1
|
Kuo DP, Chen YC, Cheng SJ, Hsieh KLC, Ou CY, Li YT, Chen CY. Ischemia-reperfusion injury in a salvaged penumbra: Longitudinal high-tesla perfusion magnetic resonance imaging in a rat model. Magn Reson Imaging 2024; 112:47-53. [PMID: 38909765 DOI: 10.1016/j.mri.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Although ischemia-reperfusion (I/R) injury varies between cortical and subcortical regions, its effects on specific regions remain unclear. In this study, we used various magnetic resonance imaging (MRI) techniques to examine the spatiotemporal dynamics of I/R injury within the salvaged ischemic penumbra (IP) and reperfused ischemic core (IC) of a rodent model, with the aim of enhancing therapeutic strategies by elucidating these dynamics. MATERIALS AND METHODS A total of 17 Sprague-Dawley rats were subjected to 1 h of transient middle cerebral artery occlusion with a suture model. MRI, including diffusion tensor imaging (DTI), T2-weighted imaging, perfusion-weighted imaging, and T1 mapping, was conducted at multiple time points for up to 5 days during the I/R phases. The spatiotemporal dynamics of blood-brain barrier (BBB) modifications were characterized through changes in T1 within the IP and IC regions and compared with mean diffusivity (MD), T2, and cerebral blood flow. RESULTS During the I/R phases, the MD of the IC initially decreased, normalized after recanalization, decreased again at 24 h, and peaked on day 5. By contrast, the IP remained relatively stable. Both the IP and IC exhibited hyperperfusion, with the IP reaching its peak at 24 h, followed by resolution, whereas hyperperfusion was maintained in the IC until day 5. Despite hyperperfusion, the IP maintained an intact BBB, whereas the IC experienced persistent BBB leakage. At 24 h, the IC exhibited an increase in the T2 signal, corresponding to regions exhibiting BBB disruption at 5 days. CONCLUSIONS Hyperperfusion and BBB impairment have distinct patterns in the IP and IC. Quantitative T1 mapping may serve as a supplementary tool for the early detection of malignant hyperemia accompanied by BBB leakage, aiding in precise interventions after recanalization. These findings underscore the value of MRI markers in monitoring ischemia-specific regions and customizing therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Duen-Pang Kuo
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Chieh Chen
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sho-Jen Cheng
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kevin Li-Chun Hsieh
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yin Ou
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Tien Li
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Cheng-Yu Chen
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Radiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Sokolowski JD, Soldozy S, Sharifi KA, Norat P, Kearns KN, Liu L, Williams AM, Yağmurlu K, Mastorakos P, Miller GW, Kalani MYS, Park MS, Kellogg RT, Tvrdik P. Preclinical models of middle cerebral artery occlusion: new imaging approaches to a classic technique. Front Neurol 2023; 14:1170675. [PMID: 37409019 PMCID: PMC10318149 DOI: 10.3389/fneur.2023.1170675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Stroke remains a major burden on patients, families, and healthcare professionals, despite major advances in prevention, acute treatment, and rehabilitation. Preclinical basic research can help to better define mechanisms contributing to stroke pathology, and identify therapeutic interventions that can decrease ischemic injury and improve outcomes. Animal models play an essential role in this process, and mouse models are particularly well-suited due to their genetic accessibility and relatively low cost. Here, we review the focal cerebral ischemia models with an emphasis on the middle cerebral artery occlusion technique, a "gold standard" in surgical ischemic stroke models. Also, we highlight several histologic, genetic, and in vivo imaging approaches, including mouse stroke MRI techniques, that have the potential to enhance the rigor of preclinical stroke evaluation. Together, these efforts will pave the way for clinical interventions that can mitigate the negative impact of this devastating disease.
Collapse
Affiliation(s)
- Jennifer D. Sokolowski
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Sauson Soldozy
- Department of Neurological Surgery, Westchester Medical Center, Valhalla, NY, United States
| | - Khadijeh A. Sharifi
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Kathryn N. Kearns
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Lei Liu
- Department of Neurological Surgery and Neuroscience, Northwestern University, Chicago, IL, United States
| | - Ashley M. Williams
- School of Medicine, Morsani College of Medicine, Tampa, FL, United States
| | - Kaan Yağmurlu
- Department of Neurological Surgery, University of Tennessee, Memphis, TN, United States
| | - Panagiotis Mastorakos
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - G. Wilson Miller
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - M. Yashar S. Kalani
- Department of Neurological Surgery, St. John's Neuroscience Institute, Tulsa, OK, United States
| | - Min S. Park
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Ryan T. Kellogg
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
Heo HY, Tee YK, Harston G, Leigh R, Chappell M. Amide proton transfer imaging in stroke. NMR IN BIOMEDICINE 2023; 36:e4734. [PMID: 35322482 PMCID: PMC9761584 DOI: 10.1002/nbm.4734] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 05/23/2023]
Abstract
Amide proton transfer (APT) imaging, a variant of chemical exchange saturation transfer MRI, has shown promise in detecting ischemic tissue acidosis following impaired aerobic metabolism in animal models and in human stroke patients due to the sensitivity of the amide proton exchange rate to changes in pH within the physiological range. Recent studies have demonstrated the possibility of using APT-MRI to detect acidosis of the ischemic penumbra, enabling the assessment of stroke severity and risk of progression, monitoring of treatment progress, and prognostication of clinical outcome. This paper reviews current APT imaging methods actively used in ischemic stroke research and explores the clinical aspects of ischemic stroke and future applications for these methods.
Collapse
Affiliation(s)
- Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yee Kai Tee
- Lee Kong Chian Faculty of Engineering and Science, University Tunku Abdul Rahman, Malaysia
| | - George Harston
- Acute Stroke Programme, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Chappell
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom, UK
| |
Collapse
|
4
|
Dietz RM, Dingman AL, Herson PS. Cerebral ischemia in the developing brain. J Cereb Blood Flow Metab 2022; 42:1777-1796. [PMID: 35765984 PMCID: PMC9536116 DOI: 10.1177/0271678x221111600] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Brain ischemia affects all ages, from neonates to the elderly population, and is a leading cause of mortality and morbidity. Multiple preclinical rodent models involving different ages have been developed to investigate the effect of ischemia during different times of key brain maturation events. Traditional models of developmental brain ischemia have focused on rodents at postnatal day 7-10, though emerging models in juvenile rodents (postnatal days 17-25) indicate that there may be fundamental differences in neuronal injury and functional outcomes following focal or global cerebral ischemia at different developmental ages, as well as in adults. Here, we consider the timing of injury in terms of excitation/inhibition balance, oxidative stress, inflammatory responses, blood brain barrier integrity, and white matter injury. Finally, we review translational strategies to improve function after ischemic brain injury, including new ideas regarding neurorestoration, or neural repair strategies that restore plasticity, at delayed time points after ischemia.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andra L Dingman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
5
|
Oxygen Challenge Imaging Reveals Differences in Metabolic Activity Between Kurtosis Lesion and Diffusion/Kurtosis Lesion Mismatch in a Rodent Model of Acute Stroke. J Comput Assist Tomogr 2022; 46:792-799. [PMID: 36103679 DOI: 10.1097/rct.0000000000001333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Accurate identification of potentially salvageable tissues is critical for improving acute stroke treatment. A previous study showed that the kurtosis lesion exhibited insignificant response after prompt reperfusion treatment, while the diffusion/kurtosis lesion mismatch could recover after reperfusion. We hypothesized that these 2 regions are in different metabolic states. MATERIALS AND METHODS Transient oxygen challenge (OC) is a procedure that uses oxygen as a metabolic bio-tracer and has been performed to explore metabolic activity in tissues. We combined OC with multiparameter magnetic resonance imaging (including diffusion kurtosis imaging and T2* mapping sequences) to study metabolic activity in the ischemic brain of Sprague Dawley rats. RESULTS Oxygen challenge image analysis revealed changes in T2* values, most significantly in the mean diffusivity (MD)/mean kurtosis (MK) lesion mismatch (22.3 ± 1.6%) and least significantly in the MK lesions (6.6 ± 0.6%). The MD images acquired within 138 ± 9 minutes after ischemia showed a larger ischemic lesion (45.5 ± 3.0% of the total area) than the MK images (33.2 ± 4.2% of the total area). The change rate of the MK value (53.0 ± 4.4%) was higher than that of the MD value (37.5 ± 3.2%). CONCLUSIONS The present study shows that MK lesion and MD/MK lesion mismatch exhibited different metabolic activity states. The MK lesion presented metabolic-related values close to the ischemic core, while at least part of the MD/MK mismatch area was comparable with ischemic penumbra metabolic activity. These findings are important to support image-guided individualized stroke therapies.
Collapse
|
6
|
Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke. Transl Stroke Res 2021; 12:937-945. [PMID: 34224106 DOI: 10.1007/s12975-021-00916-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
The ischemic penumbra defined four decades ago has been the main battleground of ischemic stroke. The evolving ischemic penumbra concept has been providing insight for the development of vascular and cellular approaches as well as diagnostic tools for the treatment of ischemic stroke. rt-PA thrombolytic therapy to prevent the transition of ischemic penumbra to core has been approved for acute ischemic stroke within 3 h and was later recommended to extend to 4.5 h after symptom onset. Mechanical thrombectomy was introduced for the treatment of acute ischemic stroke with a therapeutic window of up to 24 h after stroke onset. Multiple modalities brain imaging techniques have been developed that provide guidance to define ischemic penumbra for reperfusion therapy in clinical practice. Cellular and molecular dissection of ischemic penumbra has been providing targets for the development of neuroprotective therapy for ischemic stroke. However, the dynamic nature of ischemic penumbra implicates that infarct core eventually expands into penumbra over time without reperfusion, dictating relative short therapeutic windows and limiting the impact of current reperfusion intervention. Entering the 5th decade since the introduction, ischemic penumbra remains the main focus of ischemic stroke research and clinical practice. In this review, we summarized the evolving ischemic penumbra concept and its implication in the development of vascular and cellular interventions as well as diagnostic tools for acute ischemic stroke. In addition, we discussed future perspectives on expansion of the campaign beyond ischemic penumbra to develop treatment for ischemic stroke.
Collapse
|
7
|
Sunil S, Evren Erdener S, Cheng X, Kura S, Tang J, Jiang J, Karrobi K, Kılıç K, Roblyer D, Boas DA. Stroke core revealed by tissue scattering using spatial frequency domain imaging. NEUROIMAGE-CLINICAL 2020; 29:102539. [PMID: 33385882 PMCID: PMC7779322 DOI: 10.1016/j.nicl.2020.102539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
We present OCT and SFDI as methods to measure the spatial extent of stroke in mice. OCT was a reliable predictor of the stroke core in a photothrombosis stroke model. SFDI scattering coefficient spatially overlaps with OCT attenuation after stroke. Scattering increases following stroke reliably predict ischemic injury. SFDI provides a wide-field optical approach to map the stroke core.
Ischemic stroke leads to a reduction or complete loss of blood supply causing injury to brain tissue, which ultimately leads to behavioral impairment. Optical techniques are widely used to study the structural and functional changes that result as a consequence of ischemic stroke both in the acute and chronic phases of stroke recovery. It is currently a challenge to accurately estimate the spatial extent of the infarct without the use of histological parameters however, and in order to follow recovery mechanisms longitudinally at the mesoscopic scale it is essential to know the spatial extent of the stroke core. In this paper we first establish optical coherence tomography (OCT) as a reliable indicator of the stroke core by analyzing signal attenuation and spatially correlating it with the infarct, determined by staining with triphenyl-tetrazolium chloride (TTC). We then introduce spatial frequency domain imaging (SFDI) as a mesoscopic optical technique that can be used to accurately measure the infarct spatial extent by exploiting changes in optical scattering that occur as a consequence of ischemic stroke. Additionally, we follow the progression of ischemia through the acute and sub-acute phases of stroke recovery using both OCT and SFDI and show a consistently high spatial overlap in estimating infarct location. The use of SFDI in assessing infarct location will allow longitudinal studies targeted at following functional recovery mechanisms on a mesoscopic level without having to sacrifice the mouse acutely.
Collapse
Affiliation(s)
- Smrithi Sunil
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Sefik Evren Erdener
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Xiaojun Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sreekanth Kura
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jianbo Tang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kıvılcım Kılıç
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
8
|
Nagaraja N, Forder JR, Warach S, Merino JG. Reversible diffusion-weighted imaging lesions in acute ischemic stroke: A systematic review. Neurology 2020; 94:571-587. [PMID: 32132175 DOI: 10.1212/wnl.0000000000009173] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/27/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To systematically review the literature for reversible diffusion-weighted imaging (DWIR) lesions and to describe its prevalence, predictors, and clinical significance. METHODS Studies were included if the first DWI MRI was performed within 24 hours of stroke onset and follow-up DWI or fluid-attenuated inversion recovery (FLAIR)/T2 was performed within 7 or 90 days, respectively, to measure DWIR. We abstracted clinical, imaging, and outcomes data. RESULTS Twenty-three studies met the study criteria. The prevalence of DWIR was 26.5% in DWI-based studies and 6% in FLAIR/T2-based studies. DWIR was associated with recanalization or reperfusion of the ischemic tissue with or without the use of tissue plasminogen activator (t-PA) or endovascular therapy, earlier treatment with t-PA, shorter time to endovascular therapy after MRI, and absent or less severe perfusion deficit within the DWI lesion. DWIR was associated with early neurologic improvement in 5 of 6 studies (defined as improvement in the NIH Stroke Scale (NIHSS) score by 4 or 8 points from baseline or NIHSS score 0 to 2 at 24 hours after treatment or at discharge or median NIHSS score at 7 days) and long-term outcome in 6 of 7 studies (defined as NIHSS score ≤1, improvement in the NIHSS score ≥8 points, or modified Rankin Scale score up to ≤2 at 30 or 90 days) likely due to reperfusion. CONCLUSIONS DWIR is seen in up to a quarter of patients with acute ischemic stroke, and it is associated with good clinical outcome following reperfusion. Our findings highlight the pitfalls of DWI to define ischemic core in the early hours of stroke.
Collapse
Affiliation(s)
- Nandakumar Nagaraja
- From the Department of Neurology (N.N.), University of Florida College of Medicine, Gainesville; Department of Radiology and Biomedical Engineering (J.R.F.), University of Florida, Gainesville; Dell Medical School (S.W.), University of Texas at Austin; and Department of Neurology (J.G.M.), Georgetown University School of Medicine, Washington, DC.
| | - John R Forder
- From the Department of Neurology (N.N.), University of Florida College of Medicine, Gainesville; Department of Radiology and Biomedical Engineering (J.R.F.), University of Florida, Gainesville; Dell Medical School (S.W.), University of Texas at Austin; and Department of Neurology (J.G.M.), Georgetown University School of Medicine, Washington, DC
| | - Steven Warach
- From the Department of Neurology (N.N.), University of Florida College of Medicine, Gainesville; Department of Radiology and Biomedical Engineering (J.R.F.), University of Florida, Gainesville; Dell Medical School (S.W.), University of Texas at Austin; and Department of Neurology (J.G.M.), Georgetown University School of Medicine, Washington, DC
| | - Jośe G Merino
- From the Department of Neurology (N.N.), University of Florida College of Medicine, Gainesville; Department of Radiology and Biomedical Engineering (J.R.F.), University of Florida, Gainesville; Dell Medical School (S.W.), University of Texas at Austin; and Department of Neurology (J.G.M.), Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
9
|
Hsia AW, Luby M, Cullison K, Burton S, Armonda R, Liu AH, Leigh R, Nadareishvili Z, Benson RT, Lynch JK, Latour LL. Rapid Apparent Diffusion Coefficient Evolution After Early Revascularization. Stroke 2019; 50:2086-2092. [PMID: 31238830 DOI: 10.1161/strokeaha.119.025784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- In this era of endovascular therapy (EVT) with early, complete recanalization and reperfusion, we have observed an even more rapid apparent diffusion coefficient (ADC) normalization within the acute ischemic lesion compared with the natural history or IV-tPA-treated patient. In this study, we aimed to evaluate the effect of revascularization on ADC evolution within the core lesion in the first 24 hours in acute ischemic stroke patients. Methods- This retrospective study included anterior circulation acute ischemic stroke patients treated with EVT with or without intravenous tPA (IVT) from 2015 to 2017 compared with a consecutive cohort of IVT-only patients treated before 2015. Diffusion-weighted imaging and ADC maps were used to quantify baseline core lesions. Median ADC value change and core reversal were determined at 24 hours. Diffusion-weighted imaging lesion growth was measured at 24 hours and 5 days. Good clinical outcome was defined as modified Rankin Scale score of 0 to 2 at 90 days. Results- Twenty-five patients (50%) received IVT while the other 25 patients received EVT (50%) with or without IVT. Between these patient groups, there were no differences in age, sex, baseline National Institutes of Health Stroke Scale, interhospital transfer, or IVT rates. Thirty-two patients (64%) revascularized with 69% receiving EVT. There was a significant increase in median ADC value of the core lesion at 24 hours in patients who revascularized compared with further ADC reduction in nonrevascularization patients. Revascularization patients had a significantly higher rate of good clinical outcome at 90 days, 63% versus 9% (P=0.003). Core reversal at 24 hours was significantly higher in revascularization patients, 69% versus 22% (P=0.002). Conclusions- ADC evolution in acute ischemic stroke patients with early, complete revascularization, now more commonly seen with EVT, is strikingly different from our historical understanding. The early ADC normalization we have observed in this setting may include a component of secondary injury and serve as a potential imaging biomarker for the development of future adjunctive therapies. Clinical Trial Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT00009243.
Collapse
Affiliation(s)
- Amie W Hsia
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.).,MedStar Washington Hospital Center Comprehensive Stroke Center, Washington, DC (A.W.H., S.B., R.T.B.)
| | - Marie Luby
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.)
| | - Kaylie Cullison
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.)
| | - Shannon Burton
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.).,MedStar Washington Hospital Center Comprehensive Stroke Center, Washington, DC (A.W.H., S.B., R.T.B.)
| | - Rocco Armonda
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.)
| | | | - Richard Leigh
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.)
| | - Zurab Nadareishvili
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.).,MedStar Washington Hospital Center Comprehensive Stroke Center, Washington, DC (A.W.H., S.B., R.T.B.)
| | - Richard T Benson
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.)
| | - John K Lynch
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.)
| | - Lawrence L Latour
- From the NIH/National Institute of Neurological Disorders and Stroke, Stroke Branch, Bethesda, MD (A.W.H., M.L., K.C., S.B., R.L., Z.N., R.T.B., J.K.L., L.L.L.)
| |
Collapse
|
10
|
Choi CH, Yi KS, Lee SR, Lee Y, Jeon CY, Hwang J, Lee C, Choi SS, Lee HJ, Cha SH. A novel voxel-wise lesion segmentation technique on 3.0-T diffusion MRI of hyperacute focal cerebral ischemia at 1 h after permanent MCAO in rats. J Cereb Blood Flow Metab 2018; 38:1371-1383. [PMID: 28598225 PMCID: PMC6092770 DOI: 10.1177/0271678x17714179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To assess hyperacute focal cerebral ischemia in rats on 3.0-Tesla diffusion-weighted imaging (DWI), we developed a novel voxel-wise lesion segmentation technique that overcomes intra- and inter-subject variation in apparent diffusion coefficient (ADC) distribution. Our novel technique involves the following: (1) intensity normalization including determination of the optimal type of region of interest (ROI) and its intra- and inter-subject validation, (2) verification of focal cerebral ischemic lesions at 1 h with gross and high-magnification light microscopy of hematoxylin-eosin (H&E) pathology, (3) voxel-wise segmentation on ADC with various thresholds, and (4) calculation of dice indices (DIs) to compare focal cerebral ischemic lesions at 1 h defined by ADC and matching H&E pathology. The best coefficient of variation was the mode of the left hemisphere after normalization using whole left hemispheric ROI, which showed lower intra- (2.54 ± 0.72%) and inter-subject (2.67 ± 0.70%) values than the original. Focal ischemic lesion at 1 h after middle cerebral artery occlusion (MCAO) was confirmed on both gross and microscopic H&E pathology. The 83 relative threshold of normalized ADC showed the highest mean DI (DI = 0.820 ± 0.075). We could evaluate hyperacute ischemic lesions at 1 h more reliably on 3-Tesla DWI in rat brains.
Collapse
Affiliation(s)
- Chi-Hoon Choi
- 1 Department of Radiology, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Kyung Sik Yi
- 1 Department of Radiology, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sang-Rae Lee
- 2 National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Youngjeon Lee
- 2 National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chang-Yeop Jeon
- 2 National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jinwoo Hwang
- 3 Clinical Science, Philips Healthcare, Seoul, Republic of Korea
| | - Chulhyun Lee
- 4 Bioimaging Research Team, Korea Basic Science Institute, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sung Sik Choi
- 5 Medical Research Institute, Chung-Ang University, Seoul, Republic of Korea
| | - Hong Jun Lee
- 5 Medical Research Institute, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Hoon Cha
- 1 Department of Radiology, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, Republic of Korea.,6 College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
11
|
False-negative diagnostic imaging of Wallenberg's syndrome by diffuse-weighted imaging: a case report and literature review. Neurol Sci 2018; 39:1657-1661. [PMID: 29627941 DOI: 10.1007/s10072-018-3399-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
Here, we report a case of a 64-year-old female with acute-onset vertigo, nausea, and vomiting. In an emergency imaging examination, the results of computed tomography (CT) and diffusion weighted imaging (DWI) were negative. However, on 1 day post-hospital admission, a small acute infarct in the posterolateral aspect of the left medulla was detected by DWI. Extra attention should be payed to the false-negative imaging results to avoid diagnosis and treatment delay.
Collapse
|
12
|
Yin J, Sun H, Wang Z, Ni H, Shen W, Sun PZ. Diffusion Kurtosis Imaging of Acute Infarction: Comparison with Routine Diffusion and Follow-up MR Imaging. Radiology 2018; 287:651-657. [PMID: 29558293 DOI: 10.1148/radiol.2017170553] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine the relationship between diffusion-weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in patients with acute stroke at admission and the tissue outcome 1 month after onset of stroke. Materials and Methods Patients with stroke underwent DWI (b values = 0, 1000 sec/mm2 along three directions) and DKI (b values = 0, 1000, 2000 sec/mm2 along 20 directions) within 24 hours after symptom onset and 1 month after symptom onset. For large lesions (diameter ≥ 1 cm), acute lesion volumes at DWI and DKI were compared with those at follow-up T2-weighted imaging by using Spearman correlation analysis. For small lesions (diameter < 1 cm), the number of acute lesions at DWI and DKI and follow-up T2-weighted imaging was counted and compared by using the McNemar test. Results Thirty-seven patients (mean age, 58 years; range, 35-82 years) were included. There were 32 large lesions and 138 small lesions. For large lesions, the volumes of acute lesions on kurtosis maps showed no difference from those on 1-month follow-up T2-weighted images (P = .532), with a higher correlation coefficient than those on the apparent diffusion coefficient and mean diffusivity maps (R2 = 0.730 vs 0.479 and 0.429). For small lesions, the number of acute lesions on DKI, but not on DWI, images was consistent with that on the follow-up T2-weighted images (P = .125). Conclusion DKI complements DWI for improved prediction of outcome of acute ischemic stroke. © RSNA, 2018.
Collapse
Affiliation(s)
- Jianzhong Yin
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Haizhen Sun
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Zhiyun Wang
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Hongyan Ni
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Wen Shen
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Phillip Zhe Sun
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| |
Collapse
|
13
|
Copen WA, Yoo AJ, Rost NS, Morais LT, Schaefer PW, González RG, Wu O. In patients with suspected acute stroke, CT perfusion-based cerebral blood flow maps cannot substitute for DWI in measuring the ischemic core. PLoS One 2017; 12:e0188891. [PMID: 29190675 PMCID: PMC5708772 DOI: 10.1371/journal.pone.0188891] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Neuroimaging may guide acute stroke treatment by measuring the volume of brain tissue in the irreversibly injured “ischemic core.” The most widely accepted core volume measurement technique is diffusion-weighted MRI (DWI). However, some claim that measuring regional cerebral blood flow (CBF) with CT perfusion imaging (CTP), and labeling tissue below some threshold as the core, provides equivalent estimates. We tested whether any threshold allows reliable substitution of CBF for DWI. Methods 58 patients with suspected stroke underwent DWI and CTP within six hours of symptom onset. A neuroradiologist outlined DWI lesions. In CBF maps, core pixels were defined by thresholds ranging from 0%-100% of normal, in 1% increments. Replicating prior studies, we used receiver operating characteristic (ROC) curves to select thresholds that optimized sensitivity and specificity in predicting DWI-positive pixels, first using only pixels on the side of the brain where infarction was clinically suspected (“unilateral” method), then including both sides (“bilateral”). We quantified each method and threshold’s accuracy in estimating DWI volumes, using sums of squared errors (SSE). For the 23 patients with follow-up studies, we assessed whether CBF-derived volumes inaccurately exceeded follow-up infarct volumes. Results The areas under the ROC curves were 0.89 (unilateral) and 0.90 (bilateral). Various metrics selected optimum CBF thresholds ranging from 29%-32%, with sensitivities of 0.79–0.81, and specificities of 0.83–0.85. However, for the unilateral and bilateral methods respectively, volume estimates derived from all CBF thresholds above 28% and 22% were less accurate than disregarding imaging and presuming every patient’s core volume to be zero. The unilateral method with a 30% threshold, which recent clinical trials have employed, produced a mean core overestimation of 65 mL (range: –82–191), and exceeded follow-up volumes for 83% of patients, by up to 191 mL. Conclusion CTP-derived CBF maps cannot substitute for DWI in measuring the ischemic core.
Collapse
Affiliation(s)
- William A. Copen
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Albert J. Yoo
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Neurointervention, Texas Stroke Institute, Fort Worth, Texas, United States of America
| | - Natalia S. Rost
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lívia T. Morais
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Pamela W. Schaefer
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - R. Gilberto González
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ona Wu
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Ji Y, Zhou IY, Qiu B, Sun PZ. Progress toward quantitative in vivo chemical exchange saturation transfer (CEST) MRI. Isr J Chem 2017. [DOI: 10.1002/ijch.201700025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital; Harvard Medical School; Rm 2301, 149 13 Street Charlestown MA 02129
- Center for Biomedical Engineering, Department of Electronic Science and Technology; University of Science and Technology of China; Hefei China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital; Harvard Medical School; Rm 2301, 149 13 Street Charlestown MA 02129
| | - Bensheng Qiu
- Center for Biomedical Engineering, Department of Electronic Science and Technology; University of Science and Technology of China; Hefei China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital; Harvard Medical School; Rm 2301, 149 13 Street Charlestown MA 02129
| |
Collapse
|
15
|
Shiraishi K, Wang Z, Kokuryo D, Aoki I, Yokoyama M. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood–brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury. J Control Release 2017; 253:165-171. [DOI: 10.1016/j.jconrel.2017.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/10/2023]
|
16
|
Cha J, Kim ST, Jung WB, Han YH, Im GH, Lee JH. Altered white matter integrity and functional connectivity of hyperacute-stage cerebral ischemia in a rat model. Magn Reson Imaging 2016; 34:1189-98. [DOI: 10.1016/j.mri.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/17/2016] [Indexed: 11/28/2022]
|
17
|
Reith W, Fisher M. Diffusion-Weighted Magnetic Resonance Imaging for Acute Ischaemic Stroke. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1358863x9400500404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wolfgang Reith
- The Medical Center of Central Massachusetts and the University of Massachusetts Medical School, Worcester, Massachusetts
| | - Marc Fisher
- The Medical Center of Central Massachusetts and the University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
18
|
Warach S. Review : Mapping Brain Pathophysiology and Higher Cortical Function with Magnetic Resonance Imaging. Neuroscientist 2016. [DOI: 10.1177/107385849500100406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in magnetic resonance imaging (MRI) have moved the technology beyond its application solely as a diagnostic test to become a tool for addressing questions of in vivo pathophysiology and higher cortical function in humans. Diffusion-weighted MRI measures the apparent rate of translational movement of water molecules through brain parenchyma. This measurement can be used to determine axonal orientation within white matter, to define regions of tissue edema, and to permit early identification of ischemic neuronal injury related to impairment of Na+-K +-ATPase activity in experimental and human stroke. Changes in various aspects of cerebral perfusion—blood volume, blood flow, and hemoglobin oxygen saturation—can be mea sured with MRI, and altered cerebrovascular circulation and regional brain activation can thereby be inves tigated. Echo planar imaging is a method of ultrafast data acquisition with MRI—individual images are ac quired on the order of 100 msec. Echo planar imaging makes diffusion and perfusion measurements more practicable for diverse applications and allows for the study of temporal characteristics of regional brain responses to stimuli. Diffusion and perfusion MRI, generally termed functional MRI, are tools for studying in vivo brain physiology with MRI and are being applied to a broad range of questions in neuroscience. The Neuroscientist 1:221-235, 1995
Collapse
Affiliation(s)
- Steven Warach
- Departments of Neurology and Radiology Harvard Medical
School Beth Israel Hospital Boston, Massachusetts
| |
Collapse
|
19
|
Fang M, Yuan Y, Lu J, Li HE, Zhao M, Ling EA, Wu CY. Scutellarin promotes microglia-mediated astrogliosis coupled with improved behavioral function in cerebral ischemia. Neurochem Int 2016; 97:154-71. [PMID: 27105682 DOI: 10.1016/j.neuint.2016.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 11/28/2022]
Abstract
Scutellarin, an anti-inflammatory agent, has been reported to suppress microglia activation. It promotes astrocytic reaction but through activated microglia. Here we sought to determine more specifically the outcomes of scutellarin treatment in reactive astrocytes in rats subjected to middle cerebral artery occlusion (MCAO). GFAP, MAP-2 and PSD-95 expression was assessed in reactive astrocytes in scutellarin injected MCAO rats. Expression of BDNF, NT-3 and IGF-1, and cell cycle markers cyclin-D1/B1 was also evaluated. In vitro, the above-mentioned proteins were also investigated in TNC 1 and primary astrocytes, treated respectively with conditioned medium from BV-2 microglia with or without pretreatment of scutellarin and lipopolysaccharide. Behavioral study was conducted to ascertain if scutellarin would improve the neurological functions of MCAO rats. In MCAO, reactive astrocytes in the penumbral areas were hypertrophic bearing long extending processes; expression of all the above-mentioned markers was markedly augmented. When compared to the controls, TNC1/primary astrocytes responded vigorously to conditioned medium derived from BV-2 microglia treated with scutellarin + lipopolysaccharide as shown by enhanced expression of all the above markers by Western and immunofluorescence analysis. By electron microscopy, hypertrophic TNC1 astrocytes in this group showed abundant microfilaments admixed with microtubules. In MCAO rats given scutellarin treatment, neurological scores were significantly improved coupled with a marked decrease in infarct size when compared with the matching controls. It is concluded that scutellarin is neuroprotective and that it can amplify astrogliosis but through activated microglia. Scutellarin facilitates tissue remodeling in MCAO that maybe linked to improvement of neurological functions.
Collapse
Affiliation(s)
- Ming Fang
- Department of Emergency and Critical Care, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China; Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Jia Lu
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore; Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore.
| | - Hong E Li
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Min Zhao
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
20
|
Abstract
Inflammatory response plays an important role in the pathogenesis of ischemic stroke and anti-inflammatory agents may provide a choice of treatment. Triptolide is reported to be anti-inflammatory. In this study, we investigated the effects of triptolide on cultured neuronal cell line in vitro and experimental ischemic stroke in vivo. Oxygen-glucose deprivation (OGD) and tumor necrosis factor-α (TNF-α) stimulated SH-SY5Y cells were incubated with triptolide. In vivo, rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h, followed by reperfusion for 23 h. Results of this study showed that triptolide treatment reduced the OGD-induced cytotoxicity and apoptosis and blocked TNF-α-induced activation of NF-κB and p38MAPK in SH-SY5Y cells. Intraperitoneal injection of triptolide showed significant neuroprotective actions in stroke rats. Triptolide attenuated neurological deficit, brain infarct volume, and brain water content, and inhibited activation of NF-κB and p38MAPK. These data show that triptolide protects rats against ischemic cerebral injury via inhibiting NF-κB and p38MAPK signaling pathways.
Collapse
Affiliation(s)
- Maolin Hao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, #4 Duanxing West Road, Jinan, 250022, Shandong, China,
| | | | | | | |
Collapse
|
21
|
Methylene Blue Ameliorates Ischemia/Reperfusion-Induced Cerebral Edema: An MRI and Transmission Electron Microscope Study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:227-36. [PMID: 26463954 DOI: 10.1007/978-3-319-18497-5_41] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neuroprotective effect of methylene blue (MB) has been identified against various brain disorders, including ischemic stroke. In the present study, we evaluated the effects of MB on postischemic brain edema using magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Adult male rats were subjected to transient focal cerebral ischemia induced by 1 h middle cerebral artery occlusion (MCAO), followed by reperfusion. MB was infused intravenously immediately after reperfusion (3 mg/kg) and again at 3 h post-occlusion (1.5 mg/kg). Normal saline was administered as vehicle control. Sequential MRIs, including apparent diffusion coefficient (ADC) and T2-weighted imaging (T2WI), were obtained at 0.5, 2.5, and 48 h after the onset of stroke. Separated groups of animals were sacrificed at 2.5 and 48 h after stroke for ultrastructural analysis by TEM. In addition, final lesion volumes were analyzed by triphenyltetrazolium chloride (TTC) staining at 48 h after stroke. Ischemic stroke induced ADC lesion volume at 0.5 h during MCAOs that were temporally recovered at 1.5 h after reperfusion. No significant difference in ADC-defined lesion was observed between vehicle and MB treatment groups. At 48 h after stroke, MB significantly reduced ADC lesion and T2WI lesion volume and attenuated cerebral swelling. Consistently, MB treatment significantly decreased TTC-defined lesion volume at 48 h after stroke. TEM revealed remarkable swollen astrocytes, astrocytic perivascular end-feet, and concurrent shrunken neurons in the penumbra at 2.5 and 48 h after MCAO. MB treatment attenuated astrocyte swelling, the perivascular astrocytic foot process, and endothelium and also alleviated neuron degeneration. This study demonstrated that MB could decrease postischemic brain edema and provided additional evidence that future clinical investigation of MB for the treatment of ischemic stroke is warrented.
Collapse
|
22
|
Uno H, Nagatsuka K, Kokubo Y, Higashi M, Yamada N, Umesaki A, Toyoda K, Naritomi H. Detectability of Ischemic Lesions on Diffusion-Weighted Imaging Is Biphasic after Transient Ischemic Attack. J Stroke Cerebrovasc Dis 2015; 24:1059-64. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 11/30/2022] Open
|
23
|
Palmucci S, Cappello G, Attinà G, Fuccio Sanzà G, Foti PV, Ettorre GC, Milone P. Diffusion-weighted MRI for the assessment of liver fibrosis: principles and applications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:874201. [PMID: 25866819 PMCID: PMC4383436 DOI: 10.1155/2015/874201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/14/2014] [Accepted: 01/01/2015] [Indexed: 12/19/2022]
Abstract
The importance of an early identification of hepatic fibrosis has been emphasized, in order to start therapy and obtain fibrosis regression. Biopsy is the gold-standard method for the assessment of liver fibrosis in chronic liver diseases, but it is limited by complications, interobserver variability, and sampling errors. Several noninvasive methods have been recently introduced into clinical routine, in order to detect liver fibrosis early. One of the most diffuse approaches is represented by diffusion-weighted liver MRI. In this review, the main technical principles are briefly reported in order to explain the rationale for clinical applications. In addition, roles of apparent diffusion coefficient, intravoxel incoherent motion, and relative apparent diffusion coefficient are also reported, showing their advantages and limits.
Collapse
Affiliation(s)
- Stefano Palmucci
- Radiodiagnostic and Radiotherapy Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy
| | - Giuseppina Cappello
- Radiodiagnostic and Radiotherapy Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy
| | - Giancarlo Attinà
- Radiodiagnostic and Radiotherapy Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy
| | - Giovanni Fuccio Sanzà
- Radiodiagnostic and Radiotherapy Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy
| | - Pietro Valerio Foti
- Radiodiagnostic and Radiotherapy Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy
| | - Giovanni Carlo Ettorre
- Radiodiagnostic and Radiotherapy Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy
| | - Pietro Milone
- Radiodiagnostic and Radiotherapy Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy
| |
Collapse
|
24
|
Zhang L, Wang H, Wang T, Jiang N, Yu P, Chong Y, Fu F. Ferulic acid ameliorates nerve injury induced by cerebral ischemia in rats. Exp Ther Med 2014; 9:972-976. [PMID: 25667662 PMCID: PMC4316951 DOI: 10.3892/etm.2014.2157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/23/2014] [Indexed: 01/04/2023] Open
Abstract
This study was designed to investigate the protective effect of ferulic acid (FA) on nerve injury induced by cerebral ischemia. Focal cerebral ischemia was induced by occlusion of the right middle cerebral artery and reperfusion 90 min later in male Sprague-Dawley rats. Daily treatment of the rats with FA was initiated 30 min after the surgery, and was continued for 7 days. The efficacy of FA against nerve injury was assessed by neurological deficit scores as well as pathohistological observation. The expression levels in the brain and level in the peripheral blood of erythropoietin (EPO) and granulocyte colony-stimulating factor (G-CSF) were analyzed by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that FA attenuated nerve injury of the hippocampus, significantly ameliorated neurological deficits, and increased EPO but not G-CSF expression in the hippocampus and the peripheral blood of ischemic rats. The findings indicate that FA has certain protective effects on the nerve injury of cerebral ischemia, and suggest that promoting EPO in the brain and peripheral blood may be one of the neuroprotective mechanisms of FA.
Collapse
Affiliation(s)
- Leiming Zhang
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Hongsheng Wang
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Tian Wang
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Na Jiang
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Pengfei Yu
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Yating Chong
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Fenghua Fu
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| |
Collapse
|
25
|
Yang T, Sun S, Wang T, Tong X, Bi J, Wang Y, Sun Z. Piperlonguminine is neuroprotective in experimental rat stroke. Int Immunopharmacol 2014; 23:447-51. [PMID: 25257731 DOI: 10.1016/j.intimp.2014.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022]
Abstract
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Piperlonguminine (PE) has been proved to have anti-inflammatory actions. In this study, we investigated the effects of PE on cultured neuronal cell line, SH-SY5Y in vitro and experimental rat ischemic stroke in vivo. For oxygen-glucose deprivation (OGD) and tumor necrosis factor-α (TNF-α) stimulated SH-SY5Y cell line in vitro, SH-SY5Y cells were incubated with PE. In vivo, rats were subjected to middle cerebral artery occlusion (MACO) for 1h, followed by reperfusion for 23 h. The results of this study showed that treatment of SH-SY5Y cells with PE reduced the OGD-induced cytotoxicity and apoptosis and blocked TNF-α-induced activation of NF-κB and MAPK. Intraperitoneal injection of PE (2.4 mg/kg) produced a significant neuroprotective potential in rats with cerebral ischemia. PE attenuated neurological deficit scores, brain infarct volume and brain water content in rats, and inhibited activation of NF-κB and MAPK. These data show that PE protects the brain against ischemic cerebral injury via alleviating blood-brain barrier (BBB) breakdown, which may be mediated via inhibiting NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Tiansong Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, PR China
| | - Shixiao Sun
- Department of Physiology, Heilongjiang University of Chinese Medicine, PR China
| | - Tiegang Wang
- The First Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | - Xin Tong
- Atlantic Institute of Oriental Medicine (ATOM), FL, USA
| | - Junhui Bi
- Department of Formulas of Chinese Medicine, Heilongjiang University of Chinese Medicine, PR China
| | - Yulin Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, PR China
| | - Zhongren Sun
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, PR China; Department of Acupuncture, Heilongjiang University of Chinese Medicine, PR China.
| |
Collapse
|
26
|
Kim SM, Kwon SU, Kim JS, Kang DW. Early infarct growth predicts long-term clinical outcome in ischemic stroke. J Neurol Sci 2014; 347:205-9. [DOI: 10.1016/j.jns.2014.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/27/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|
27
|
Yonkenafil: a novel phosphodiesterase type 5 inhibitor induces neuronal network potentiation by a cGMP-dependent Nogo-R axis in acute experimental stroke. Exp Neurol 2014; 261:267-77. [PMID: 25064698 DOI: 10.1016/j.expneurol.2014.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/14/2014] [Accepted: 07/04/2014] [Indexed: 11/21/2022]
Abstract
Yonkenafil is a novel phosphodiesterase type 5 (PDE5) inhibitor. Here we evaluated the effect of yonkenafil on ischemic injury and its possible mechanism of action. Male Sprague-Dawley rats underwent middle cerebral artery occlusion, followed by intraperitoneal or intravenous treatment with yonkenafil starting 2h later. Behavioral tests were carried out on day 1 or day 7 after reperfusion. Nissl staining, Fluoro-Jade B staining and electron microscopy studies were carried out 24h post-stroke, together with an analysis of infarct volume and severity of edema. Levels of cGMP-dependent Nogo-66 receptor (Nogo-R) pathway components, hsp70, apaf-1, caspase-3, caspase-9, synaptophysin, PSD-95/neuronal nitric oxide synthases (nNOS), brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) and nerve growth factor (NGF)/tropomyosin-related kinase A (TrkA) were also measured after 24h. Yonkenafil markedly inhibited infarction and edema, even when administration was delayed until 4h after stroke onset. This protection was associated with an improvement in neurological function and was sustained for 7d. Yonkenafil enlarged the range of penumbra, reduced ischemic cell apoptosis and the loss of neurons, and modulated the expression of proteins in the Nogo-R pathway. Moreover, yonkenafil protected the structure of synapses and increased the expression of synaptophysin, BDNF/TrkB and NGF/TrkA. In conclusion, yonkenafil protects neuronal networks from injury after stroke.
Collapse
|
28
|
Zhang L, Kan ZC, Zhang XL, Fang H, Jiang WL. 8-O-acetyl shanzhiside methylester attenuates cerebral ischaemia/reperfusion injury through an anti-inflammatory mechanism in diabetic rats. Basic Clin Pharmacol Toxicol 2014; 115:481-7. [PMID: 24823762 DOI: 10.1111/bcpt.12266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Inflammatory activation plays a vital role in the pathophysiological mechanisms of stroke and diabetes mellitus (DM), exerts the deleterious effects on the progression of the brain and leads to vascular damage in diabetic stroke. The objectives of this study were to investigate the effects of 8-O-acetyl shanzhiside methylester (ND01) on tumour necrosis factor-α (TNF-α)-stimulated SH-SY5Y cell line in vitro and the experimental ischaemic diabetic stroke model in vivo. TNF-α-stimulated SH-SY5Y cells were pre-incubated with ND01, then analysed protein expression. For in vivo experiment, the diabetic rats were subjected to middle cerebral artery occlusion (MCAO) for 30 min. followed by reperfusion for 23 hr. Treatment of SH-SY5Y cells with ND01 blocked TNF-α-induced nuclear transcription factor κB (NF-κB) activation and decreased high-mobility group box-1 (HMGB-1) expression. ND01 40 mg/kg demonstrated significant neuroprotective effect even after delayed administration at 4 hr after I/R. ND01 40 mg/kg attenuated the histopathological damage, decreased brain swelling, inhibited NF-κB activation and reduced HMGB-1 expression in ischaemic brain tissue. These data show that ND01 protects diabetic brain against I/R injury with a favourable therapeutic time-window by alleviating diabetic cerebral I/R injury and attenuating blood-brain barrier (BBB) breakdown, and its protective effects may involve HMGB-1 and NF-κB signalling pathway.
Collapse
Affiliation(s)
- Liang Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | | | | | | | | |
Collapse
|
29
|
Zhang Y, Gao Z, Wang D, Zhang T, Sun B, Mu L, Wang J, Liu Y, Kong Q, Liu X, Zhang Y, Zhang H, He J, Li H, Wang G. Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation 2014; 11:79. [PMID: 24742325 PMCID: PMC4039314 DOI: 10.1186/1742-2094-11-79] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/05/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Stroke is accompanied by a distinguished inflammatory reaction that is initiated by the infiltration of immunocytes, expression of cytokines, and other inflammatory mediators. As natural killer cells (NK cells) are a type of cytotoxic lymphocyte critical to the innate immune system, we investigated the mechanism of NK cells-induced brain injuries after cerebral ischemia and the chemotactic effect of IP-10 simultaneously. METHODS NK cells infiltration, interferon-gamma (IFN-γ) and IP-10 expression were detected by immunohistochemistry, immunofluorescence, PCR and flow cytometry in human and C57/BL6 wild type mouse ischemic brain tissues. The ischemia area was detected via 2,3,5-triphenyltetrazolium chloride staining. CXCR3 mean fluorescence intensity of isolated NK cells was measured by flow cytometry. The neuronal injury made by NK cells was examined via apoptosis experiment. The chemotactic of IP-10 was detected by migration and permeability assays. RESULTS In human ischemic brain tissue, infiltrations of NK cells were observed and reached a peak at 2 to 5 days. In a permanent middle cerebral artery occlusion (pMCAO) model, infiltration of NK cells into the ischemic infarct region reached their highest levels 12 hours after ischemia. IFN-γ-positive NK cells and levels of the chemokine IP-10 were also detected within the ischemic region, from 6 hours up to 4 days after pMCAO was performed, and IFN-γ levels decreased after NK cells depletion in vivo. Co-culture experiments of neural cells with NK cells also showed that neural necrosis was induced via IFN-γ. In parallel experiments with IP-10, the presence of CXCR3 indicates that NK cells were affected by IP-10 via CXCR3, and the effect was dose-dependent. After IP-10 depletion in vivo, NK cells decreased. In migration assays and permeability experiments, disintegration of the blood-brain barrier (BBB) was observed following the addition of NK cells. Moreover, in the presence of IP-10 this injury was aggravated. CONCLUSIONS All findings support the hypothesis that NK cells participate in cerebral ischemia and promote neural cells necrosis via IFN-γ. Moreover, IP-10 intensifies injury to the BBB by NK cells via CXCR3.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Hulun Li
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, Harbin Medical University, Xuefu Road, 150081, Heilongjiang, People's Republic of China.
| | | |
Collapse
|
30
|
Inoue M, Mlynash M, Christensen S, Wheeler HM, Straka M, Tipirneni A, Kemp SM, Zaharchuk G, Olivot JM, Bammer R, Lansberg MG, Albers GW. Early diffusion-weighted imaging reversal after endovascular reperfusion is typically transient in patients imaged 3 to 6 hours after onset. Stroke 2014; 45:1024-8. [PMID: 24558095 DOI: 10.1161/strokeaha.113.002135] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to assess the frequency and extent of early diffusion-weighted imaging (DWI) lesion reversal after endovascular therapy and to determine whether early reversal is sustained or transient. METHODS MRI with DWI perfusion imaging was performed before (DWI 1) and within 12 hours after (DWI 2) endovascular treatment; follow-up MRI was obtained on day 5. Both DWIs were coregistered to follow-up MRI. Early DWI reversal was defined as the volume of the DWI 1 lesion that was not superimposed on the DWI 2 lesion. Permanent reversal was the volume of the DWI 1 lesion not superimposed on the day 5 infarct volume. Associations between early DWI reversal and clinical outcomes in patients with and without reperfusion were assessed. RESULTS A total of 110 patients had technically adequate DWI before endovascular therapy (performed median [interquartile range], 4.5 [2.8-6.2] hours after onset); 60 were eligible for this study. Thirty-two percent had early DWI reversal >10 mL; 17% had sustained reversal. The median volume of permanent reversal at 5 days was 3 mL (interquartile range, 1.7-7.0). Only 2 patients (3%) had a final infarct volume that was smaller than their baseline DWI lesion. Early DWI reversal was not an independent predictor of clinical outcome and was not associated with early reperfusion. CONCLUSIONS Early DWI reversal occurred in about one third of patients after endovascular therapy; however, reversal was often transient and was not associated with a significant volume of tissue salvage or favorable clinical outcome.
Collapse
Affiliation(s)
- Manabu Inoue
- From the Stanford Stroke Center, Stanford University School of Medicine, CA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Present status and future challenges of electroencephalography- and magnetic resonance imaging-based monitoring in preclinical models of focal cerebral ischemia. Brain Res Bull 2014; 102:22-36. [PMID: 24462642 DOI: 10.1016/j.brainresbull.2014.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 12/16/2022]
Abstract
Animal models are useful tools for better understanding the mechanisms underlying neurological deterioration after an ischemic insult as well as subsequent evolution of changes and recovery of functions. In response to the updated requirements for preclinical investigations of stroke to include relevant functional measurement techniques and biomarker endpoints, we here review the state of knowledge on application of some translational electrophysiological and neuroimaging methods, and in particular, electroencephalography monitoring and magnetic resonance imaging in rodent models of ischemic stroke. This may lead to improvement of diagnostic methods and identification of new therapeutic targets, which would considerably advance the translational value of preclinical stroke research.
Collapse
|
32
|
Abstract
It has been proposed that the spatial mismatch between deficits on perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) in MRI can be used to decide regarding thrombolytic treatment in acute stroke. However, uncertainty remains about the meaning and reversibility of the perfusion deficit and even part of the diffusion deficit. Thus, there remains a need for continued development of imaging technology that can better define a potentially salvageable ischemic area at risk of infarction. Amide proton transfer (APT) imaging is a novel MRI method that can map tissue pH changes, thus providing the potential to separate the PWI/DWI mismatch into an acidosis-based penumbra and a zone of benign oligemia. In this totally noninvasive method, the pH dependence of the chemical exchange between amide protons in endogenous proteins and peptides and water protons is exploited. Early results in animal models of ischemia show promise to derive an acidosis penumbra. Possible translation to the clinic and hurdles standing in the way of achieving this are discussed.
Collapse
|
33
|
Chen YF, Tsai HY, Wu KJ, Siao LR, Wood WG. Pipoxolan ameliorates cerebral ischemia via inhibition of neuronal apoptosis and intimal hyperplasia through attenuation of VSMC migration and modulation of matrix metalloproteinase-2/9 and Ras/MEK/ERK signaling pathways. PLoS One 2013; 8:e75654. [PMID: 24086601 PMCID: PMC3782448 DOI: 10.1371/journal.pone.0075654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/16/2013] [Indexed: 12/05/2022] Open
Abstract
Pipoxolan (PIPO) has anti-spasmodic effects, and it is used clinically to relieve smooth muscle spasms. Cerebrovascular disease is one of the leading causes of disability and death worldwide. The main aim of this study was to investigate the effects of PIPO on cerebral ischemia and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. Cerebral infarction area, ratio of intima to media area (I/M ratio) and PCNA antibody staining of the carotid artery in vivo were measured. Cell viability of A7r5 cells, PDGF-BB-stimulated cell migration, and potential mechanisms of PIPO were evaluated by wound healing, transwell and Western blotting. PIPO (10 and 30 mg/kg p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive cells; cleaved caspase 3-positive cells; intimal hyperplasia; and inhibited proliferating cell nuclear antigen (PCNA)-positive cells in rodents. PIPO (5, 10 and 15 µM) significantly inhibited PDGF-BB-stimulated VSMC migration and reduced Ras, MEK, and p-ERK levels. Moreover, PIPO decreased levels of matrix metalloproteinases -2 and -9 in PDGF-BB-stimulated A7r5 cells. In summary, PIPO is protective in models of ischemia/reperfusion-induced cerebral infarction, carotid artery ligation-induced intimal hyperplasia and VSMC migration both in vivo and in vitro. PIPO could be potentially efficacious in preventing cerebrovascular and vascular diseases.
Collapse
Affiliation(s)
- Yuh-Fung Chen
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
- * E-mail:
| | - Huei-Yann Tsai
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Jen Wu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Lian-Ru Siao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | - W. Gibson Wood
- Department of Pharmacology, University of Minnesota and Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, Minnesota, United States of America
| |
Collapse
|
34
|
Chen XM, Wang NN, Zhang TY, Wang F, Wu CF, Yang JY. Neuroprotection by sildenafil: neuronal networks potentiation in acute experimental stroke. CNS Neurosci Ther 2013; 20:40-9. [PMID: 24034153 DOI: 10.1111/cns.12162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/02/2013] [Accepted: 07/13/2013] [Indexed: 12/24/2022] Open
Abstract
AIMS Sildenafil, a phosphodiesterase type 5 inhibitor, has been found to produce functional recovery in ischemic rats by increasing the cGMP level and triggering neurogenesis. The aim of this study was to investigate further sildenafil mechanisms. METHODS Male Sprague-Dawley rats underwent middle cerebral artery occlusion and reperfusion, followed by intraperitoneal or intravenous treatment of sildenafil starting 2 h later. Behavioral tests were performed on day 1 or day 7 after reperfusion, while cerebral infarction, edema, Nissl staining, Fluoro-Jade B staining, and electron microscopy studies were carried out 24 h poststroke. The cGMP-dependent Nogo-66 receptor (Nogo-R) pathway, synaptophysin, PSD-95/neuronal nitric oxide synthases (nNOS), brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB), and nerve growth factor (NGF)/tropomyosin-related kinase A (TrkA) were measured. RESULTS Sildenafil enhanced neurological recovery and inhibited infarction, even following delayed administration 4 h after stroke onset. Furthermore, sildenafil reduced the loss of neurons and modulated the expressions of the cGMP-dependent Nogo-R pathway. Moreover, sildenafil protected the structure of synapses and mediated the expressions of synaptophysin, PSD-95/nNOS, BDNF/TrkB, and NGF/TrkA. CONCLUSIONS Sildenafil produces significant neuroprotective effects on injured neurons in acute stroke, and these are mediated by the cGMP-dependent Nogo-R pathway, NGF/TrkA, and BDNF/TrkB.
Collapse
Affiliation(s)
- Xue-Mei Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
35
|
Li S, Shi Z, Zhang H, Liu X, Chen S, Jin J, Wang Y, Jia W, Li H. Assessing gait impairment after permanent middle cerebral artery occlusion in rats using an automated computer-aided control system. Behav Brain Res 2013; 250:174-91. [DOI: 10.1016/j.bbr.2013.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/20/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
36
|
Luan H, Kan Z, Xu Y, Lv C, Jiang W. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: relation to inflammation response. J Neuroinflammation 2013; 10:28. [PMID: 23414442 PMCID: PMC3614882 DOI: 10.1186/1742-2094-10-28] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/30/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Inflammatory activation plays a vital role in the pathophysiological mechanisms of stroke, exerting deleterious effects on the progression of tissue damage and may lead to the vascular damage in diabetes. The objectives of this study were to determine the effects of rosmarinic acid (RA) on a cultured neuronal cell line, SH-SY5Y in vitro and experimental ischemic diabetic stroke in vivo. METHODS For oxygen-glucose deprivation (OGD) and tumor necrosis factor-α (TNF-α) stimulated SH-SY5Y cell line in vitro, SH-SY5Y cells were incubated with RA. For an in vivo experiment, diabetic rats were subjected to middle cerebral artery occlusion (MACO) for 40 minutes followed by reperfusion for 23 h. RESULTS Treatment of SH-SY5Y cells with RA reduced the OGD-induced apoptosis and cytotoxicity, blocked TNF-α-induced nuclear transcription factor κB (NF-κB) activation, and decreased high-mobility group box1 (HMGB1) expression. At doses higher than 50 mg/kg, RA produced a significant neuroprotective potential in rats with ischemia and reperfusion (I/R). RA (50 mg/kg) demonstrated significant neuroprotective activity even after delayed administration at 1 h, 3 h and 5 h after I/R. RA 50 mg/kg attenuated histopathological damage, decreased brain edema, inhibited NF-κB activation and reduced HMGB1 expression. CONCLUSION These data show that RA protects the brain against I/R injury with a favorable therapeutic time-window by alleviating diabetic cerebral I/R injury and attenuating blood-brain barrier (BBB) breakdown, and its protective effects may involve HMGB1 and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haiyun Luan
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Zechun Kan
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yong Xu
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Changjun Lv
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Wanglin Jiang
- School of Pharmaceutical Sciences and Institute of Material Medica, Binzhou Medical University, Yantai, 264003, People's Republic of China
| |
Collapse
|
37
|
Reid E, Graham D, Lopez-Gonzalez MR, Holmes WM, Macrae IM, McCabe C. Penumbra detection using PWI/DWI mismatch MRI in a rat stroke model with and without comorbidity: comparison of methods. J Cereb Blood Flow Metab 2012; 32:1765-77. [PMID: 22669479 PMCID: PMC3434632 DOI: 10.1038/jcbfm.2012.69] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perfusion-diffusion (perfusion-weighted imaging (PWI)/diffusion-weighted imaging (DWI)) mismatch is used to identify penumbra in acute stroke. However, limitations in penumbra detection with mismatch are recognized, with a lack of consensus on thresholds, quantification and validation of mismatch. We determined perfusion and diffusion thresholds from final infarct in the clinically relevant spontaneously hypertensive stroke-prone (SHRSP) rat and its normotensive control strain, Wistar-Kyoto (WKY) and compared three methods for penumbra calculation. After permanent middle cerebral artery occlusion (MCAO) (WKY n=12, SHRSP n=15), diffusion-weighted (DWI) and perfusion-weighted (PWI) images were obtained for 4 hours post stroke and final infarct determined at 24 hours on T(2) scans. The PWI/DWI mismatch was calculated from volumetric assessment (perfusion deficit volume minus apparent diffusion coefficient (ADC)-defined lesion volume) or spatial assessment of mismatch area on each coronal slice. The ADC-derived lesion growth provided the third, retrospective measure of penumbra. At 1 hour after MCAO, volumetric mismatch detected smaller volumes of penumbra in both strains (SHRSP: 31 ± 50 mm(3), WKY: 22 ± 59 mm(3), mean ± s.d.) compared with spatial assessment (SHRSP: 36 ± 15 mm(3), WKY: 43 ± 43 mm(3)) and ADC lesion expansion (SHRSP: 41 ± 45 mm(3), WKY: 65 ± 41 mm(3)), although these differences were not statistically significant. Spatial assessment appears most informative, using both diffusion and perfusion data, eliminating the influence of negative mismatch and allowing the anatomical location of penumbra to be assessed at given time points after stroke.
Collapse
Affiliation(s)
- Emma Reid
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
38
|
Boada FE, Qian Y, Nemoto E, Jovin T, Jungreis C, Jones SC, Weimer J, Lee V. Sodium MRI and the assessment of irreversible tissue damage during hyper-acute stroke. Transl Stroke Res 2012; 3:236-45. [PMID: 24323779 DOI: 10.1007/s12975-012-0168-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 12/24/2022]
Abstract
Sodium MRI (sMRI) has undergone a tremendous amount of technical development during the last two decades that makes it a suitable tool for the study of human pathology in the acute setting within the constraints of a clinical environment. The salient role of the sodium ion during impaired ATP production during the course of brain ischemia makes sMRI an ideal tool for the study of ischemic tissue viability during stroke. In this paper, the current limitations of conventional MRI for the determination of tissue viability during evolving brain ischemia are discussed. This discussion is followed by a summary of the known findings about the dynamics of tissue sodium changes during brain ischemia. A mechanistic model for the explanation of these findings is presented together with the technical requirements for its investigation using clinical MRI scanners. An illustration of the salient features of the technique is also presented using a nonhuman primate model of reversible middle cerebral artery occlusion.
Collapse
Affiliation(s)
- Fernando E Boada
- MR Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Transient ischemic attack (TIA) can convey a high imminent risk for the development of a major stroke and is therefore considered to be a medical emergency. Recent evidence indicates that TIA with imaging proof of brain infarction represents an extremely unstable condition with early risk of stroke that is as much as 20 times higher than the risk after TIA without tissue damage. The use of neuroimaging in TIA is therefore critical not only for diagnosis but also for accurate risk stratification. In this article, recent advances in diagnostic imaging, categorizations, and risk stratification in TIA are discussed.
Collapse
|
40
|
Jiang WL, Xu Y, Zhang SP, Zhu HB, Hou J. Tricin 7-glucoside protects against experimental cerebral ischemia by reduction of NF-κB and HMGB1 expression. Eur J Pharm Sci 2012; 45:50-7. [DOI: 10.1016/j.ejps.2011.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/11/2011] [Accepted: 10/27/2011] [Indexed: 12/20/2022]
|
41
|
Curculigoside A attenuates experimental cerebral ischemia injury in vitro and vivo. Neuroscience 2011; 192:572-9. [DOI: 10.1016/j.neuroscience.2011.06.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 12/19/2022]
|
42
|
Robertson CA, McCabe C, Gallagher L, Lopez-Gonzalez MDR, Holmes WM, Condon B, Muir KW, Santosh C, Macrae IM. Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. Validation using [14C]2-deoxyglucose autoradiography. J Cereb Blood Flow Metab 2011; 31:1778-87. [PMID: 21559032 PMCID: PMC3154682 DOI: 10.1038/jcbfm.2011.66] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T(2)(*) MRI (T(2)(*) OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T(2)(*) signal change during OC. [(14)C]2-deoxyglucose (2-DG) autoradiography was combined with T(2)(*) OC to determine metabolic status of T(2)(*)-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147 ± 32 minutes after stroke, T(2)(*) signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T(2)(*)-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T(2)(*) signal increase of 9.22% ± 3.9% (mean ± s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T(2)(*) signal change was negligible in ischemic core, 3.2% ± 0.78% in contralateral regions, and 1.41% ± 0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue following stroke.
Collapse
Affiliation(s)
- Craig A Robertson
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sobrado M, Delgado M, Fernández-Valle E, García-García L, Torres M, Sánchez-Prieto J, Vivancos J, Manzanares R, Moro MA, Pozo MA, Lizasoain I. Longitudinal studies of ischemic penumbra by using 18F-FDG PET and MRI techniques in permanent and transient focal cerebral ischemia in rats. Neuroimage 2011; 57:45-54. [PMID: 21549205 DOI: 10.1016/j.neuroimage.2011.04.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/26/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022] Open
Abstract
At present, the goal of stroke research is the identification of a potential recoverable tissue surrounding the ischemic core, suggested as ischemic penumbra, with the aim of applying a treatment that attenuates the growth of this area. Our purpose was to determine whether a combination of imaging techniques, including (18)F-FDG PET and MRI could identify the penumbra area. Longitudinal studies of (18)F-FDG PET and MRI were performed in rats 3 h, 24 h and 48 h after the onset of ischemia. A transient and a permanent model of focal cerebral ischemia were performed. Regions of interest were located, covering the ischemic core, the border that progresses to infarction (recruited tissue), and the border that recovers (recoverable tissue) with early reperfusion. Analyses show that permanent ischemia produces severe damage, whereas the transient ischemia model does not produce clear damage in ADC maps at the earliest time studied. The only significant differences between values for recoverable tissue, (18)F-FDG (84±2%), ADC (108±5%) and PWI (70±8%), and recruited tissue, (18)F-FDG (77±3%), ADC (109±4%) and PWI (77±4%), are shown in (18)F-FDG ratios. We also show that recoverable tissue values are different from those in non-infarcted tissue. The combination of (18)F-FDG PET, ADC and PWI MRI is useful for identification of ischemic penumbra, with (18)F-FDG PET being the most sensitive approach to its study at early times after stroke, when a clear DWI deficit is not observed.
Collapse
Affiliation(s)
- M Sobrado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - M Delgado
- CAI de Cartografía Cerebral Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
| | - E Fernández-Valle
- CAI Resonancia Magnética Nuclear, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
| | - L García-García
- CAI de Cartografía Cerebral Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
| | - M Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | - J Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | - J Vivancos
- Unidad de Ictus, Servicio de Neurología, Hospital La Princesa, Madrid, Spain
| | - R Manzanares
- Servicio de Radiodiagnóstico Sección Neurorradiología, Hospital La Princesa, Madrid, Spain
| | - M A Moro
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - M A Pozo
- CAI de Cartografía Cerebral Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
| | - I Lizasoain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
44
|
Positron emission tomography with 11C-flumazenil in the rat shows preservation of binding sites during the acute phase after 2 h-transient focal ischemia. Neuroscience 2011; 182:208-16. [PMID: 21402129 DOI: 10.1016/j.neuroscience.2011.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/21/2011] [Accepted: 03/05/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Positron emission tomography (PET) studies in humans have used (11)C-flumazenil (FMZ) to assess neuronal viability after stroke. Here we aimed to study whether (11)C-FMZ binding was sensitive to neuronal damage in the acute phase following ischemia/reperfusion in the rat brain. EXPERIMENTAL PROCEDURES Transient (2 h followed by reperfusion) and permanent intraluminal middle cerebral artery occlusion was carried out. (11)C-FMZ binding was studied by PET up to 24 h after the onset of ischemia. Tissue infarction was evaluated post-mortem at 24 h. Immunohistochemistry against a neuronal nuclei specific protein (NeuN) was performed to assess neuronal injury. RESULTS No decrease in (11)C-FMZ binding was detected in the ipsilateral cortex up to 24 h post-ischemia in the model of transient occlusion despite the fact that rats developed cortical and striatal infarction, and neuronal injury was clearly apparent at this time. In contrast, (11)C-FMZ binding was significantly depressed in the ipsilateral cortex at 24 h following permanent ischemia. CONCLUSIONS This finding evidences that (11)C-FMZ binding is not sensitive to neuronal damage on the acute phase of ischemia/reperfusion in the rat brain.
Collapse
|
45
|
Tortora F, Cirillo M, Ferrara M, Manto A, Briganti F, Cirillo S. DWI Reversibility after Intra-Arterial Thrombolysis. A Case Report and Literature Review. Neuroradiol J 2010; 23:752-62. [PMID: 24148733 DOI: 10.1177/197140091002300618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/16/2022] Open
Abstract
We report our case and review the literature on reversal DWI lesions, ADC thresholds and correlation between DWI lesion and outcome measured with clinical scales. A 30-years old woman was admitted to our hospital 18 hours after stroke onset. Considering the absence of alterations on CT and the worsening of symptomatology, the patient underwent MRI, which showed a slightly hyperintense signal in FLAIR images in the left portion of the pons and midbrain and a more evident bilateral DWI hyperintensity of the pons. The patient was treated with mechanical and pharmacological intra-arterial thrombolysis. The patient showed a rapid improvement of symptoms. Two weeks after the treatment her clinical conditions were characterized by a residual right hemiparesis and complete recovery of right motility, respiratory and swallowing difficulties. MR examination demonstrated a slight signal alteration of the pons left hemiportion and a disappearance of the mesencephalic signal alteration and of the right portion of the pons. DWI lesions represent irreversibly damaged tissue but new evidence suggests that DWI lesions may be reversible, especially with reperfusion, by now well demonstrated in animal models. Therefore acute DWI lesions probably contain not only irreversibly injured tissue but also parts of the penumbra. The debate on the capability of ADC maps to discriminate irreversibly from reversibly damaged tissue is a matter of controversy. ADC values in human stoke are not an independent indicator of tissue viability. The use of thresholds may improve reproducibility but not validity.
Collapse
Affiliation(s)
- F Tortora
- Department of Neuroradiology, II University School of Medicine; Naples, Italy -
| | | | | | | | | | | |
Collapse
|
46
|
Gonen KA, Simsek MM. Diffusion weighted imaging and estimation of prognosis using apparent diffusion coefficient measurements in ischemic stroke. Eur J Radiol 2010; 76:157-61. [DOI: 10.1016/j.ejrad.2009.05.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/10/2009] [Accepted: 05/25/2009] [Indexed: 11/24/2022]
|
47
|
Huang H, Wylie JJ, Miura RM. Restricted Diffusion in Cellular Media: (1+1)-Dimensional Model. Bull Math Biol 2010; 73:1682-94. [DOI: 10.1007/s11538-010-9589-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 09/24/2010] [Indexed: 11/28/2022]
|
48
|
Jiang W, Zhang S, Fu F, Zhu H, Hou J. Inhibition of nuclear factor-κB by 6-O-acetyl shanzhiside methyl ester protects brain against injury in a rat model of ischemia and reperfusion. J Neuroinflammation 2010; 7:55. [PMID: 20836895 PMCID: PMC2946287 DOI: 10.1186/1742-2094-7-55] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/14/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated an inflammatory response associated with the pathophysiology of cerebral ischemia. The beneficial effects of anti-inflammatory drugs in cerebral ischemia have been documented. When screening natural compounds for drug candidates in this category, we isolated 6-O-acetyl shanzhiside methyl ester (ND02), an iridoid glucoside compound, from the leaves of Lamiophlomis rotata (Benth.) Kudo. The objectives of this study were to determine the effects of ND02 on a cultured neuronal cell line, SH-SY5Y, in vitro, and on experimental ischemic stroke in vivo. METHODS For TNF-α-stimulated SH-SY5Y cell line experiments in vitro, SH-SY5Y cells were pre-incubated with ND02 (20 μM or 40 μM) for 30 min and then incubated with TNF-α (20 ng/ml) for 15 min. For in vivo experiments, rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion for 23 h. RESULTS ND02 treatment of SH-SY5Y cell lines blocked TNF-α-induced nuclear factor-κB (NF-κB) and IκB-α phosphorylation and increased Akt phosphorylation. LY294002 blocked TNF-α-induced phosphorylation of Akt and reduced the phosphorylation of both IκB-α and NF-κB. At doses higher than 10 mg/kg, ND02 had a significant neuroprotective effect in rats with cerebral ischemia and reperfusion (I/R). ND02 (25 mg/kg) demonstrated significant neuroprotective activity even after delayed administration 1 h, 3 h and 5 h after I/R. ND02, 25 mg/kg, attenuated histopathological damage, decreased cerebral Evans blue extravasation, inhibited NF-κB activation, and enhanced Akt phosphorylation. CONCLUSION These data show that ND02 protects brain against I/R injury with a favorable therapeutic time-window by alleviating cerebral I/R injury and attenuating blood-brain barrier (BBB) breakdown, and that these protective effects may be due to blocking of neuronal inflammatory cascades through an Akt-dependent NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wanglin Jiang
- Institute of Material Medica, Binzhou Medical University, Yantai 264003, PR China
| | | | | | | | | |
Collapse
|
49
|
Breschi GL, Librizzi L, Pastori C, Zucca I, Mastropietro A, Cattalini A, de Curtis M. Functional and structural correlates of magnetic resonance patterns in a new in vitro model of cerebral ischemia by transient occlusion of the medial cerebral artery. Neurobiol Dis 2010; 39:181-91. [DOI: 10.1016/j.nbd.2010.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/25/2010] [Accepted: 04/05/2010] [Indexed: 12/01/2022] Open
|
50
|
Neuroprotective efficacy and therapeutic window of Forsythoside B: In a rat model of cerebral ischemia and reperfusion injury. Eur J Pharmacol 2010; 640:75-81. [DOI: 10.1016/j.ejphar.2010.04.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/31/2010] [Accepted: 04/23/2010] [Indexed: 11/15/2022]
|