during brain development and in various CNS disorders, including traumatic brain injury and ischemia. Therefore, it is proposed that the CP plays an integral role not only in normal brain functioning, but also in the recovery from the injury. This review attempts to critically analyze the available data to support the above hypothesis.
Collapse
Affiliation(s)
- A Chodobski
- Department of Clinical Neurosciences, Brown University Medical School, Providence, Rhode Island 02903, USA.
| | | |
Collapse
|
11
|
Affiliation(s)
- S J Wang
- Neurological Institute, Taipei Veterans General Hospital, Taiwan
| | | | | |
Collapse
|
12
|
|
13
|
Abstract
Endothelin (ET) and its G-protein-coupled receptors are distributed in a wide variety of tissues, including the brain. In this study, we have identified and characterized the endothelin receptor subtypes in sheep choroid plexus. Competitive binding experiments using [125I]ET-1 and the receptor subtype-selective ligands, ET-1, ET-3, BQ-123, Sarafotoxin 6c, and [Ala1,3,11,15] ET-1 demonstrated the presence of both ETA and ETB receptor subtypes in the ratio of 30:70. In addition, a small fraction of the total binding sites exhibited affinities for ET-1 in the subpicomolar range. Chemical crosslinking of [125I]ET-1 with bis(sulfosuccinimidyl)-suberate (BS3) to choroid plexus membranes revealed the presence of two bands, with apparent molecular masses of 89 and 45 kDa, corresponding to the ETA receptor, and three bands, with apparent molecular masses of 75, 58, and 33 kDa, corresponding to the ETB receptor. Of considerable interest was the finding that dimers of the [125I]ET-1-occupied ETA receptor could be identified by crosslinking, as could apparent dimers and tetramers of [125I]ET-1, but only when bound to receptor. In addition to mapping the distribution of ET receptors in sheep choroid plexus, our results strongly suggest that ET-1 binding to the ETA receptor leads to dimer formation.
Collapse
Affiliation(s)
- K Angelova
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
14
|
Harrigan MR, Tuteja S, Neudeck BL. Indomethacin in the management of elevated intracranial pressure: a review. J Neurotrauma 1997; 14:637-50. [PMID: 9337126 DOI: 10.1089/neu.1997.14.637] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Elevated intracranial pressure occurs frequently in patients with severe head injury. A number of studies in recent years suggest that indomethacin may be useful in the management of elevated intracranial pressure. Indomethacin acts primarily by reducing cerebral blood flow and decreasing cerebral edema following head injury. This review summarizes the basic and clinical studies of the effects of indomethacin on cerebral blood flow, brain edema, and intracranial pressure. The pharmacology of indomethacin, and issues for future investigation in the use of indomethacin in severe head injury, are discussed.
Collapse
Affiliation(s)
- M R Harrigan
- Department of Surgery, University of Michigan Medical Center, and College of Pharmacy, Ann Arbor, USA
| | | | | |
Collapse
|
15
|
Kuwaki T, Kurihara H, Cao WH, Kurihara Y, Unekawa M, Yazaki Y, Kumada M. Physiological role of brain endothelin in the central autonomic control: from neuron to knockout mouse. Prog Neurobiol 1997; 51:545-79. [PMID: 9153073 DOI: 10.1016/s0301-0082(96)00063-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although endothelin (ET) was discovered as a potent vascular endothelium-derived constricting peptide, its presumed physiological and pathophysiological roles are now considered much more diverse than originally though. Endothelin in the brain is thought to be deeply involved in the central autonomic control and consequent cardiorespiratory homeostasis, possibly as a neuromodulator or a hormone that functions locally in an autocrine/paracrine manner or widely through delivery by the cerebrospinal fluid (CSF). This notion is based on the following lines of evidence. (1) Mature ET, its precursors, converting enzymes, and receptors all are detected at strategic sites in the central nervous system (CNS), especially those controlling the autonomic functions. (2) The ET is present in the CSF at concentrations higher than in the plasma. (3) There is a topographical correspondence of ET and its receptors in the CNS. (4) The ET is released by primary cultures of hypothalamic neurons. (5) When ET binds to its receptors, intracellular calcium channels. (6) An intracerebroventricular or topical application of ET to CNS sites elicits a pattern of cardiorespiratory changes accompanied by responses of vasomotor and respiratory neurons. (7) Recently generated knockout mice with disrupted genes encoding ET-1 exhibited, along with malformations in a subset of the tissues of neural crest cell lineage, cardiorespiratory abnormalities including elevation of arterial pressure, sympathetic overactivity, and impairment of the respiratory reflex. Definitive evidence is expected from thorough analyses of knockout mice by applying conventional experimental methods.
Collapse
Affiliation(s)
- T Kuwaki
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Biestro AA, Alberti RA, Soca AE, Cancela M, Puppo CB, Borovich B. Use of indomethacin in brain-injured patients with cerebral perfusion pressure impairment: preliminary report. J Neurosurg 1995; 83:627-30. [PMID: 7674011 DOI: 10.3171/jns.1995.83.4.0627] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of indomethacin, a cyclooxygenase inhibitor, was studied in the treatment of 10 patients with head injury and one patient with spontaneous subarachnoid hemorrhage, each of whom presented with high intracranial pressure (ICP) (34.4 +/- 13.1 mm Hg) and cerebral perfusion pressure (CPP) impairment (67.0 +/- 15.4 mm Hg), which did not improve with standard therapy using mannitol, hyperventilation, and barbiturates. The patient had Glasgow Coma Scale scores of 8 or less. Recordings were made of the patients' ICP and mean arterial blood pressure from the nurse's end-hour recording at the bedside, as well as of their CPP, rectal temperature, and standard therapy regimens. The authors assessed the effects of an indomethacin bolus (50 mg in 20 minutes) on ICP and CPP; an indomethacin infusion (21.5 +/- 11 mg/hour over 30 +/- 9 hours) on ICP, CPP, rectal temperature, and standard therapy regimens (matching the values before and during infusion in a similar time interval); and discontinuation of indomethacin treatment on ICP, CPP, and rectal temperature. The indomethacin bolus was very effective in lowering ICP (p < 0.0005) and improving CPP (p < 0.006). The indomethacin infusion decreased ICP (p < 0.02), but did not improve CPP and rectal temperature. The effects of standard therapy regimens before and during indomethacin infusion showed no significant changes, except in three patients in whom mannitol reestablished its action on ICP and CPP. Sudden discontinuation of indomethacin treatment was followed by significant ICP rebound. The authors suggest that indomethacin may be considered one of the frontline agents for raised ICP and CPP impairment.
Collapse
Affiliation(s)
- A A Biestro
- Intensive Care Unit, Hospital de Clínicas, Faculty of Medicine, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|