1
|
Wang JJ, Sharma AK, Liu SH, Zhang H, Chen W, Lee TL. Prediction of Vascular Access Stenosis by Lightweight Convolutional Neural Network Using Blood Flow Sound Signals. SENSORS (BASEL, SWITZERLAND) 2024; 24:5922. [PMID: 39338665 PMCID: PMC11435999 DOI: 10.3390/s24185922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
This research examines the application of non-invasive acoustic analysis for detecting obstructions in vascular access (fistulas) used by kidney dialysis patients. Obstructions in these fistulas can interrupt essential dialysis treatment. In this study, we utilized a condenser microphone to capture the blood flow sounds before and after angioplasty surgery, analyzing 3819 sound samples from 119 dialysis patients. These sound signals were transformed into spectrogram images to classify obstructed and unobstructed vascular accesses, that is fistula conditions before and after the angioplasty procedure. A novel lightweight two-dimension convolutional neural network (CNN) was developed and benchmarked against pretrained CNN models such as ResNet50 and VGG16. The proposed model achieved a prediction accuracy of 100%, surpassing the ResNet50 and VGG16 models, which recorded 99% and 95% accuracy, respectively. Additionally, the study highlighted the significantly smaller memory size of the proposed model (2.37 MB) compared to ResNet50 (91.3 MB) and VGG16 (57.9 MB), suggesting its suitability for edge computing environments. This study underscores the efficacy of diverse deep-learning approaches in the obstructed detection of dialysis fistulas, presenting a scalable solution that combines high accuracy with reduced computational demands.
Collapse
Affiliation(s)
- Jia-Jung Wang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan; (J.-J.W.); (H.Z.)
| | - Alok Kumar Sharma
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Shing-Hong Liu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Hangliang Zhang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan; (J.-J.W.); (H.Z.)
| | - Wenxi Chen
- Division of Information Systems, School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu City 965-8580, Fukushima, Japan;
| | - Thung-Lip Lee
- Department of Cardiology, E-Da Hospital, Kaohsiung 84001, Taiwan;
| |
Collapse
|
2
|
Huang F, Janiga G, Berg P, Hosseini SA. On flow fluctuations in ruptured and unruptured intracranial aneurysms: resolved numerical study. Sci Rep 2024; 14:19658. [PMID: 39179594 PMCID: PMC11344026 DOI: 10.1038/s41598-024-70340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Flow fluctuations have emerged as a promising hemodynamic metric for understanding of hemodynamics in intracranial aneurysms. Several investigations have reported flow instabilities using numerical tools. In this study, the occurrence of flow fluctuations is investigated using either Newtonian or non-Newtonian fluid models in five patient-specific intracranial aneurysms using high-resolution lattice Boltzmann simulation methods. Flow instabilities are quantified by computing power spectral density, proper orthogonal decomposition, and fluctuating kinetic energy of velocity fluctuations. Our simulations reveal substantial flow instabilities in two of the ruptured aneurysms, where the pulsatile inflow through the neck leads to hydrodynamic instability, particularly around the rupture position, throughout the entire cardiac cycle. In other monitoring points, the flow instability is primarily observed during the deceleration phase; typically, the fluctuations begin just after peak systole, gradually decay, and the flow returns to its original, laminar pulsatile state during diastole. Additionally, we assess the rheological impact on flow dynamics. The disparity between Newtonian and non-Newtonian outcomes remains minimal in unruptured aneurysms, with less than a 5% difference in key metrics. However, in ruptured cases, adopting a non-Newtonian model yields a substantial increase in the fluctuations within the aneurysm sac, with up to a 30% higher fluctuating kinetic energy compared to the Newtonian model. The study highlights the importance of using appropriate high-resolution simulations and non-Newtonian models to capture flow fluctuation characteristics that may be critical for assessing aneurysm rupture risk.
Collapse
Affiliation(s)
- Feng Huang
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Gábor Janiga
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
- Department of Medical Engineering, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Seyed Ali Hosseini
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
3
|
Bruneau DA, Steinman DA, Valen-Sendstad K. Understanding intracranial aneurysm sounds via high-fidelity fluid-structure-interaction modelling. COMMUNICATIONS MEDICINE 2023; 3:163. [PMID: 37945799 PMCID: PMC10636010 DOI: 10.1038/s43856-023-00396-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Since the 1960s, the origins of intracranial aneurysm bruits and musical murmurs have been debated, with proposed mechanisms ranging from self-excitation (i.e., resonance) by stable pulsatile flow, to vibration caused by unstable (laminar vortex shedding or turbulent) flow. This knowledge gap has impeded the use of intracranial sounds a marker of aneurysm remodelling or rupture risk. New computational techniques now allow us to model these phenomena. METHODS We performed high-fidelity fluid-structure interaction simulations capable of understanding the magnitude and mechanisms of such flow-induced vibrations, under pulsatile flow conditions. Six cases from a previous cohort were used. RESULTS In five cases, underlying flow instabilities present as broad-band, random vibrations, consistent with previously-described bruits, while the sac also exhibits resonance, rocking back and forth in different planes of motion, consistent with previously described musical murmurs. Both types of vibration have amplitudes in the range of 0.1 to 1 μm. The murmurs extend into diastole, after the underlying flow instability has dissipated, and do not exhibit the characteristic repeating frequency harmonics of previously hypothesized vortex-shedding mechanisms. The remaining case with stable pulsatile flow does not vibrate. Spectrograms of the simulated vibrations are consistent with previously reported microphone and Doppler ultrasound recordings. CONCLUSIONS Our results provide a plausible explanation for distinct intracranial aneurysm sounds and characterize the mechanical environment of a vibrating aneurysm wall. Future work should aim to quantify the deleterious effects of these overlooked stimuli on the vascular wall, to determine which changes to the wall makeup are associated with vibration.
Collapse
Affiliation(s)
- David A Bruneau
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| | - David A Steinman
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
4
|
Bruneau DA, Valen-Sendstad K, Steinman DA. Onset and nature of flow-induced vibrations in cerebral aneurysms via fluid-structure interaction simulations. Biomech Model Mechanobiol 2023; 22:761-771. [PMID: 36864365 PMCID: PMC10167181 DOI: 10.1007/s10237-022-01679-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 03/04/2023]
Abstract
Clinical, experimental, and recent computational studies have demonstrated the presence of wall vibrations in cerebral aneurysms, thought to be induced by blood flow instability. These vibrations could induce irregular, high-rate deformation of the aneurysm wall, and potentially disrupt regular cell behavior and promote deleterious wall remodeling. In order to elucidate, for the first time, the onset and nature of such flow-induced vibrations, in this study we imposed a linearly increasing flow rate on high-fidelity fluid-structure interaction models of three anatomically realistic aneurysm geometries. Prominent narrow-band vibrations in the range of 100-500 Hz were found in two out of the three aneurysm geometries tested, while the case that did not exhibit flow instability did not vibrate. Aneurysm vibrations consisted mostly of fundamental modes of the entire aneurysm sac, with the vibrations exhibiting more frequency content at higher frequencies than the flow instabilities driving those vibrations. The largest vibrations occurred in the case which exhibited strongly banded fluid frequency content, and the vibration amplitude was highest when the strongest fluid frequency band was an integer multiple of one of the natural frequencies of the aneurysm sac. Lower levels of vibration occurred in the case which exhibited turbulent-like flow with no distinct frequency bands. The current study provides a plausible mechanistic explanation for the high-frequency sounds observed in cerebral aneurysms, and suggests that narrow-band (vortex-shedding type) flow might stimulate the wall more, or at least at lower flow rates, than broad-band, turbulent-like flow.
Collapse
Affiliation(s)
- David A. Bruneau
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON Canada
| | | | - David A. Steinman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON Canada
| |
Collapse
|
5
|
High-fidelity fluid structure interaction simulations of turbulent-like aneurysm flows reveals high-frequency narrowband wall vibrations: A stimulus of mechanobiological relevance? J Biomech 2022; 145:111369. [PMID: 36375263 DOI: 10.1016/j.jbiomech.2022.111369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Recent high-fidelity/resolution computational fluid dynamics simulations of intracranial aneurysm hemodynamics have revealed turbulent-like flows. We hypothesized that the associated high-frequency pressure fluctuations could promote aneurysm wall vibrations. We performed fully coupled high-fidelity transient fluid structure interaction simulations between the blood flow and compliant aneurysm sac wall taking 5,000 time steps per second using a 3D patient-specific model previously shown to harbour turbulent-like flow. Our results show that the flow velocity contained fluctuations with a smooth and continuously decaying energy up to ∼160Hz, and fluctuating pressures with characteristic frequency peaks at approximately 30, 130 and 210Hz. There was a strong two-way coupling between the pressure and the wall deformation, for which the frequency spectrum showed similar characteristics, but with a narrow band peak at ∼120Hz with large regional differences in amplitude up to 80μm. The physics of the flow is broadly consistent with clinical reports of turbulent-like flows, while the physics of the wall is consistent with reports of spectral peaks in aneurysm patients. As many aneurysms are known to harbour turbulent-like flows, wall vibrations could be a widespread phenomenon. Finally, since aneurysms are vascular pathologies by definition and many/most aneurysms do not have endothelial cells but still display a focal remodeling, we hypothesize that vibrations and stresses within the wall itself might play a role in the mechanobiological processes of vessel wall pathology.
Collapse
|
6
|
MacDonald DE, Najafi M, Temor L, Steinman DA. Spectral Bandedness in High-Fidelity CFD Predicts Rupture Status in Intracranial Aneurysms. J Biomech Eng 2022; 144:1133334. [PMID: 35079768 DOI: 10.1115/1.4053403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Recent studies using high-fidelity CFD have revealed high-frequency flow instabilities consistent with clinical reports of bruits and "musical murmurs", which have been speculated to contribute to aneurysm growth and rupture. We hypothesized that harmonic flow instabilities ("spectral bandedness") in aneurysm CFD data may be associated with rupture status. Before testing this hypothesis, we first present a novel method for quantifying and visualizing spectral bandedness in cardiovascular CFD datasets based on musical audio-processing tools. Motivated by previous studies of aneurysm hemodynamics, we also computed a selection of existing metrics that have demonstrated association with rupture in large studies. In a dataset of 50 bifurcation aneurysm geometries modelled using high-fidelity CFD, our spectral bandedness index (SBI) was the only metric significantly associated with rupture status (AUC=0.76, p=0.002), with a specificity of 79% (correctly predicting 19/24 unruptured cases) and sensitivity of 65% (correctly predicting 17/26 ruptured cases). 3D flow visualizations revealed coherent regions of high SBI to be associated with strong near-wall inflow jets and vortex-shedding/flutter phenomena in the aneurysm sac. We speculate that these intra-cycle, coherent flow instabilities may preferentially contribute to the progressive degradation of the aneurysm wall through flow-induced vibrational mechanisms, and that their absence in high-fidelity CFD may be useful for identifying intracranial aneurysms at lower risk of rupture.
Collapse
Affiliation(s)
- Daniel E MacDonald
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Mehdi Najafi
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Lucas Temor
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - David A Steinman
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
7
|
Khan MO, Toro Arana V, Najafi M, MacDonald DE, Natarajan T, Valen-Sendstad K, Steinman DA. On the prevalence of flow instabilities from high-fidelity computational fluid dynamics of intracranial bifurcation aneurysms. J Biomech 2021; 127:110683. [PMID: 34454331 DOI: 10.1016/j.jbiomech.2021.110683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
High-fidelity computational fluid dynamics (HF-CFD) has revealed the potential for high-frequency flow instabilities (aka "turbulent-like" flow) in intracranial aneurysms, consistent with classic in vivo and in vitro reports of bruits and/or wall vibrations. However, HF-CFD has typically been performed on limited numbers of cases, often with unphysiological inflow conditions or focused on sidewall-type aneurysms where flow instabilities may be inherently less prevalent. Here we report HF-CFD of 50 bifurcation aneurysm cases from the open-source Aneurisk model repository. These were meshed using quadratic finite elements having an average effective spatial resolution of 0.065 mm, and solved under physiologically-pulsatile flow conditions using a well-validated, minimally-dissipative solver with 20,000 time-steps per cardiac cycle Flow instability was quantified using the recently introduced spectral power index (SPI), which quantifies, from 0 to 1, the power associated with velocity fluctuations above those of the driving inflow waveform. Of the 50 cases, nearly half showed regions within the sac having SPI up to 0.5, often with non-negligible power into the 100's of Hz, and roughly 1/3 had sac-averaged SPI > 0.1. High SPI did not significantly predict rupture status in this cohort. Proper orthogonal decomposition of cases with highest SPIavg revealed time-varying energetics consistent with transient turbulence. Our reported prevalence of high-frequency flow instabilities in HF-CFD modelling of aneurysms suggests that care must be taken to avoid routinely overlooking them if we are to understand the highly dynamic mechanical forces to which some aneurysm walls may be exposed, and their prevalence in vivo.
Collapse
Affiliation(s)
- M O Khan
- Cardiovascular Imaging, Modelling and Biomechanics Lab, Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Ontario, Canada.
| | - V Toro Arana
- Stanford University School of Medicine, Stanford, CA, USA
| | - M Najafi
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - D E MacDonald
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - T Natarajan
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Simula Research Laboratory, Lysaker Norway
| | | | - D A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
On the spectrographic representation of cardiovascular flow instabilities. J Biomech 2020; 110:109977. [DOI: 10.1016/j.jbiomech.2020.109977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
|
9
|
Natarajan T, MacDonald DE, Najafi M, Coppin PW, Steinman DA. Spectral decomposition and illustration-inspired visualisation of highly disturbed cerebrovascular blood flow dynamics. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2019. [DOI: 10.1080/21681163.2019.1647461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Thangam Natarajan
- Biomedical Simulation laboratory, University of Toronto, Toronto, Canada
| | | | - Mehdi Najafi
- Biomedical Simulation laboratory, University of Toronto, Toronto, Canada
| | - Peter W. Coppin
- Perceptual Artifacts Laboratory, Ontario College of Art and Design University, Toronto, Canada
| | - David A. Steinman
- Biomedical Simulation laboratory, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
On the quantification and visualization of transient periodic instabilities in pulsatile flows. J Biomech 2016; 52:179-182. [PMID: 28069165 DOI: 10.1016/j.jbiomech.2016.12.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/21/2022]
Abstract
Turbulent-like flows without cycle-to-cycle variations are more frequently being reported in studies of cardiovascular flows. The associated stimuli might be of mechanobiological relevance, but how to quantify them objectively is not obvious. Classical Reynolds decomposition, where the flow is separated into mean and fluctuating velocity components, is not applicable as the phase-average is zero. We therefore expanded on established techniques and present the idea, analogous to Reynolds decomposition, to decompose a flow with transient instabilities into low- versus high frequency components, respectively, to discriminate flow instabilities from the underlying cardiac pulsatility. Transient wall shear stress and velocity signals derived from computational fluid dynamic simulations were transferred to the frequency domain. A high-pass filter was applied to subtract the 99% most-energy-containing frequencies, which gave a cut-off frequency of 25Hz. We introduce here the spectral power index, and compute the fluctuating kinetic energy, based on the high-pass filtered velocity components, both being frequency-based operators. The efficacy was evaluated in an aneurysm model for multiple flow rates demonstrating transition to turbulent-like flows. The frequency-based operators were found to better correlate with the qualitatively observed flow instabilities compared to conventional descriptors, like time-averaged wall shear stress or oscillatory shear index. We demonstrate how the high frequencies beyond the physiological range could be analyzed and/or transferred back to the time domain for quantification and visualization purposes. We have introduced general frequency-based operators, easily extendable to other cardiovascular territories based on a posteriori heuristic filtering that allows for separation, isolation, and quantification of cycle-invariant turbulent-like flows.
Collapse
|
11
|
Khan MO, Valen-Sendstad K, Steinman DA. Narrowing the Expertise Gap for Predicting Intracranial Aneurysm Hemodynamics: Impact of Solver Numerics versus Mesh and Time-Step Resolution. AJNR Am J Neuroradiol 2015; 36:1310-6. [PMID: 25742983 DOI: 10.3174/ajnr.a4263] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/19/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Recent high-resolution computational fluid dynamics studies have uncovered the presence of laminar flow instabilities and possible transitional or turbulent flow in some intracranial aneurysms. The purpose of this study was to elucidate requirements for computational fluid dynamics to detect these complex flows, and, in particular, to discriminate the impact of solver numerics versus mesh and time-step resolution. MATERIALS AND METHODS We focused on 3 MCA aneurysms, exemplifying highly unstable, mildly unstable, or stable flow phenotypes, respectively. For each, the number of mesh elements was varied by 320× and the number of time-steps by 25×. Computational fluid dynamics simulations were performed by using an optimized second-order, minimally dissipative solver, and a more typical first-order, stabilized solver. RESULTS With the optimized solver and settings, qualitative differences in flow and wall shear stress patterns were negligible for models down to ∼800,000 tetrahedra and ∼5000 time-steps per cardiac cycle and could be solved within clinically acceptable timeframes. At the same model resolutions, however, the stabilized solver had poorer accuracy and completely suppressed flow instabilities for the 2 unstable flow cases. These findings were verified by using the popular commercial computational fluid dynamics solver, Fluent. CONCLUSIONS Solver numerics must be considered at least as important as mesh and time-step resolution in determining the quality of aneurysm computational fluid dynamics simulations. Proper computational fluid dynamics verification studies, and not just superficial grid refinements, are therefore required to avoid overlooking potentially clinically and biologically relevant flow features.
Collapse
Affiliation(s)
- M O Khan
- From the Biomedical Simulation Laboratory (M.O.K., K.V.-S., D.A.S.), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada Center for Biomedical Computing (M.O.K., K.V.-S.), Simula Research Laboratory, Lysaker, Norway
| | - K Valen-Sendstad
- From the Biomedical Simulation Laboratory (M.O.K., K.V.-S., D.A.S.), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada Center for Biomedical Computing (M.O.K., K.V.-S.), Simula Research Laboratory, Lysaker, Norway
| | - D A Steinman
- From the Biomedical Simulation Laboratory (M.O.K., K.V.-S., D.A.S.), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Chung B, Cebral JR. CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges. Ann Biomed Eng 2014; 43:122-38. [DOI: 10.1007/s10439-014-1093-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
|
13
|
Valen-Sendstad K, Mardal KA, Steinman DA. High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms. J Biomech 2013; 46:402-7. [DOI: 10.1016/j.jbiomech.2012.10.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
14
|
Valen-Sendstad K, Mardal KA, Mortensen M, Reif BAP, Langtangen HP. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J Biomech 2011; 44:2826-32. [PMID: 21924724 DOI: 10.1016/j.jbiomech.2011.08.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022]
Abstract
In experiments turbulence has previously been shown to occur in intracranial aneurysms. The effects of turbulence induced oscillatory wall stresses could be of great importance in understanding aneurysm rupture. To investigate the effects of turbulence on blood flow in an intracranial aneurysm, we performed a high resolution computational fluid dynamics (CFD) simulation in a patient specific middle cerebral artery (MCA) aneurysm using a realistic, pulsatile inflow velocity. The flow showed transition to turbulence just after peak systole, before relaminarization occurred during diastole. The turbulent structures greatly affected both the frequency of change of wall shear stress (WSS) direction and WSS magnitude, which reached a maximum value of 41.5Pa. The recorded frequencies were predominantly in the range of 1-500Hz. The current study confirms, through properly resolved CFD simulations that turbulence can occur in intracranial aneurysms.
Collapse
Affiliation(s)
- Kristian Valen-Sendstad
- Center for Biomedical Computing, Simula Research Laboratory, P. O. Box 134, N-1325 Lysaker, Norway.
| | | | | | | | | |
Collapse
|
15
|
Abstract
OBJECTIVE No existing in vivo technique can measure aneurysm wall thickness for evaluation of rupture risk. Intracranial aneurysms produce bruits at a special range of frequency that are highly influenced by the wall thickness. Understanding of the mechanism that generates bruits may allow us to learn aneurysm behavior non-invasively. METHODS A new theory was proposed to account for an interaction between an aneurysm and its parent vessel. Four patients with ophthalmic aneurysms were studied with a digital electronic stethoscope before and after endovascular treatment. Energy spectra of bruits were obtained from digital recording at both eyes. Change of energy spectra was used as an objective indication for aneurysm bruits. Additional four cases were obtained from a previous report. RESULTS Aneurysm bruits are affected by both aneurysm size and wall thickness. These sounds disappear after coil embolization and parent artery occlusion, but not by stenting. Both large and small aneurysms generate sounds at high frequency. Aneurysms at 6 mm produced very low frequency sound. Wall thickness decreases with aneurysm size, and the decrease is more pronounced at 8 mm. CONCLUSIONS Interaction between an intracranial aneurysm and its parent vessel is important in interpretation of aneurysm bruits. An analysis of in vivo measurements shows a rapid decline in wall thickness for 8 mm aneurysms.
Collapse
Affiliation(s)
- Liang-Der Jou
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
16
|
Yazicioglu Y, Royston TJ, Spohnholtz T, Martin B, Loth F. Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:1193-209. [PMID: 16158674 PMCID: PMC1440520 DOI: 10.1121/1.1953267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The vibration of a thin-walled cylindrical, compliant viscoelastic tube with internal turbulent flow due to an axisymmetric constriction is studied theoretically and experimentally. Vibration of the tube is considered with internal fluid coupling only, and with coupling to internal-flowing fluid and external stagnant fluid or external tissue-like viscoelastic material. The theoretical analysis includes the adaptation of a model for turbulence in the internal fluid and its vibratory excitation of and interaction with the tube wall and surrounding viscoelastic medium. Analytical predictions are compared with experimental measurements conducted on a flow model system using laser Doppler vibrometry to measure tube vibration and the vibration of the surrounding viscoelastic medium. Fluid pressure within the tube was measured with miniature hydrophones. Discrepancies between theory and experiment, as well as the coupled nature of the fluid-structure interaction, are described. This study is relevant to and may lead to further insight into the patency and mechanisms of vascular failure, as well as diagnostic techniques utilizing noninvasive acoustic measurements.
Collapse
|
17
|
Mansy HA, Hoxie SJ, Patel NH, Sandler RH. Computerised analysis of auscultatory sounds associated with vascular patency of haemodialysis access. Med Biol Eng Comput 2005; 43:56-62. [PMID: 15742720 DOI: 10.1007/bf02345123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Vascular access for renal dialysis is a lifeline for about 120 000 individuals in the United States. Stethoscope auscultation of vascular sounds has some utility in the assessment of access patency, yet can be highly skill-dependent. The objective of the study was to identify acoustic parameters that are related to changes in vascular access patency. The underlying hypothesis is that stenoses of haemodialysis access vessels or grafts cause vascular sound changes that are detectable using computerised data acquisition and analysis. Eleven patients participated in the study. Their vascular sounds were recorded before and after angiography, which was accompanied by angioplasty in most patients. The sounds were acquired using two electronic stethoscopes and then digitised and analysed on a personal computer. Vessel stenosis changes were found to be associated with changes in acoustic amplitude and/or spectral energy distribution. Certain acoustic parameters correlated well (correlation coefficient = 0.98, p < 0.0001) with the change in the degree of stenosis, suggesting that stenosis severity may be predictable from these parameters. Parameters also appeared to be sensitive to modest diameter changes (> 20%), (p < 0.005, Wilcoxon rank sum test). These results suggest that computerised analysis of vascular sounds may be useful in vessel patency surveillance. Further testing using longitudinal studies may be warranted.
Collapse
Affiliation(s)
- H A Mansy
- Biomedical Acoustics Research Group, Department of Pediatrics, Rush Medical College, Chicago, USA.
| | | | | | | |
Collapse
|